CN104531601A - 一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法 - Google Patents

一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法 Download PDF

Info

Publication number
CN104531601A
CN104531601A CN201410743643.5A CN201410743643A CN104531601A CN 104531601 A CN104531601 A CN 104531601A CN 201410743643 A CN201410743643 A CN 201410743643A CN 104531601 A CN104531601 A CN 104531601A
Authority
CN
China
Prior art keywords
arachidonic acid
phaeodactylum tricornutum
fucoxanthin
mother liquor
improves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410743643.5A
Other languages
English (en)
Other versions
CN104531601B (zh
Inventor
朱帅旗
龚一富
刘浩
刘诗洁
陆程鹏
刘钊
王何瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410743643.5A priority Critical patent/CN104531601B/zh
Publication of CN104531601A publication Critical patent/CN104531601A/zh
Application granted granted Critical
Publication of CN104531601B publication Critical patent/CN104531601B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,取灭菌海水与MAD母液混合获得营养液,在营养液中加入三角褐指藻母液培养,培养2天后,加入花生四烯酸,继续培养6天后收集藻液,离心分离,弃上清,收集藻体,将藻体冷冻干燥处理2天,研磨备用。该方法对提高三角褐指藻中的岩藻黄素含量效果显著,操作简单方便,费用低,生产周期短,适于批量处理和工厂化生产。

