CN104535141B - 超声波流量计的流速模拟系统及方法 - Google Patents

超声波流量计的流速模拟系统及方法 Download PDF

Info

Publication number
CN104535141B
CN104535141B CN201410809059.5A CN201410809059A CN104535141B CN 104535141 B CN104535141 B CN 104535141B CN 201410809059 A CN201410809059 A CN 201410809059A CN 104535141 B CN104535141 B CN 104535141B
Authority
CN
China
Prior art keywords
ultrasonic flowmeter
ultrasonic
flow velocity
signal
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410809059.5A
Other languages
English (en)
Other versions
CN104535141A (zh
Inventor
赵俊奎
王波
张宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Chuanyi Automation Co Ltd
Original Assignee
Chongqing Chuanyi Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Chuanyi Automation Co Ltd filed Critical Chongqing Chuanyi Automation Co Ltd
Priority to CN201410809059.5A priority Critical patent/CN104535141B/zh
Publication of CN104535141A publication Critical patent/CN104535141A/zh
Application granted granted Critical
Publication of CN104535141B publication Critical patent/CN104535141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种超声波流量计的流速模拟系统及方法,超声波流量计首先在第一换能器上发出驱动脉冲,FPGA通过信号阈值比较电路确定接收到超声波流量计发射脉冲后,FPGA开始计时t1时间后,FPGA控制DA转换器给第二换能器输出模拟接收信号波形,超声波流量计测量从发送驱动脉冲到接收到模拟波形的时间间隔T1,然后超声波流量计在第二换能器上发出驱动脉冲,FPGA通过信号阈值比较电路确定接收到超声波流量计发射脉冲后,FPGA立刻开始计时t2时间后,FPGA控制DA转换器给第一换能器输出模拟波形,超声波流量计测量从发送驱动脉冲到接收到模拟接收信号波形的时间间隔T2,超声波流量计根据T1和T2,计算出流速V。

