Summary of the invention
The object of this invention is to provide a kind of without the passivating method of Ohmax passivator and preparation method thereof with aluminium alloy, had by this passive film without the surface of the aluminium alloy of Ohmax passivator process that film is thin, dense uniform, glossiness are good and corrosion resistant characteristic.
To achieve these goals, the invention provides a kind of without Ohmax passivator, describedly contain potassium fluotitanate, hydrofluoric acid, nitrate, ammonium persulphate, cobalt boracylate, hydrogen peroxide, Weibull and water without Ohmax passivator; Relative to the potassium fluotitanate of 1 weight part, the content of described hydrofluoric acid is 0.8-1.2 weight part, the content of described nitrate is 8-11 weight part, the content of described ammonium persulphate is 0.2-0.4 weight part, the content of described cobalt boracylate is 4-6 weight part, the content of described hydrogen peroxide is 5-7 weight part, and the content of described Weibull is 0.3-0.6 weight part; Wherein, described nitrate is the nitrate of alkali-metal nitrate and/or alkaline-earth metal.
Present invention provides a kind of preparation method without Ohmax passivator, described preparation method comprises: potassium fluotitanate, hydrofluoric acid, nitrate, ammonium persulphate, cobalt boracylate, hydrogen peroxide, Weibull and water are mixed without Ohmax passivator; Wherein, described nitrate is the nitrate of alkali-metal nitrate and/or alkaline-earth metal; Relative to the potassium fluotitanate of 1 weight part; the consumption of described hydrofluoric acid is 0.8-1.2 weight part; the consumption of described nitrate is 8-11 weight part; the consumption of described ammonium persulphate is 0.2-0.4 weight part; the consumption of described cobalt boracylate is 4-6 weight part; the consumption of described hydrogen peroxide is 5-7 weight part, and the consumption of described Weibull is 0.3-0.6 weight part.
Present invention also offers a kind of passivating method of aluminium alloy, described passivating method is: be soaked in by aluminium alloy in passivating solution, and described passivating solution is above-mentioned described without Ohmax passivator or by obtained described without Ohmax passivator of above-mentioned method.
Pass through technique scheme; provided by the inventionly contain potassium fluotitanate, hydrofluoric acid, nitrate, ammonium persulphate, cobalt boracylate, hydrogen peroxide, Weibull and water without Ohmax passivator; then aluminium alloy is soaked in above-mentioned without in Ohmax passivator; by the synergy without material each in Ohmax passivator, the passive film of the surface formation of the aluminium alloy after soaking is had, and film is thin, dense uniform, glossiness are good and corrosion resistant characteristic.
Other features and advantages of the present invention are described in detail in embodiment part subsequently.
Embodiment
Below the specific embodiment of the present invention is described in detail.Should be understood that, embodiment described herein, only for instruction and explanation of the present invention, is not limited to the present invention.
The invention provides a kind of without Ohmax passivator, describedly contain potassium fluotitanate, hydrofluoric acid, nitrate, ammonium persulphate, cobalt boracylate, hydrogen peroxide, Weibull and water without Ohmax passivator; Relative to the potassium fluotitanate of 1 weight part, the content of described hydrofluoric acid is 0.8-1.2 weight part, the content of described nitrate is 8-11 weight part, the content of described ammonium persulphate is 0.2-0.4 weight part, the content of described cobalt boracylate is 4-6 weight part, the content of described hydrogen peroxide is 5-7 weight part, and the content of described Weibull is 0.3-0.6 weight part; Wherein, described nitrate is the nitrate of alkali-metal nitrate and/or alkaline-earth metal.
In the present invention, the kind of nitrate can be selected in wide scope, but passive film is thinner, more dense uniform, glossiness are better and more corrosion-resistant in order to make, and preferably, described nitrate is selected from magnesium nitrate and/or nitrocalcite.
In the present invention, the consumption of water can be selected in wide scope, but passive film is thinner, more dense uniform, glossiness are better and more corrosion-resistant, preferably in order to make, with the described gross weight without Ohmax passivator for benchmark, the content of described water is 80-85 % by weight.
Present invention provides a kind of preparation method without Ohmax passivator, described preparation method comprises: potassium fluotitanate, hydrofluoric acid, nitrate, ammonium persulphate, cobalt boracylate, hydrogen peroxide, Weibull and water are mixed without Ohmax passivator; Wherein, described nitrate is the nitrate of alkali-metal nitrate and/or alkaline-earth metal; Relative to the potassium fluotitanate of 1 weight part; the consumption of described hydrofluoric acid is 0.8-1.2 weight part; the consumption of described nitrate is 8-11 weight part; the consumption of described ammonium persulphate is 0.2-0.4 weight part; the consumption of described cobalt boracylate is 4-6 weight part; the consumption of described hydrogen peroxide is 5-7 weight part, and the consumption of described Weibull is 0.3-0.6 weight part.
In the present invention, the kind of nitrate can be selected in wide scope, but passive film is thinner, more dense uniform, glossiness are better and more corrosion-resistant in order to make, and preferably, described nitrate is selected from magnesium nitrate and/or nitrocalcite.
In the present invention, the consumption of water can be selected in wide scope, but passive film is thinner, more dense uniform, glossiness are better and more corrosion-resistant, preferably in order to make, with the described gross weight without Ohmax passivator for benchmark, the content of described water is 80-85 % by weight.
In the present invention, the condition of mixing can be selected in wide scope, but passive film is thinner, more dense uniform, glossiness are better and more corrosion-resistant, preferably in order to make, described mixing meets the following conditions: mixing temperature is 15-30 DEG C, and mixing time is 20-30min.