Description

一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法
技术领域
本发明属于生物医药技术领域,具体涉及一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法。
背景技术
岩藻黄素(fucoxanthin)是一类广泛存在于褐藻和硅藻中的类胡萝卜素。这种色素不仅存在于巨藻中,在微藻中也有发现。食物中获得的岩藻黄素在胃肠道中经过消化酶的作用被水解成岩藻黄醇,通过淋巴系统和血液循环系统,最终岩藻黄醇在组织中积累。岩藻黄素的结构非常的特殊。在它的分子结构中含有不同寻常的共轭双键和5,6-单环氧基。正是由于其拥有这种结构才使得其具有抗癌、抗肥胖、抗炎症、抗糖尿病以及抑制血管增生的作用。根据所报道的机理来看,主要是通过促进细胞周期停滞和诱导细胞凋亡两种方式。其中,岩藻黄素通过促进细胞周期停滞的方式来抗癌主要在前列腺癌和肝癌的研究中发现,但是它们的靶标分子是不同的,分别为GADD45A和Cyclin D。而诱导细胞凋亡的方式抑制癌细胞主要是在白血病和结肠癌的研究中发现的,靶标分子分别为Caspase-3,7,9和Bcl-2。近几年的研究中发现肥胖是引起II型糖尿病,高血脂和高血压的重要原因。Hayto等(2005)通过研究表明,岩藻黄素能够激活激活线粒体解偶联蛋白(UCP1蛋白)的转录。该蛋白存在两个作用,一是它能够促进脂肪的分解,二是通过在肝脏中生成DHA来降低胆固醇的含量。WAT在能量储存器官和内分泌器官中具有重要的作用。WAT能够产生如单核细胞趋化蛋白1(MCP-1)、肿瘤坏死因子(TNF-α)、白细胞介素6(IL-6)和脂联素。在白色脂肪组织中,脂肪细胞因子的调节异常会引起血脂异常和高血压症状。Hosokawa等通过研究岩藻黄素对肥胖小鼠有关脂肪细胞因子相关mRNA转录情况。他们发现经岩藻黄素的作用下MCP-1、TNF-α和IL-6相关mRNA的转录下降非常明显,并且其体重比对照组也明显下降。
诱导子能够诱导转录植物中的特定基因,从而提高植物的次生代谢产物。诱导子可以分为内源性诱导子和外源性诱导子,花生四烯酸属于外源性诱导子中不饱和脂肪酸类。它是一种重要的诱导子,在细胞内作为第二信使而直接产于胞内信号的转导,或通过对其它信号通路的调节间接影响细胞生物的活动。王丽丽等研究了不同质量浓度的花生四烯酸处理雨生红球藻,其细胞生长和虾青素含量影响。Le B等发现花生四烯酸能够诱导马铃薯产生植保素。三角褐指藻(Phaeodactylum tricomutum)是一种硅藻。Kim等发现在三角褐指藻中的岩藻黄素的含量要比巨藻中的还要高。因此三角褐指藻被认为是产岩藻黄素的商业藻种。
本文通过利用不同浓度的花生四烯酸处理三角褐指藻,来研究三角褐指藻的生长状况,分离和提取三角褐指藻中的岩藻黄素并且利用HPLC对不同浓度的花生四烯酸处理下的三角褐指藻中岩藻黄素含量的测定。进而得出最适花生四烯酸的浓度,提高岩藻黄素的含量。为提高岩藻黄素含量提供有力的实验依据和实验手段。
发明内容
本发明的目的在于提供一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,该方法对提高三角褐指藻中的岩藻黄素含量效果显著,操作简单方便,费用低,生产周期短,适于批量处理和工厂化生产。
本发明具体通过以下技术方案实现:
一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,包括以下步骤:
1)将灭菌海水与MAD母液混合得营养液;
2)在营养液中加入三角褐指藻母液培养;
3)培养2天后,加入花生四烯酸;
4)继续培养6天后手机藻液,离心分离,弃上清,收集藻体;
5)将藻体冷冻干燥处理2天,研磨备用。
本发明所述的MAD母液的配方为:KNO3:10g,KH2PO4:1g,FeSO4·7H2O:0.25g,MnSO4:0.025g,EDTANa2:1g,VB1:0.0006g,dH2O:100ml。
本发明所述的培养条件为:62.5μmol photons/m2·s,25℃。
所述的灭菌海水与MAD母液的体积比为1∶1000。
所述的营养液与三角褐指藻母液的体积比为1∶10。
步骤(3)中培养液加入花生四烯酸后花生四烯酸的浓度为0.1mg/L~0.5mg/L,优选的花生四烯酸的浓度为0.1mg/L。
步骤(5)中所述的冷冻干燥处理条件为:温度-70℃,压强999Pa。
本发明的优点在于:发明首次公开了从三角褐指藻中提取岩藻黄素,为提高岩藻黄素含量还利用不同浓度的花生四烯酸处理三角褐指藻,寻找最适合的花生四烯酸处理浓度,通过该浓度对三角褐指藻的诱导处理,其岩藻黄素的含量增加显著。该发明操作简单方便,费用低,生产周期短,适于批量处理和工厂化生产。由于岩藻黄素对抗癌,高血糖,心血管疾病,糖尿病都有显著地功效,提高岩藻黄素的含量将满足人们治病的需要,并且能够提高经济效益。
附图说明
图1是实施例利用不同浓度花生四烯酸处理三角褐指藻后生长曲线;
图2是实施例不同浓度花生四烯酸处理三角褐指藻后岩藻黄素含量变化。
具体实施方式