Description

超声波流量计的流速模拟系统及方法
技术领域
本发明涉及超声波流量计测试领域,尤其涉及一种超声波流量计的流速模拟系统及方法。
背景技术
由于超声波流量计不接触被测介质,测量准确度受介质温度和压力参数影响较小等特点,使其得到广泛应用。
申请人公司之前在超声波流量计研发过程中,采用时差法测量流体流速,基本原理都是测量超声波脉冲在顺水流和逆水流中的时间差来反应流速,从而测出流量。因此在此前的超声波流量计研发时,为得到流速的信息,须将超声波传感器安装在实际的管道上,并通过一定流速的流体,才能验证相关超声波流量计脉冲收发电路是否正常,测量结果是否线性等相关信息。在不具备管道和流体的情况下,这样的功能测试就不能进行。因此有必要设计一种模拟超声波传感器收发波形的电路系统,使超声波流量计的参数验证工作在没有实际管道和流体的情况下,也可以验证超声波脉冲收发电路是否正常,以及流量计线性度是否在合理范围内。
发明内容
本发明是针对现有技术的不足,提供了一种超声波流量计的流速模拟系统及方法,本方法结合本系统可以有效地解决超声波流量计功能验证必须在具备管道和一定流速流体情况下才能进行的弊端,使超声波流量计的功能验证在无管道流体的情况下也能实现,本发明适用于在不需要实际管道流体的情况下,模拟超声波流量计的信号收发方式,实现流速的模拟和线性度分析。
本发明为解决上述技术问题采用的技术方案为:一种超声波流量计的流速模拟系统,包括FPGA电路、触摸屏、DA转换器、输出控制电路、通道切换电路、信号阈值比较电路以及两个换能器,所述FPGA电路分别与输出控制电路、通道切换电路连接,用于分别控制输出控制电路、通道切换电路的接通或断开,所述FPGA电路通过RS485接口与触摸屏连接,所述FPGA电路通过RS232接口与待测超声波流量计连接,所述待测超声波流量计用于分别向两个换能器发出驱动信号,所述两个换能器用于分别接受待测超声波流量计的驱动信号,并分别经通道切换电路传递给信号阈值比较电路,所述信号阈值比较电路用于将待测超声波流量计驱动换能器的驱动电压与设定的阈值进行比较,输出启动信号给FPGA电路,所述FPGA电路用于接收信号阈值比较电路的启动信号,产生定时时间,定时输出控制信号,控制DA转换器输出超声波脉冲波形,并经输出控制电路分别传递给两个换能器。
所述FPGA电路采用型号为EP4CE10的FPGA芯片。
所述DA转换器采用型号为AD9760AR的数模转换器。
所述输出控制电路采用型号为ADG1421的模拟开关芯片。
所述信号阈值比较电路包括运放U12A、运放U14B以及若干电阻、电容,所述运放U14B的同相输入端经第28个电阻R28与通道切换电路的输出端连接,运放U14B的反相输入端分别与第26个电阻R26的一端、第27个电阻R27的一端、第53个电容C53的一端连接,第26个电阻R26的另一端接地,第27个电阻R27的另一端、第53个电容C53的另一端均与运放U14B的输出端连接,运放U14B的输出端经第29个电阻R29与运放U12A的同相输入端连接,运放U12A的反相输入端分别与电阻RA1的一端、电阻RA2的一端连接,电阻RA1的另一端接1.2V电压,电阻RA2的另一端接地,所述运放U12A的输出端与FPGA电路连接。
所述通道切换电路采用型号为ADG1421的模拟开关芯片。
一种超声波流量计的流速模拟方法,采用了上述超声波流量计的流速模拟系统,包括以下步骤:
1) 在触摸屏中预先设置模拟参数,包括管道直径D、两超声波换能器与管道水平方向夹角、量程、超声波速度c,根据设定的量程确定多个用于测试线性度的测试点,各个测试点的流体流速v对应量程的各个百分比,将从两个换能器中的第一换能器开始发送脉冲到第二换能器接收到脉冲信号的时间定义为t1,从第二换能器发送脉冲到第一换能器接收到脉冲信号的时间定义为t2,t1与t2之差定义为⊿t,在触摸屏上设置好模拟参数后,FPGA根据设置的模拟参数,通过公式1、2、3计算出多个不同量程百分比点对应的t1值和t2值,其中,公式1为,公式2为,公式3为
2)启动测试,FPGA电路通过RS232接口通知超声波流量计测试过程开始,超声波流量计首先在第一换能器上发出驱动脉冲,FPGA电路通过信号阈值比较电路确定接收到超声波流量计发射脉冲后,FPGA电路立刻开始计时,计时t1时间后,FPGA电路控制DA转换器给第二换能器输出模拟接收信号波形,超声波流量计测量从发送驱动脉冲到接收到模拟接收信号波形的时间间隔T1,然后超声波流量计在第二换能器上发出驱动脉冲,FPGA电路通过信号阈值比较电路确定接收到超声波流量计发射脉冲后,FPGA电路立刻开始计时,计时t2时间后,FPGA电路控制DA转换器给第一换能器输出模拟接收信号波形,超声波流量计测量从发送驱动脉冲到接收到模拟接收信号波形的时间间隔T2,超声波流量计根据测量得到的时间间隔T1和T2,计算出流速V,并将此流速V发送给FPGA电路,FPGA电路根据该流速V即可判断出超声波流量计工作收发信号功能是否正常,并发送给触摸屏显示;
3)根据步骤2)分别计算出多个测试点对应的流速,并判断线性度。
步骤2)中所述的驱动脉冲是频率为1Mhz的6个连续正弦波,用于模拟换能器在接收到超声脉冲激励后产生的一定电压峰值的正弦波包络。
步骤2)中所述的模拟接收信号波形是一系列峰值渐增到达最高值后递减的正弦波包络。
步骤1)中设置5个测试点,5个测试点的流体流速v对应量程的10%、30%、60%、90%、100%。
本发明采用上述技术方案的有益效果为:由于本发明的超声波流量计的流速模拟系统,包括FPGA电路、触摸屏、DA转换器、输出控制电路、通道切换电路、信号阈值比较电路以及两个换能器,所述FPGA电路分别与输出控制电路、通道切换电路连接,用于分别控制输出控制电路、通道切换电路的接通或断开,所述FPGA电路通过RS485接口与触摸屏连接,所述FPGA电路通过RS232接口与待测超声波流量计连接,所述待测超声波流量计用于分别向两个换能器发出驱动信号,所述两个换能器用于分别接受待测超声波流量计的驱动信号,并分别经通道切换电路传递给信号阈值比较电路,所述信号阈值比较电路用于将待测超声波流量计驱动换能器的驱动电压与设定的阈值进行比较,输出启动信号给FPGA电路,所述FPGA电路用于接收信号阈值比较电路的启动信号,产生定时时间,定时输出控制信号,控制DA转换器输出超声波脉冲波形,并经输出控制电路分别传递给两个换能器。本系统模拟超声波脉冲的收发电路以及超声波流量计参数设置系统, 可以在没有管道和流体的情况下,通过主要由触摸屏实现的参数设置系统和超声波脉冲收发模拟电路的巧妙结合,也可以验证超声波流量计收发电路功能是否正常,线性度是否在合理范围。
本方法配合本系统可以有效地解决超声波流量计功能验证必须在具备管道和一定流速流体情况下才能进行的弊端,使超声波流量计的功能验证在无管道流体的情况下也能实现。
附图说明