Present invention also offers a kind of passivating method of aluminium alloy, described passivating method is: be soaked in by aluminium alloy in passivating solution, and described passivating solution is above-mentioned described without Ohmax passivator or by obtained described without Ohmax passivator of above-mentioned method.
In the present invention, the condition of soaking can be selected in wide scope, but passive film is thinner, more dense uniform, glossiness are better and more corrosion-resistant, preferably in order to make, described immersion meets the following conditions: soaking temperature is 40-50 DEG C, and soak time is 7-15min.
Below will be described the present invention by embodiment.In following examples, salt-fog resistant time parameter is recorded by the method in GB/T1771-2007; Potassium fluotitanate is Changshu Xinhua Chemical Factory's commercially available product; hydrofluoric acid is Dezhou City Fu Kai chemical industry limited liability company commercially available product; magnesium nitrate is Shanghai branch office of Jian Cheng Chemical Co., Ltd. commercially available product; nitrocalcite is Guangzhou Sui Ze Environmental Protection Technology Co., Ltd commercially available product; ammonium persulphate is Chen Xiang Chemical Co., Ltd. of Suzhou City commercially available product; cobalt boracylate is Shanghai Jun Pu Chemical Co., Ltd. commercially available product; hydrogen peroxide is Guangzhou Xi Rui Chemical Co., Ltd. commercially available product, and Weibull is Shanghai Sheng Yu Chemical Co., Ltd. commercially available product.
Embodiment 1
At 20 DEG C, by the potassium fluotitanate of 1kg, hydrofluoric acid 1kg, magnesium nitrate 9kg, ammonium persulphate 0.3kg, cobalt boracylate 5kg, hydrogen peroxide 6kg, Weibull 0.5kg and water mixing 25min obtain without Ohmax passivator.Wherein, without in Ohmax passivator, the content of water is 82 % by weight.
At 45 DEG C, aluminium alloy is soaked in above-mentioned without passivation aluminium alloy A1 obtained in Ohmax passivator.The parameter of the passive film of this passivation aluminium alloy is in table 1.
Embodiment 2
At 15 DEG C, by the potassium fluotitanate of 1kg, hydrofluoric acid 0.8kg, magnesium nitrate 8kg, ammonium persulphate 0.2kg, cobalt boracylate 4kg, hydrogen peroxide 5kg, Weibull 0.3kg and water mixing 20min obtain without Ohmax passivator.Wherein, without in Ohmax passivator, the content of water is 80 % by weight.
At 40 DEG C, aluminium alloy is soaked in above-mentioned without passivation aluminium alloy A2 obtained in Ohmax passivator.The parameter of the passive film of this passivation aluminium alloy is in table 1.
Embodiment 3
At 30 DEG C, by the potassium fluotitanate of 1kg, hydrofluoric acid 1.2kg, magnesium nitrate 11kg, ammonium persulphate 0.4kg, cobalt boracylate 6kg, hydrogen peroxide 7kg, Weibull 0.6kg and water mixing 30min obtain without Ohmax passivator.Wherein, without in Ohmax passivator, the content of water is 85 % by weight.
At 50 DEG C, aluminium alloy is soaked in above-mentioned without passivation aluminium alloy A3 obtained in Ohmax passivator.The parameter of the passive film of this passivation aluminium alloy is in table 1.
Embodiment 4
Passivation aluminium alloy A4 is obtained according to the method for embodiment 1, unlike, magnesium nitrate is changed to nitrocalcite.The parameter of the passive film of this passivation aluminium alloy is in table 1.
Comparative example 1
Passivation aluminium alloy B1 is obtained according to the method for embodiment 1, unlike, not containing potassium fluotitanate.The parameter of the passive film of this passivation aluminium alloy is in table 1.
Comparative example 2
Passivation aluminium alloy B2 is obtained according to the method for embodiment 1, unlike, not containing cobalt boracylate.The parameter of the passive film of this passivation aluminium alloy is in table 1.
Comparative example 3
Passivation aluminium alloy B3 is obtained according to the method for embodiment 1, unlike, the consumption of cobalt boracylate is 8kg.The parameter of the passive film of this passivation aluminium alloy is in table 1.
Comparative example 4
Passivation aluminium alloy B4 is obtained according to the method for embodiment 1, unlike, not containing Weibull.The parameter of the passive film of this passivation aluminium alloy is in table 1.
Comparative example 5
Passivation aluminium alloy B5 is obtained according to the method for embodiment 1, unlike, the consumption of Weibull is 0.8kg.The parameter of the passive film of this passivation aluminium alloy is in table 1.
Table 1
From above-described embodiment and comparative example, provided by the inventionly can form excellent passive film in aluminum alloy surface without Ohmax passivator, this passive film has that film is thin, dense uniform, glossiness are good and corrosion resistant characteristic.
More than describe the preferred embodiment of the present invention in detail; but the present invention is not limited to the detail in above-mentioned embodiment, within the scope of technical conceive of the present invention; can carry out multiple simple variant to technical scheme of the present invention, these simple variant all belong to protection scope of the present invention.
It should be noted that in addition, each concrete technical characteristic described in above-mentioned embodiment, in reconcilable situation, can be combined by any suitable mode, in order to avoid unnecessary repetition, the present invention illustrates no longer separately to various possible array mode.
In addition, also can carry out arbitrary combination between various different embodiment of the present invention, as long as it is without prejudice to thought of the present invention, it should be considered as content disclosed in this invention equally.