下面结合实施例对本发明做进一步的说明,以下所述,仅是对本发明的较佳实施例而已,并非对本发明做其他形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更为同等变化的等效实施例。凡是未脱离本发明方案内容,依据本发明的技术实质对以下实施例所做的任何简单修改或等同变化,均落在本发明的保护范围内。
一、实验方法
1、三角褐指藻的培养
三角褐指藻由宁波大学海洋生物工程重点实验室微藻室提供。取过滤且高温灭菌的海水,加入1∶1000灭菌MAV母液。MAD母液的配方为:KNO3:10g,KH2PO4:1g,FeSO4·7H2O:0.25g,MnSO4:0.025g,EDTANa2:1g,VB1:0.0006,dH2O:100ml。以1∶10比例接入藻液,并在62.5μmol photons/(m2·s),25℃,12h/12h(黑暗/光照)条件下培养。每天分三个时间段(8:00,12:00,20:00)均匀摇藻体。
2、三角褐指藻光密度回归方程和生长曲线测定
取1ml藻液,倍比稀释,利用紫外可见分光光度计(6800型双光束,英国bibby科技有限公司)测定每组稀释液的OD680值,并且用血球计数法对各组样品计数。将所得数据建立三角褐指藻光密度回归方程。每天同一时段分别取1ml经不同浓度花生四烯酸处理的三角褐指藻并测定OD680值,每组均设3个平行。根据光密度回归方程得出各样品的细胞密度,建立经不同浓度花生四烯酸处理三角褐指藻后的生长曲线三角褐指藻标准曲线的测定。
3、岩藻黄素的提取
在第6d时分别取80ml的处理三角褐指藻,分别作3个平行对其进行岩藻黄素的提取。将各组藻体在4℃,52000g,离心10min,弃上清,收集藻体。冷冻干燥2d,称重。研磨藻体,使得藻体充分成粉末状为止。分别取1ml无水乙醇(AR,国药集团化学试剂有限公司)上下重悬藻粉,4℃静置1h,使其充分溶解。4℃,52000g,离心10min,分别取1ml上清过滤膜(0.22μm,上海兴亚净化材料),4℃保存备用。
4、岩藻黄素含量测定
精确称取0.1mg的岩藻黄素标准品(宁波大学海洋生物工程重点实验室,取自铜藻),取1ml无水乙醇,通过倍比稀释的方法对其稀释。利用高效液相色谱(2695Separations Module,Waters),以90%甲醇30min,100%甲醇10min,90%甲醇持续15min的程序在445nm处监测岩藻黄素。本实验所使用的色谱柱型号为250×4.6mml,D.S-5μm,12nm,AA12S05-2546WT,No.0425057734,Waters。通过积峰面积与浓度做出回归曲线。分别取10μl备用提取物经HPLC检测并得到岩藻黄素积峰面积。根据回归曲线得出各组三角褐指藻细胞内岩藻黄素含量。
二、应用实施例
实施例1花生四烯酸对三角褐指藻细胞生长的影响
利用OD680的光吸收值来测定单位体积培养液中三角褐指藻细胞数量,每天定时测定三角褐指藻的吸光值并根据回归方程得到经不同浓度的花生四烯酸处理三角褐指藻研究其对细胞生长的影响。
如图1所示:除了花生四烯酸浓度为312.5mg/培养的三角褐指藻的生长曲线外,其余各组随着培养时间的延长,三角褐指藻细胞的生长量大致呈现先上升后下降的趋势,而且3个时期比较明显。从1-4d,三角褐指藻生长处于对数生长期,4-6d为平台期,从第6d后藻体的生物量明显减少,该时段可以认为是衰亡期。因此第6d为平台期末,该时段三角褐指藻的生物量达到最大值。不难发现,当花生四烯酸浓度在0.1-62.5mg/L时,第6d时的生物量均比对照组要高,说明在该浓度范围内,花生四烯酸促进三角褐指藻的生长。对312.5mg/L的花生四烯酸处理的三角褐指藻生长曲线分析,发现其从第4d以后生物量就明显减少,在第6d时其生物量是所有组中最低的,说明当花生四烯酸浓度高于312.5mg/L时抑制三角褐指藻细胞的生长。
实施例2
设1组为对照组,6组为实验组。对照组不做任何处理,6组实验组分别加入不同浓度的花生四烯酸,其浓度分别为0.1mg/L,0.5mg/L,2.5mg/L,12.5mg/L,62.5mg/L,312.5mg/L。以上述的培养条件同等培养实验组和对照组三角褐指藻。
对倍比稀释的岩藻黄素标准品通过HPLC的积峰面积和稀释浓度,得出回归方程:y=0.1074x+0.0138,R2=0.9999,式中y为积峰面积,x为浓度,R2为直线方程的相关系数。通过HPLC测定不同浓度花生四烯酸处理三角褐指藻细胞岩藻黄素峰面积,再根据回归方程得出实验组和对照组三角褐指藻细胞岩藻黄素含量变化。
结果如图2和表1所示:随着花生四烯酸浓度的增加,岩藻黄素含量大致呈现先上升后下降的趋势。当花生四烯酸浓度为0.1-0.5mg/L时,其岩藻黄素含量均比对照组要高。花生四烯酸浓度为0.1mg/L处理三角褐指藻,其藻细胞岩藻黄素含量最高,为1.1mg/g DW,比对照组37%。但是,当花生四烯酸浓度为2.5-62.5mg/L时,其藻细胞岩藻黄素含量与对照组相当。花生四烯酸浓度为312.5mg/L处理三角褐指藻时,其岩藻黄素含量明显低于对照组,说明该浓度严重抑制细胞内岩藻黄素的生物合成。
表1 不同浓度的花生四烯酸处理三角褐指藻后岩藻黄素含量
花生四烯酸浓度(mg/L) 0 0.1 0.5 2.5 12.5 62.5 312.5
岩藻黄素含量(mg/g DW) 0.80 1.10 0.86 0.77 0.80 0.77 0.27