图1为本发明的电路框图;
图2为本发明的DA转换器、输出控制电路的电路图;
图3为本发明的信号阈值比较电路、通道切换电路的电路图;
图4为本发明的方法流程图;
图5为本发明的超声波换能器接收信号波形;
图6为差法测流速示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明:
参见图1至图6,一种超声波流量计的流速模拟系统,包括FPGA电路、触摸屏、DA转换器、输出控制电路、通道切换电路、信号阈值比较电路以及两个换能器,所述FPGA电路分别与输出控制电路、通道切换电路连接,用于分别控制输出控制电路、通道切换电路的接通或断开,所述FPGA电路通过RS485接口与触摸屏连接,所述FPGA电路通过RS232接口与待测超声波流量计连接,所述待测超声波流量计用于分别向两个换能器发出驱动信号,所述两个换能器用于分别接受待测超声波流量计的驱动信号,并分别经通道切换电路传递给信号阈值比较电路,所述信号阈值比较电路用于将待测超声波流量计驱动换能器的驱动电压与设定的阈值进行比较,输出启动信号给FPGA电路,所述FPGA电路用于接收信号阈值比较电路的启动信号,产生定时时间,定时输出控制信号,控制DA转换器输出超声波脉冲波形,并经输出控制电路分别传递给两个换能器。
如图1所示,触摸屏主要用来设置参数,如超声波速度,管道直径,安装角度等,同时验证结果和线性度信息也在触摸屏上显示;FPGA是本专利核心器件,用来接收换能器信号,产生精确定时时间,控制DA输出超声波脉冲波形以及通道切换等。信号阈值比较电路将设定的阈值与待测超声波流量计驱动换能器的电压比较,超过阈值则输出启动信号,通知FPGA立刻开始计时,进行一次超声波脉冲波形发送。
在FPGA与换能器间设置触发电路作用是在超声波流量计输出信号幅值很小(此电路为10毫伏),这里不是信号幅值很小,超声波流量计输出正弦波信号的峰值达到4V,而是在超声波流量计输出正弦信号刚刚到达10毫伏时阈值比较即输出高电平触发FPGA,减少延迟时间。如果不设置的话流量计输出信号会在较高的电平(2.0V以上)才会被FPGA检测到,时间延迟大。
具体电路描述如下:
所述FPGA电路采用型号为EP4CE10的FPGA芯片。所述DA转换器采用型号为AD9760AR的数模转换器。该数模转换器的DACLK引脚是FPGA通过内部锁相环分频获得的32MHZ正弦波时钟信号。所述输出控制电路采用型号为ADG1421的模拟开关芯片。所述通道切换电路采用型号为ADG1421的模拟开关芯片。
所述信号阈值比较电路包括运放U12A、运放U14B以及若干电阻、电容,所述运放U14B的同相输入端经第28个电阻R28与通道切换电路的输出端连接,运放U14B的反相输入端分别与第26个电阻R26的一端、第27个电阻R27的一端、第53个电容C53的一端连接,第26个电阻R26的另一端接地,第27个电阻R27的另一端、第53个电容C53的另一端均与运放U14B的输出端连接,运放U14B的输出端经第29个电阻R29与运放U12A的同相输入端连接,运放U12A的反相输入端分别与电阻RA1的一端、电阻RA2的一端连接,电阻RA1的另一端接1.2V电压,电阻RA2的另一端接地,所述运放U12A的输出端与FPGA电路连接。
参见图4,一种超声波流量计的流速模拟方法,采用了上述超声波流量计的流速模拟系统,包括以下步骤:
1)在触摸屏中预先设置模拟参数,包括管道直径D、两超声波换能器与管道水平方向夹角、量程、超声波速度c,根据设定的量程确定多个用于测试线性度的测试点,各个测试点的流体流速v对应量程的各个百分比,将从两个换能器中的第一换能器开始发送脉冲到第二换能器接收到脉冲信号的时间定义为t1,从第二换能器发送脉冲到第一换能器接收到脉冲信号的时间定义为t2,t1与t2之差定义为⊿t,在触摸屏上设置好模拟参数后,FPGA根据设置的模拟参数,通过公式1、2、3计算出多个不同量程百分比点对应的t1值和t2值,其中,公式1为,公式2为,公式3为
本实施例中根据量程设置5个测试点,5个测试点的流体流速v对应量程的10%、30%、60%、90%、100%。当设定的量程为10m/S时,则第一个检测点根据1m/S的流体流速v 计算t1、t2,第二个检测点根据3m/S的流体流速计算t1、t2,第三个检测点根据6m/S的流体流速计算t1、t2,第四个检测点根据9m/S的流体流速计算t1、t2,第五个检测点根据10m/S的流体流速计算t1、t2。超声波在流体中的速度c是相对固定的,在本发明中作为常数处理,本发明利用下式1,2,3测量管道中流体的速度。公式1,2,3只计算流体实际流速,量程即最大流速确定后,超声波速度已知,管道直径和安装角度也设定好后,管道中流体流速v就只与t1和t2有关,不同流速对应不同的t1和t2差值,百分比大的测试点对应的t1值和t2差值大。
2)启动测试,FPGA电路通过RS232接口通知超声波流量计测试过程开始,超声波流量计首先在第一换能器上发出驱动脉冲,FPGA电路通过信号阈值比较电路确定接收到超声波流量计发射脉冲后,FPGA电路立刻开始计时,计时t1时间后,FPGA电路控制DA转换器给第二换能器输出模拟接收信号波形,超声波流量计测量从发送驱动脉冲到接收到模拟接收信号波形的时间间隔T1,然后超声波流量计在第二换能器上发出驱动脉冲,FPGA电路通过信号阈值比较电路确定接收到超声波流量计发射脉冲后,FPGA电路立刻开始计时,计时t2时间后,FPGA电路控制DA转换器给第一换能器输出模拟接收信号波形,超声波流量计测量从发送驱动脉冲到接收到模拟接收信号波形的时间间隔T2,超声波流量计根据测量得到的时间间隔T1和T2,计算出流速V,并将此流速V发送给FPGA电路,FPGA电路根据该流速V即可判断出超声波流量计工作收发信号功能是否正常,并发送给触摸屏显示;
所述的模拟接收信号波形是一系列峰值渐增到达最高值后递减的正弦波包络。如图5所示,超声波换能器实际回波信号波形如上图5所示,是一序列的正弦信号包络,本系统中需要FPGA和DA转换器模拟此波形作为待测超声波流量计回波接收信号。所述的驱动脉冲是频率为1Mhz的6个连续正弦波,用于模拟换能器在接收到超声脉冲激励后产生的一定电压峰值的正弦波包络。
3)根据步骤2)分别计算出多个测试点对应的流速,并判断线性度。
线性度以量程10%点和100%点的流速测试值作一直线,以量程为30m/S为例,假设流速模拟器根据根据式1,2,3发出10%量程点(理论值3m/S)的⊿t信号给超声波流量计,超声波流量计实测值假设为3.2m/S;同样假设流速模拟器根据根据式1,2,3发出100%量程点(理论值30m/S)的⊿t信号给超声波流量计,超声波流量计实测值假设为29m/S,那么根据上述两实测值, 30%(9m/S)点的实测值理论上应为3.2+(29-3.2)*(30%-10%)=8.36m/S.而当超声波流速模拟器发出30%量程测试点对应的⊿t信号,超声波流量计实测出来的值为8.86,那么改点的线性偏差即为(8.86-8.36)/29=0.017即1.7%。同理可得60%和90%点的线性偏差。