Claims (7)

1.一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,其特征在于包括以下步骤:
1)取灭菌海水与MAD母液混合获得营养液;
2)在营养液中加入三角褐指藻母液培养;
3)培养2天后,加入花生四烯酸;
4)继续培养6天后手机藻液,离心分离,弃上清,收集藻体;
5)将藻体冷冻干燥处理2天,研磨备用。
2.根据权利要求1所述的一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,其特征在于:所述的MAD母液的配方为:KNO3:10g,KH2PO4:1g,FeSO4·7H2O:0.25g,MnSO4:0.025g,EDTANa2:1g,VB1:0.0006g,dH2O:100ml。
3.根据权利要求1所述的一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,其特征在于:所述的培养条件为:62.5μmolphotons/m2·s,25℃。
4.根据权利要求1所述的一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,其特征在于:
所述的灭菌海水与MAD母液的体积比为1∶1000;
所述的营养液与三角褐指藻母液的体积比为1∶10。
5.根据权利要求1所述的一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,其特征在于:步骤(3)中培养液加入花生四烯酸后花生四烯酸的浓度为0.1mg/L~0.5mg/L。
6.根据权利要求5所述的一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,其特征在于:步骤(3)中培养液加入花生四烯酸后花生四烯酸的浓度为0.1mg/L。
7.根据权利要求1所述的一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法,其特征在于:步骤(5)中所述的冷冻干燥处理条件为:温度-70℃,压强999Pa。
CN201410743643.5A 2014-12-10 2014-12-10 一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法 Expired - Fee Related CN104531601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410743643.5A CN104531601B (zh) 2014-12-10 2014-12-10 一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410743643.5A CN104531601B (zh) 2014-12-10 2014-12-10 一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法

Publications (2)

Publication Number Publication Date
CN104531601A true CN104531601A (zh) 2015-04-22
CN104531601B CN104531601B (zh) 2018-01-09

Family

ID=52847236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410743643.5A Expired - Fee Related CN104531601B (zh) 2014-12-10 2014-12-10 一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法

Country Status (1)

Country Link
CN (1) CN104531601B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106676010A (zh) * 2017-01-19 2017-05-17 宁波大学 一种用钨酸钠提高三角褐指藻中岩藻黄素含量的方法
CN110551673A (zh) * 2019-09-19 2019-12-10 宁波维宁生物科技有限公司 一种利用雷帕霉素处理三角褐指藻提高岩藻黄素含量的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833692A (zh) * 2014-02-21 2014-06-04 宁波大学 一种从海藻中提取高纯度岩藻黄素的方法
CN103965143A (zh) * 2013-01-30 2014-08-06 中国科学院海洋研究所 一种从海洋单细胞硅藻提取分离岩藻黄素的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965143A (zh) * 2013-01-30 2014-08-06 中国科学院海洋研究所 一种从海洋单细胞硅藻提取分离岩藻黄素的方法
CN103833692A (zh) * 2014-02-21 2014-06-04 宁波大学 一种从海藻中提取高纯度岩藻黄素的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
NAMDEO A. G.,ET AL: "Plant Cell Elicitation for Production of Secondary Metabolites:A Review", 《PHARMACOGNOSY REVIEWS》 *
SANG MIN KIM,ET AL: "A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum", 《APPL BIOCHEM BIOTECHNOL》 *
王丽丽,等: "花生四烯酸对雨生红球藻细胞生长和虾青素含量的影响", 《水产科学》 *
蒋霞敏,等: "14 种微藻总脂含量和脂肪酸组成研究", 《水生生物学报》 *
赵鸿莲 等: "诱导子在植物细胞培养中的应用研究进展", 《沈阳药科大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106676010A (zh) * 2017-01-19 2017-05-17 宁波大学 一种用钨酸钠提高三角褐指藻中岩藻黄素含量的方法
CN110551673A (zh) * 2019-09-19 2019-12-10 宁波维宁生物科技有限公司 一种利用雷帕霉素处理三角褐指藻提高岩藻黄素含量的方法
CN110551673B (zh) * 2019-09-19 2023-02-10 宁波维宁生物科技有限公司 一种利用雷帕霉素处理三角褐指藻提高岩藻黄素含量的方法