在本方法采用了如图6所示的时差法测量原理,图6所示为超声波流量计时差法测流速的示意图,从第一换能器开始发送脉冲到第二换能器接收到脉冲信号的时间为t1,从第二换能器发送脉冲到第一换能器接收到脉冲信号的时间为t2. t1与t2之差为⊿t,其与管道内流体流速关系如式1所示:
(1)
(2)
(3)
式中,c为超声波在流体中的速度,D为管道直径,是两超声波换能器与管道水平方向夹角。由式1可见,当超声波在静止流体中传播速度可认为是常数时,流体流速就与时间差⊿t成正比,测量⊿t即可得到流速,进而求得流量。
本发明的脉冲模拟及功能测试原理采用图1所示示意图。第一换能器和第二换能器并不是真正的传感器,他们的发送信号由流量计产生,接收信号通过本流速模拟器模拟产生。设置好模拟管道流量的参数后(如管道直径,超声波速度,安装角度等,量程),确定上述参数后,经过公式1,2,3的计算,流速模拟系统就可以确定在5个不同量程百分比点(10%,30%,60%,90%,100%)对应t1和t2的值,FPGA通过阈值触发电路确定接收到超声波流量计发射脉冲后,FPGA控制DA转换器分别以t1和t2的时间间隔在对应的换能器上输出模拟接收信号波形。按下触摸屏上的启动按钮,测试过程启动。FPGA通过RS232接口通知超声波流量计测试过程开始,超声波流量计首先在第一换能器上发出驱动波形,驱动波形是频率1Mhz 的6个连续正弦波,幅值约4V左右,模拟的是换能器在接收到超声脉冲激励后产生的一定电压峰值的正弦波包络,图3所示是换能器接收到超生脉冲后实际生成的正弦包络,本流速模拟器通过DA转换器模拟该波形大于阈值时,阈值设置为当流量计发送驱动脉冲大于10毫伏时,阈值检测电路输出高电平触发FPGA开始计时t1,计时时间t1到达后,FPGA立刻驱动DA转换器输出图3所示的模拟波形,模拟波形是一系列峰值渐增到达最高值后递减的正弦波包络,一般液体超声波接收信号最高点峰值电压在500毫伏左右,本例中的流量计在正弦包络的第二个正弦波作为时间测量点。通过通道控制输出到第二换能器上作为流量计接收信号,如果超声波流量计收发电路工作正常,可得出此次第一换能器发送脉冲开始到第二换能器接收到回波信号为止的时间为t1;同理,超声波流量计在第二换能器发送波形开始到第一换能器接收到模拟回波信号为止的时间为t2;由式1,超声波流量计依据上述时间t1和t2即可计算出流量,并将此流量信息发送给FPGA,FPGA在发送给触摸屏显示。量程设定后,对应的5个测试点就明确了,量程设定是根据传感器测量范围而变化,如量程设置为10m/S,对应的10%,30%,60%,90%,100%测试点为(1m/S,3m/S,6m/S,9m/S,10m/S),量程只有一个。为了测量线性度,根据量程不同,需要设置5个测试点,分别为量程的10%,30%,60%,90%,100%,不同测试点,如公式1,2,3所示,确定了管道直径、安装角度、超声波速度等参数后,仅需改变t1和t2时间,如果超声波流量计工作收发信号功能正常,就能得出相应的理论流速,系统的线性度误差不应超过2%。本系统目前设置的测试点是上述5个,这也是超声波流量计行业内流速实流标定一般要求的测试点,以后,可以通过触摸屏参数设置灵活更改测试点位置和数量。

Claims (10)

1.一种超声波流量计的流速模拟系统,其特征在于:包括FPGA电路、触摸屏、DA转换器、输出控制电路、通道切换电路、信号阈值比较电路以及两个换能器,所述FPGA电路分别与输出控制电路、通道切换电路连接,用于分别控制输出控制电路、通道切换电路的接通或断开,所述FPGA电路通过RS485接口与触摸屏连接,所述FPGA电路通过RS232接口与待测超声波流量计连接,所述待测超声波流量计用于分别向两个换能器发出驱动信号,所述两个换能器用于分别接受待测超声波流量计的驱动信号,并分别经通道切换电路传递给信号阈值比较电路,所述信号阈值比较电路用于将待测超声波流量计驱动换能器的驱动电压与设定的阈值进行比较,输出启动信号给FPGA电路,所述FPGA电路用于接收信号阈值比较电路的启动信号,产生定时时间,定时输出控制信号,控制DA转换器输出超声波脉冲波形,并经输出控制电路分别传递给两个换能器。
2.根据权利要求1所述的超声波流量计的流速模拟系统,其特征在于: 所述FPGA电路采用型号为EP4CE10的FPGA芯片。
3.根据权利要求1所述的超声波流量计的流速模拟系统,其特征在于:所述DA转换器采用型号为AD9760AR的数模转换器。
4.根据权利要求1所述的超声波流量计的流速模拟系统,其特征在于:所述输出控制电路采用型号为ADG1421的模拟开关芯片。
5.根据权利要求1所述的超声波流量计的流速模拟系统,其特征在于:所述信号阈值比较电路包括第一运放(U12A)、第二运放(U14B)以及若干电阻、电容,所述第二运放(U14B)的同相输入端经第28电阻(R28)与通道切换电路的输出端连接,第二运放(U14B)的反相输入端分别与第26电阻(R26)的一端、第27电阻(R27)的一端、第53电容(C53)的一端连接,第26电阻(R26)的另一端接地,第27电阻(R27)的另一端、第53电容(C53)的另一端均与第二运放(U14B)的输出端连接,第二运放(U14B)的输出端经第29电阻(R29)与第一运放(U12A)的同相输入端连接,第一运放(U12A)的反相输入端分别与第1电阻(RA1)的一端、第2电阻(RA2)的一端连接,第1电阻(RA1)的另一端接1.2V电压,第2电阻(RA2)的另一端接地,所述第一运放(U12A)的输出端与FPGA电路连接。
6.根据权利要求1所述的超声波流量计的流速模拟系统,其特征在于:所述通道切换电路采用型号为ADG1421的模拟开关芯片。
7.一种超声波流量计的流速模拟方法,其特征在于,采用了上述超声波流量计的流速模拟系统,包括以下步骤:
1) 在触摸屏中预先设置模拟参数,包括管道直径D、两超声波换能器与管道水平方向夹角、量程、超声波速度c,根据设定的量程确定多个用于测试线性度的测试点,各个测试点的流体流速v对应量程的各个百分比,将从两个换能器中的第一换能器开始发送脉冲到第二换能器接收到脉冲信号的时间定义为t1,从第二换能器发送脉冲到第一换能器接收到脉冲信号的时间定义为t2,t1与t2之差定义为⊿t,在触摸屏上设置好模拟参数后,FPGA根据设置的模拟参数,通过公式1、2、3计算出多个不同量程百分比点对应的t1值和t2值,其中,公式1为,公式2为,公式3为
2)启动测试,FPGA电路通过RS232接口通知超声波流量计测试过程开始,超声波流量计首先在第一换能器上发出驱动脉冲,FPGA电路通过信号阈值比较电路确定接收到超声波流量计发射脉冲后,FPGA电路立刻开始计时,计时t1时间后,FPGA电路控制DA转换器给第二换能器输出模拟接收信号波形,超声波流量计测量从发送驱动脉冲到接收到模拟接收信号波形的时间间隔T1,然后超声波流量计在第二换能器上发出驱动脉冲,FPGA电路通过信号阈值比较电路确定接收到超声波流量计发射脉冲后,FPGA电路立刻开始计时,计时t2时间后,FPGA电路控制DA转换器给第一换能器输出模拟接收信号波形,超声波流量计测量从发送驱动脉冲到接收到模拟接收信号波形的时间间隔T2,超声波流量计根据测量得到的时间间隔T1和T2,计算出流速V,并将此流速V发送给FPGA电路,FPGA电路根据该流速V即可判断出超声波流量计工作收发信号功能是否正常,并发送给触摸屏显示;
3)根据步骤2)分别计算出多个测试点对应的流速,并判断线性度。
8.根据权利要求7所述的超声波流量计的流速模拟方法,其特征在于:步骤2)中所述的驱动脉冲是频率为1Mhz的6个连续正弦波,用于模拟换能器在接收到超声脉冲激励后产生的一定电压峰值的正弦波包络。
9.根据权利要求7所述的超声波流量计的流速模拟方法,其特征在于:步骤2)中所述的模拟接收信号波形是一系列峰值渐增到达最高值后递减的正弦波包络。
10.根据权利要求7所述的超声波流量计的流速模拟方法,其特征在于:步骤1)中设置5个测试点,5个测试点的流体流速v对应量程的10%、30%、60%、90%、100%。
CN201410809059.5A 2014-12-23 2014-12-23 超声波流量计的流速模拟系统及方法 Active CN104535141B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410809059.5A CN104535141B (zh) 2014-12-23 2014-12-23 超声波流量计的流速模拟系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410809059.5A CN104535141B (zh) 2014-12-23 2014-12-23 超声波流量计的流速模拟系统及方法