Also Published As

Publication number Publication date
CN104531601B (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
Tsegaye et al. Food waste biorefinery: Pathway towards circular bioeconomy
Sivaramakrishnan et al. Microalgal biorefinery concepts’ developments for biofuel and bioproducts: Current perspective and bottlenecks
Zhou et al. The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly enhances Salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field conditions
Ravindran et al. Microalgae potential and multiple roles—current progress and future prospects—an overview
Pagels et al. Extraction of pigments from microalgae and cyanobacteria—A review on current methodologies
Safafar et al. High-EPA biomass from Nannochloropsis salina cultivated in a flat-panel photo-bioreactor on a process water-enriched growth medium
El-Ramady et al. Green biotechnology of oyster mushroom (Pleurotus ostreatus L.): A sustainable strategy for myco-remediation and bio-fermentation
Aslanzadeh et al. The effect of effluent recirculation in a semi-continuous two-stage anaerobic digestion system
Andreeva et al. Influence of carbohydrate additives on the growth rate of microalgae biomass with an increased carbohydrate content
Arenas Sevillano et al. Improving the anaerobic digestion of wine-industry liquid wastes: Treatment by electro-oxidation and use of biochar as an additive
Spennati et al. Winery wastewater treatment by microalgae to produce low-cost biomass for energy production purposes
Zheng et al. Progress in ultrasound-assisted extraction of the value-added products from microorganisms
Zhang et al. Effect of aerobic hydrolysis on anaerobic fermentation characteristics of various parts of corn stover and the scum layer
Li et al. Nitric oxide and hydrogen peroxide signaling in extractive Shiraia fermentation by Triton X-100 for hypocrellin A production
Álvarez et al. Cyanobacterial biomass produced in the wastewater of the dairy industry and its evaluation in anaerobic co-digestion with cattle manure for enhanced methane production
Montiel-Rosales et al. Post-industrial use of sugarcane ethanol vinasse: A systematic review
Papadopoulos et al. A cyanobacteria-based biofilm system for advanced brewery wastewater treatment
Ashour et al. Recent advances in marine microalgae production: highlighting human health products from microalgae in view of the coronavirus pandemic (COVID-19)
CN104531603A (zh) 一种用乙酰水杨酸提高三角褐指藻岩藻黄素含量的方法
CN104531601A (zh) 一种用花生四烯酸提高三角褐指藻中岩藻黄素的方法
XU et al. Optimization of extraction of defatted walnut powder by ultrasonic assisted and artificical neural network
Dudek et al. The cultivation of biohydrogen-producing tetraselmis subcordiformis microalgae as the third stage of dairy wastewater aerobic treatment system
Luo et al. Enhanced production of botrallin and TMC-264 with in situ macroporous resin adsorption in mycelial liquid culture of the endophytic fungus Hyalodendriella sp. Ponipodef12
Sutaryo et al. Methane production of pistia stratiotes as a single substrate and as a co-substrate with dairy cow manure
Zeng et al. Strategies for recovery, purification and quantification of torularhodin produced by Rhodotorula mucilaginosa using different carbon sources

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20171208

Address after: 315000 Zhejiang Province, Ningbo Jiangbei District Fenghua Road No. 818

Applicant after: Ningbo University

Address before: 315211 Zhejiang Province, Ningbo Jiangbei District Fenghua Road No. 818

Applicant before: Gong Yifu

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180109

Termination date: 20191210