Publications (2)

Publication Number Publication Date
CN104535141A CN104535141A (zh) 2015-04-22
CN104535141B true CN104535141B (zh) 2017-10-24

Family

ID=52850716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410809059.5A Active CN104535141B (zh) 2014-12-23 2014-12-23 超声波流量计的流速模拟系统及方法

Country Status (1)

Country Link
CN (1) CN104535141B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181045B (zh) * 2015-05-22 2018-04-20 重庆川仪自动化股份有限公司 超声波流量计消除温度影响声速的方法
CN105115575A (zh) * 2015-09-11 2015-12-02 重庆川仪自动化股份有限公司 质量流量计流速模拟方法及系统
CN105938026A (zh) * 2016-06-02 2016-09-14 大连环岛仪表有限公司 具有漏水报警功能的超声波热量表
CN107907173A (zh) * 2017-12-14 2018-04-13 湖北天禹环保科技有限公司 一种用于超声波气体流量计的模拟数字转换器
CN109682432A (zh) * 2019-01-29 2019-04-26 安徽天康(集团)股份有限公司 一种超声波测量蒸汽流量计
CN111189501A (zh) * 2020-03-16 2020-05-22 宁夏隆基宁光仪表股份有限公司 用于超声波燃气表流量计算及修正方法
CN113203452A (zh) * 2021-04-13 2021-08-03 湖南省计量检测研究院 一种校准装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172948A (zh) * 1996-08-02 1998-02-11 张力新 超声波流量计的干校验方法及其装置
JP2011112533A (ja) * 2009-11-27 2011-06-09 Hitachi-Ge Nuclear Energy Ltd 超音波給水流量計の検証方法
CN103063275A (zh) * 2012-12-26 2013-04-24 宁波水表股份有限公司 一种超声水流量换能器综合性能试验装置及其使用方法
CN203224283U (zh) * 2013-04-27 2013-10-02 辽宁省计量科学研究院 一种液体流量现场校准装置
CN204359405U (zh) * 2014-12-23 2015-05-27 重庆川仪自动化股份有限公司 超声波流量计的流速模拟系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012012252B4 (de) * 2012-06-22 2022-05-05 Krohne Ag System zur Durchflussmessung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172948A (zh) * 1996-08-02 1998-02-11 张力新 超声波流量计的干校验方法及其装置
JP2011112533A (ja) * 2009-11-27 2011-06-09 Hitachi-Ge Nuclear Energy Ltd 超音波給水流量計の検証方法
CN103063275A (zh) * 2012-12-26 2013-04-24 宁波水表股份有限公司 一种超声水流量换能器综合性能试验装置及其使用方法
CN203224283U (zh) * 2013-04-27 2013-10-02 辽宁省计量科学研究院 一种液体流量现场校准装置
CN204359405U (zh) * 2014-12-23 2015-05-27 重庆川仪自动化股份有限公司 超声波流量计的流速模拟系统

Also Published As

Publication number Publication date
CN104535141A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN104535141B (zh) 超声波流量计的流速模拟系统及方法
CN103090916B (zh) 一种超声波流量测量装置及其测量方法
CN106643939B (zh) 用于超声波流量计计算超声波传播时间的方法
CN107003332A (zh) 改进的信号行程时间流量计
CN104236649B (zh) 一种多声路并行同步测流的超声波流量计及流量测量方法
CN109029598B (zh) 一种互相关法气体超声波流量计中基于主次包络结合处的参考波形选取方法
CN101762298B (zh) 超声波测量仪
CN106030255A (zh) 超声信号传送和接收电路组装件和使用该电路组装件的超声系统和方法
CN109405905A (zh) 多声道超声波计量器及其计量方法
CN102866261B (zh) 检测超声波在测流速中飞行时间的方法
Tian et al. Energy peak fitting of echo based signal processing method for ultrasonic gas flow meter
CN106643937A (zh) 一种基于超声波流量计的流量测量方法及装置
CN104535140B (zh) 超声波流量计换能器的谐振频率测试方法
CN203148479U (zh) 一种超声波流量测量装置
CN103389153B (zh) 一种利用二次反射波测量超声波渡越时间的电路
CN201352132Y (zh) 用于超声波燃气表的管道腔体
CN105181045B (zh) 超声波流量计消除温度影响声速的方法
CN207036192U (zh) 气液两用超声流量计
CN206291930U (zh) 一种超声波质量流量计
CN204359405U (zh) 超声波流量计的流速模拟系统
CN208968601U (zh) 多声道超声波计量器
CN112903043B (zh) 一种多声道超声波流量计系统
CN105147320A (zh) 一种超声多普勒术中血流模拟系统及其模拟方法
CN204359406U (zh) 超声波流量计换能器的谐振频率测试系统
Yu et al. Design and simulation of an ultrasonic flow meter for thin pipe

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant