CN104529740B - 三环二萜衍生物及其制备方法、及其在制备神经保护药物中的应用 - Google Patents

三环二萜衍生物及其制备方法、及其在制备神经保护药物中的应用 Download PDF

Info

Publication number
CN104529740B
CN104529740B CN201410802240.3A CN201410802240A CN104529740B CN 104529740 B CN104529740 B CN 104529740B CN 201410802240 A CN201410802240 A CN 201410802240A CN 104529740 B CN104529740 B CN 104529740B
Authority
CN
China
Prior art keywords
tricyclic diterpene
diterpene derivative
compound
preparation
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410802240.3A
Other languages
English (en)
Other versions
CN104529740A (zh
Inventor
仇文卫
庞涛
汪滢滢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
East China Normal University
Original Assignee
China Pharmaceutical University
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University, East China Normal University filed Critical China Pharmaceutical University
Priority to CN201410802240.3A priority Critical patent/CN104529740B/zh
Publication of CN104529740A publication Critical patent/CN104529740A/zh
Application granted granted Critical
Publication of CN104529740B publication Critical patent/CN104529740B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/22Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of halogens; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/66Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems and singly-bound oxygen atoms, bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/64Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/367Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/21Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups
    • C07C65/24Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups polycyclic
    • C07C65/26Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups polycyclic containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/29Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/16Acetic acid esters of dihydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/94Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of polycyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/192Radicals derived from carboxylic acids from aromatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes

Abstract

本发明公开了一种式(I)所示三环二萜衍生物及其制备方法,以式(5)所示三环二萜衍生物为先导物,通过酯化、酰胺化、保护、酰基化、脱保护等反应,得到一系列新的式(I)三环二萜衍生物。本发明还提供了所述三环二萜衍生物在制备神经保护药物中的应用。

Description

三环二萜衍生物及其制备方法、及其在制备神经保护药物中的应用
技术领域
本发明属于医药及其制备和应用的技术领域,具体涉及一种三环二萜衍生物及其制备方法与其在制备神经保护药物中的应用。
背景技术
由神经元缺失导致的神经退行性疾病(Neurodegenerativedisease),如阿尔茨海默病(Alzheimer’sdisease,AD)、帕金森病(Pakinson’sdisease,PD)、亨廷顿病(Huntingtondisease,HD)、肌萎缩侧索硬化症(amyotrophiclateralsclerosis,ALS)等,严重影响着人们的身体健康及生活质量。不同类型的神经退行性疾病的病变部位及病因虽不尽相同,但这类疾病均造成神经元细胞损伤。神经细胞的过度损害不可逆转,并且随着时间的推移而恶化,以致功能障碍,导致加速死亡。
引起神经细胞损伤的机制比较复杂,涉及氧化应激、兴奋性毒性、线粒体功能障碍、细胞凋亡及炎症反应等。其中由谷氨酸过多引起的兴奋性毒性是神经细胞损伤的重要原因。谷氨酸是中枢神经系统(centralnervoussystem,CNS)中主要的兴奋性神经递质,参与多种生理功能,比如快速突触传递、神经元可塑性、学习和记忆等(Science1993,262,689-695)。过多的谷氨酸会激活N-甲基-D-天冬氨酸受体(N-methyl-D-aspartatereceptor,NMDAR),导致过多的Ca2+流入,造成线粒体功能损伤,活性氧(reactiveoxygenspecies,ROS)快速增多,引发神经毒性,最终导致神经元细胞死亡。目前并未有效果十分理想的神经保护剂,因此寻求更有效的神经保护药物是目前医药界的主要任务之一。
从植物中提取的天然二萜类化合物现已被证实具有多种活性,如抗肿瘤、抗炎、抗抑郁、抗菌、尤其是神经保护作用。有研究表明,从胎牛血清中提取的含硫二萜化合物,在由谷氨酸和一氧化氮诱导的大脑皮层神经元损伤方面具有潜在保护作用(J.Pharmacol.Exp.Ther.2004,311,51-59.)。从雷公藤中分离得到的雷公藤甲素,在帕金森病模型中表现出神经保护和神经营养活性的作用(Neurosci.Bull.2008,24,133-142.)。近些年来,天然产物仍然是药物发现的重要来源,然而这些化合物资源有限,限制了它们的发展。因此合成新型的三环二萜天然产物类似物并用于神经保护药物的开发具有重要意义。
发明内容
本发明在寻找新型神经保护药物的研究实验过程中,首次提出了新的式(I)三环二萜衍生物及其制备方法,并以其中的式(5)化合物作为先导化合物,进一步地设计合成了一系列三环二萜衍生物,包括但不限于式(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)、(13)、(14)、(15)、(16)、(17)、(18)、(21)、(23)化合物。本发明三环二萜衍生物具有神经保护作用,在细胞水平上的神经保护作用均有实验评估。
本发明提供的一种三环二萜衍生物,如式(I)所示:
其中,
本发明提供的一种三环二萜衍生物,如式(5)、(6)、(7)、(8)、(9)所示:
本发明提供的一种三环二萜衍生物,如式(10)、(11)、(12)、(13)、(14)、(15)、(16)、(17)、(18)所示:
本发明提供的一种三环二萜衍生物,如式(21)、(23)所示:
本发明还提供了三环二萜衍生物的制备方法,包括以下:
一、式(5)所示三环二萜衍生物(先导物)的制备路线:
以式(1)为原料,经溴代、叔丁基二甲基氯硅烷羟基保护、羧基化,再通过盐酸乙酸乙酯溶液脱除保护基后,得到如式(5)所示的先导物。所述制备方法的反应路线如以下:
其中,式(1)化合物的制备:以6,7-环氧香叶醇醋酸酯为原料,经偶联、关环反应后得到;制备过程可参照文献Thesynthesisandantibacterialactivityofpyrazole-fusedtricyclicditerpenederivatives(吡唑环修饰的三环二萜衍生物的合成及其抗菌活性研究),EurJMedChem,欧洲药物化学,2015,90,10-20。。
二、式(6)、(7)、(8)、(9)所示三环二萜衍生物的制备路线
以式(5)为原料,在浓硫酸或SOCl2催化下,酯化反应后,得到如式(6)、(7)、(8)、(9)所示的三环二萜衍生物;所述制备方法的反应路线如以下:
三、式(10)、(11)、(12)、(13)、(14)、(15)、(16)、(17)、(18)所示三环二萜衍生物的制备路线
以式(5)为原料,EDC.HCl、HOBt、DMAP作用下酰胺化反应,得到如式(10)、(11)、(12)、(13)、(14)、(15)、(16)、(17-1)、(18)所示的三环二萜衍生物;三环二萜衍生物(17)由式(17-1)通过一水合氢氧化锂水解得到,所述制备方法的反应路线如以下:
四、式(21)、(23)所示三环二萜衍生物的制备路线
以式(1)为原料,经羟基保护,付克酰基化反应,脱保护反应得到如式(21)、(23)所示的三环二萜衍生物;所述制备方法的反应路线如以下:
本发明制备方法中,以上反应通常用薄板层析法来跟踪测定反应的完成程度,反应完毕后采用的后处理方法包括浓缩、萃取、柱层析分离等,最终产物通过核磁共振谱来验证。
本发明还提供了所述三环二萜衍生物在制备神经保护药物中的应用。本发明三环二萜衍生物在由谷氨酸过度激活或缺氧缺糖诱导的神经元细胞损伤的保护作用中具有显著效果。
本发明还提供了所述三环二萜衍生物在制备促进穿透血脑屏障的药物中的应用。
本发明具有神经保护三环二萜衍生物及其制备方法的优点包括,本发明制备方法的反应条件温和、所用试剂价格便宜、环境友好、合成路线短,合成方法简便,从而得到本发明具有神经保护作用的三环二萜先导物(如,式(5)化合物)、以及将其通过酯化、酰胺化、保护、酰基化、脱保护等反应所合成的一系列新结构的三环二萜衍生物。
本发明制备方法中,将三环二萜先导物通过酯化、酰胺化、保护、酰基化、脱保护等反应,制备得到本发明中的三环二萜衍生物。本发明化合物均具有明显的神经保护作用,如表1、2所示,化合物14、15和21对由谷氨酸过度激活或缺氧缺糖诱导的神经元细胞损伤具有最佳的保护效果。本发明中大多数化合物对神经元细胞均无明显的毒性,如图1所示,显示出较高的安全性。能够穿透血脑屏障是神经保护药物的重要指标,本发明中大多数化合物在血脑屏障渗透模型试验中也表现出较好的穿透性,如表3所示,可作为潜在的神经保护药物,具有良好开发前景。
附图说明
图1表示用MTT法测试本发明所述化合物6、13、14、15、21在1μM和10μM时对神经元细胞的毒性测试。其中,纵坐标表示细胞存活率。
具体实施方式
结合以下具体实施例和附图,对本发明作进一步的详细说明,本发明的保护内容不局限于以下实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。下述实施例中,化合物结构由核磁共振仪测定;试剂主要由上海国药化学试剂公司提供;产品纯化主要通过柱色谱,硅胶(200-300)由青岛海洋化工厂生产。
实施例1:式(5)所示三环二萜衍生物(先导物)的制备
式(5)所示三环二萜衍生物即化合物5的制备:将化合物1(8g,29,19mmol)溶于50mlDCM中,冰浴下缓慢滴加Br2(1.5ml,29.19mmol)的DCM溶液50ml,滴加完毕后,搅拌1h,TLC检测原料反应完全,加水,用DCM(30ml×3)萃取水相,合并有机相,水洗(30ml×2),饱和NaHCO3洗(30ml×2),饱和NaCl洗(30ml×2),无水硫酸钠干燥,浓缩,得化合物2(黄色油状物),直接用于下一步。
将上一步粗产物化合物2(10.2g,29mmol)、TBSCl(6.5g,43.5mmol)、咪唑(3.95g,58mmol)置于单颈瓶,注入DMF50ml,N2置换,室温搅拌过夜。TLC检测原料反应完全,向体系中加水,用EA(20ml×3)萃取水相,合并有机相,水洗(20ml×2),饱和NaCl洗(20ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=15∶1),得白色固体化合物3(11.6g,两步收率85.2%)。1HNMR(400MHz,CDCl3)δ7.20(s,1H),6.76(s,1H),3.84(s,3H),3.26(dd,J=11.3,4.6Hz,1H),2.96-2.64(m,2H),2.21(dt,J=12.9,3.4Hz,1H),1.93-1.62(m,4H),1.18(s,3H),0.98(s,3H),0.91(s,9H),0.85(s,3H),0.05(d,J=7.0Hz,6H)。
将化合物3(19.13g,41mmol)溶于120ml无水THF中,置于-78℃下搅拌20min,将n-BuLi的环己烷溶液(2M,22.5ml,45mmol)缓慢加入体系,通入干燥的CO2约2h,TLC检测原料反应完全,用0.5MHCl淬灭反应,使体系PH<7,用EA(30ml×3)萃取水相,合并有机相,水洗(30ml×2),饱和NaCl洗(30ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(DCM∶MeOH=30∶1),得白色固体化合物4(14.37g,81.1%)。1HNMR(400MHz,CDCl3)δ10.71(s,1H),7.85(s,1H),6.88(s,1H),4.02(s,3H),3.26(dd,J=11.3,4.5Hz,1H),3.04-2.63(m,2H),2.22(d,J=12.9Hz,1H),1.96-1.67(m,4H),1.30-1.24(m,1H),1.20(s,3H),0.99(s,3H),0.91(s,9H),0.87(s,3H),0.05(d,J=6.6Hz,6H)。
将化合物4(8.6g,20mmol)溶于150mlEA中,滴加HCl/EA溶液(40ml,100mmol),室温搅拌,TLC检测原料反应完全,冰浴下加水,用EA(30ml×3)萃取水相,合并有机相,水洗(30ml×2),饱和NaCl洗(30ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),得白色固体化合物5(4.35g,68.3%),即式(5)所示的三环二萜衍生物。1HNMR(400MHz,CDCl3)δ8.11(s,1H),7.03(d,J=8.4Hz,1H),6.86(d,J=2.6Hz,1H),6.73(dd,J=8.4,2.6Hz,1H),3.81(s,3H),3.01(d,J=15.1Hz,1H),2.98-2.72(m,2H),2.51(d,J=15.1Hz,1H),1.99-1.65(m,3H),1.39(s,3H),1.30(s,3H),1.21(s,3H)。
实施例2:式(6)、(7)、(8)、(9)所示三环二萜衍生物的制备
式(6)所示三环二萜衍生物即化合物6的制备:将化合物5(60mg,0.19mmol)置于单颈瓶,N2置换,注入10ml甲醇,滴加5滴浓硫酸,室温搅拌。TLC检测原料反应完全,加10ml水,用EA(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=2∶1),浓缩得产物6(58mg白色固体,91.8%)。1HNMR(400MHz,CDCl3)δ7.49(s,1H),6.82(s,1H),3.85(s,6H),3.30(dd,J=11.1,5.0Hz,1H),2.91(dd,J=16.8,5.9Hz,1H),2.82-2.71(m,1H),2.28(dt,J=12.9,3.4Hz,1H),1.63-1.47(m,2H),1.29(dd,J=12.3,2.1Hz,1H),1.19(s,3H),1.07(s,3H),0.89(s,3H).
式(7)所示三环二萜衍生物即化合物7的制备:将化合物5(60mg,0.19mmol)置于单颈瓶,N2置换,注入10ml乙醇,滴加10滴浓硫酸,60℃搅拌。TLC检测原料反应完全,加10ml水,用EA(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=2∶1),浓缩得产物7(58mg白色固体,89.0%)。1HNMR(400MHz,DMSO-d6)δ7.28(s,1H),6.91(s,1H),4.45(d,J=5.0Hz,1H),4.20(q,J=7.1Hz,2H),3.76(s,3H),3.09(d,J=8.1Hz,1H),2.92-2.59(m,2H),2.32(d,J=13.0Hz,1H),1.86-1.48(m,4H),1.41(d,J=3.8Hz,1H),1.25(t,J=7.1Hz,3H),1.18(d,J=11.5Hz,1H),1.13(s,3H),0.98(s,3H),0.79(s,3H)。
式(8)所示三环二萜衍生物即化合物8的制备:将化合物5(60mg,0.19mmol)置于单颈瓶,N2置换,注入10ml正丁醇,滴加10滴浓硫酸,加热回流搅拌。TLC检测原料反应完全,加10ml水,用EA(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=3∶1),浓缩得产物8(57mg无色油状物,80.9%)。1HNMR(400MHz,CDCl3)δ7.47(s,1H),6.82(s,1H),4.27(t,J=6.6Hz,2H),3.85(s,3H),3.31(dd,J=11.2,4.9Hz,1H),2.99-2.70(m,2H),2.34-2.24(m,1H),1.95-1.66(m,6H),1.58(d,J=4.6Hz,1H),1.50-1.40(m,2H),1.34-1.23(m,3H),1.20(s,3H),1.08(s,3H),0.96(t,J=7.4Hz,3H),0.90(s,3H)。
式(9)所示三环二萜衍生物即化合物9的制备:将化合物5(64mg,0.2mmol)置于单颈瓶,N2置换,注入10ml异丙醇,加入10滴左右氯化亚砜以及Na2CO3(100mg,0.94mmol),加热回流搅拌。TLC检测原料反应完全,待体系冷却至室温,加10mL水,用EA(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),浓缩得产物9(72mg无色油状物,100.0%)。1HNMR(400MHz,CDCl3)δ7.43(s,1H),6.82(s,1H),5.31-5.12(m,1H),3.85(s,3H),3.31(dd,J=11.2,4.9Hz,1H),2.99-2.69(m,2H),2.28(dt,J=12.9,3.3Hz,1H),1.97-1.66(m,4H),1.60(d,J=4.7Hz,1H),1.34(d,J=6.3Hz,6H),1.20(s,3H),1.08(s,3H),0.90(s,3H)。
实施例3:式(10)、(11)、(12)、(13)、(14)、(15)、(16)、(17)、(18)所示三环二萜衍生物的制备
式(10)所示三环二萜衍生物即化合物10的制备:将化合物5(100mg,0.31mmol)、EDC.HCl(126mg,0.64mmol)、HOBt(86mg,0.64mmol)、DMAP(227mg,1.86mmol)及甲胺盐酸盐(64mg,0.94mmol)置于单颈瓶,N2置换,注入10ml无水DCM,室温搅拌过夜。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),浓缩得产物10(102mg白色固体,98.1%)。1HNMR(300MHz,CDCl3)δ7.89(s,1H),7.81(br.s,1H),6.80(s,1H),3.91(s,3H),3.31(dd,J=10.5,5.5Hz,1H),3.10-2.60(m,5H),2.28(d,J=12.6Hz,1H),1.96-1.69(m,4H),1.20(s,3H),1.08(s,3H),0.90(s,3H)。
式(11)所示三环二萜衍生物即化合物11的制备:将化合物5(100mg,0.31mmol)、EDC.HCl(126mg,0.64mmol)、HOBt(86mg,0.64mmol)、DMAP(227mg,1.86mmol)及乙胺盐酸盐(76mg,0.94mmol)置于单颈瓶,N2置换,注入10ml无水DCM,室温搅拌过夜。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),浓缩得产物11(100mg白色固体,92.6%)。1HNMR(400MHz,CDCl3)δ7.85(s,1H),7.81(s,1H),6.79(s,1H),3.90(s,3H),3.45(dt,J=13.0,6.6Hz,2H),3.29(dd,J=11.0,5.1Hz,1H),2.95(dd,J=16.9,6.0Hz,1H),2.86-2.72(m,1H),2.29-2.19(m,1H),1.62-1.46(m,1H),1.28(dd,J=12.3,2.1Hz,1H),1.24-1.16(m,6H),1.06(s,3H),0.88(s,3H).
式(12)所示三环二萜衍生物即化合物12的制备:将化合物5(100mg,0.31mmol)、EDC.HCl(126mg,0.64mmol)、HOBt(86mg,0.64mmol)、DMAP(227mg,1.86mmol)及二甲胺盐酸盐(76mg,0.94mmol)置于单颈瓶,N2置换,注入10ml无水DCM,室温搅拌过夜。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),浓缩得产物12(83mg白色固体,76.8%)。1HNMR(400MHz,CDCl3)δ6.89(s,1H),6.72(s,1H),3.77(s,3H),3.08(s,3H),2.88(dd,J=12.5,6.5Hz,1H),2.85(s,3H),2.79-2.69(m,1H),2.23(d,J=10.9Hz,1H),1.91-1.58(m,5H),1.30-1.19(m,1H),1.17(s,3H),0.96(s,3H),0.86(s,3H).
式(13)所示三环二萜衍生物即化合物13的制备:将化合物5(100mg,0.31mmol)、EDC.HCl(126mg,0.64mmol)、HOBt(86mg,0.64mmol)、DMAP(153mg,1.26mmol)及炔丙胺(0.06ml,0.94mmol)置于单颈瓶,N2置换,注入10ml无水DCM,室温搅拌过夜。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),浓缩得产物13(104mg白色固体,93.3%)。1HNMR(400MHz,CDCl3)δ8.03(s,1H),7.88(s,1H),6.81(s,1H),4.24(dd,J=5.1,2.5Hz,2H),3.93(s,3H),3.32(dd,J=11.1,5.0Hz,1H),3.05-2.68(m,2H),2.33-2.24(m,1H),2.23(t,J=2.5Hz,1H),1.96-1.67(m,4H),1.64-1.57(m,1H),1.21(s,3H),1.08(s,3H),0.91(s,3H)。
式(14)所示三环二萜衍生物即化合物14的制备:将化合物5(100mg,0.31mmol)、EDC.HCl(126mg,0.64mmol)、HOBt(86mg,0.64mmol)、DMAP(153mg,1.26mmol)及正丁胺(0.1ml,0.94mmol)置于单颈瓶,N2置换,注入10ml无水DCM,室温搅拌过夜。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),浓缩得产物14(96mg白色固体,82.0%)。1HNMR(400MHz,CDCl3)δ7.87(s,1H),7.84(br.s,1H),6.79(s,1H),3.90(s,3H),3.43(dd,J=13.1,6.5Hz,2H),3.30(dd,J=11.0,4.9Hz,1H),2.95(dd,J=16.9,6.2Hz,1H),2.87-2.71(m,1H),2.27(d,J=12.9Hz,1H),1.95-1.48(m,9H),1.45-1.33(m,2H),1.33-1.24(m,1H),1.20(d,J=9.5Hz,3H),1.06(s,3H),0.94(t,J=7.3Hz,3H),0.89(s,3H)。
式(15)所示三环二萜衍生物即化合物15的制备:将化合物5(100mg,0.31mmol)、EDC.HCl(126mg,0.64mmol)、HOBt(86mg,0.64mmol)、DMAP(153mg,1.26mmol)及正己胺(0.13ml,0.94mmol)置于单颈瓶,N2置换,注入10ml无水DCM,室温搅拌过夜。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=2∶1),浓缩得产物15(110mg白色固体,87.2%)。1HNMR(400MHz,CDCl3)δ7.87(s,1H),7.83(t,J=5.0Hz,1H),6.79(s,1H),3.90(s,3H),3.42(dd,J=13.0,6.1Hz,2H),3.30(dd,J=11.0,5.0Hz,1H),2.96(dd,J=16.9,6.0Hz,1H),2.85-2.71(m,1H),2.30-2.21(m,1H),1.20(s,3H),1.07(s,3H),0.94-0.85(m,6H).
式(16)所示三环二萜衍生物即化合物16的制备:将化合物5(100mg,0.31mmol)、EDC.HCl(126mg,0.64mmol)、HOBt(86mg,0.64mmol)、DMAP(153mg,1.26mmol)及哌啶(0.1ml,0.94mmol)置于单颈瓶,N2置换,注入10ml无水DCM,室温搅拌过夜。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),浓缩得产物16(102mg白色固体,85.4%)。1HNMR(400MHz,CDCl3)δ6.87(d,J=4.1Hz,1H),6.72(s,1H),3.83-3.60(m,5H),3.33-2.95(m,3H),2.94-2.68(m,2H),2.32-2.17(m,1H),1.18(d,J=14.5Hz,3H),1.03(d,J=32.1Hz,3H),0.87(d,J=7.9Hz,3H).
式(17)所示三环二萜衍生物即化合物17的制备:将化合物5(100mg,0.31mmol)、EDC.HCl(126mg,0.64mmol)、HOBt(86mg,0.64mmol)、DMAP(153mg,1.26mmol)及甘氨酸甲酯盐酸盐(118mg,0.94mmol)置于单颈瓶,N2置换,注入10ml无水DCM,室温搅拌过夜。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),浓缩得产物17-1(94mg白色固体,77.9%)。将上述反应所得化合物17-1(135mg,0.35mmol)、一水合氢氧化锂(44mg,1.05mmol)置于单颈瓶,注入5mlTHF和5ml水的混合溶液,室温搅拌。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(DCM∶MeOH=30∶1),浓缩得产物17(110mg白色固体,83.8%)。1HNMR(400MHz,DMSO-d6)δ8.45(t,J=5.6Hz,1H),7.54(s,1H),6.94(s,1H),4.45(s,1H),3.96(d,J=5.7Hz,2H),3.88(s,3H),3.13-3.06(m,1H),2.86(dd,J=16.7,5.9Hz,1H),2.76-2.66(m,1H),2.38-2.28(m,1H),1.81(dd,J=13.2,7.4Hz,1H),1.71-1.56(m,3H),1.46-1.34(m,1H),1.19(dd,J=12.7,2.2Hz,1H),1.14(s,3H),0.98(s,3H),0.79(s,3H).
式(18)所示三环二萜衍生物即化合物18的制备:将化合物5(100mg,0.31mmol)、EDC.HCl(126mg,0.64mmol)、HOBt(86mg,0.64mmol)、DMAP(153mg,1.26mmol)及吗啉(87mg,0.94mmol)置于单颈瓶,N2置换,注入10ml无水DCM,室温搅拌过夜。TLC检测原料反应完全,加10ml水,用稀HCl调节体系PH<7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1∶1),浓缩得产物18(107mg白色固体,88.4%)。
实施例4式(21)、(23)所示三环二萜衍生物的制备
式(21)所示三环二萜衍生物即化合物21的制备:将化合物1(600mg,2.19mmol)、DMAP(53mg,0.44mmol)置于单颈瓶,N2置换,注入10ml无水DCM,滴加乙酸酐(0.62ml,6.57mmol),室温搅拌。TLC检测原料反应完全,加10ml水,用饱和NaHCO3溶液调节体系PH>7,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=8∶1),浓缩得产物19(610mg白色固体,88.0%)。
将上述所得的化合物19(100mg,0.32mmol)、AlCl3(126mg,0.95mmol)置于单颈瓶,N2置换,注入10ml无水DCM,零下10℃下滴加乙酰氯(0.06ml,0.95mmol),零下10℃搅拌。TLC检测原料反应完全,加10ml水,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=5∶1),浓缩得产物20(100mg白色固体,89.0%)。
将上述反应所得的化合物20(116mg,0.32mmol)置于单颈瓶,注入10ml甲醇,注入1MNaOH溶液(1ml,0.96mmol),N2置换,加热回流搅拌。TLC检测原料反应完全,加10ml水,用稀HCl调节PH<7,用EA(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=1.5∶1),浓缩得产物21(97mg白色固体,94.5%)。1HNMR(400MHz,CDCl3)δ7.44(s,1H),6.80(s,1H),3.86(s,3H),3.30(dd,J=11.1,5.0Hz,1H),2.93(dd,J=16.9,5.8Hz,1H),2.83-2.70(m,1H),2.57(s,3H),2.31-2.23(m,1H),1.93-1.53(m,6H),1.29(dd,J=12.3,2.2Hz,1H),1.21(s,3H),1.07(s,3H),0.90(s,3H).
式(23)所示三环二萜衍生物即化合物23的制备:将上述所得的化合物19(100mg,0.32mmol)、AlCl3(126mg,0.95mmol)置于单颈瓶,N2置换,注入10ml无水DCM,零下10℃下滴加氯丙酰氯(0.09ml,0.95mmol),零下10℃搅拌。TLC检测原料反应完全,加10ml水,用DCM(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=5∶1),浓缩得产物22(105mg白色固体,81.0%)。
将上述反应所得的化合物22(100mg,0.25mmol)置于单颈瓶,注入10ml甲醇,注入1MNaOH溶液(1ml,1.0mmol),N2置换,加热回流搅拌。TLC检测原料反应完全,加10ml水,用稀HCl调节PH<7,用EA(10ml×3)萃取水相,合并有机相,水洗(10ml×2),饱和NaCl洗(10ml×2),无水硫酸钠干燥,浓缩,硅胶柱层析(PE∶EA=2∶1),浓缩得产物23(73mg白色固体,80.5%)。1HNMR(400MHz,CDCl3)δ7.43(s,1H),6.79(s,1H),3.86(s,3H),3.76(t,J=6.7Hz,2H),3.36(s,3H),3.26(t,J=6.7Hz,2H),2.93(dd,J=16.8,6.0Hz,1H),2.83-2.72(m,1H),2.29(dt,J=12.9,3.4Hz,1H),1.42(d,J=3.6Hz,1H),1.31-1.27(m,1H),1.21(s,3H),1.07(s,3H),0.90(s,3H).
实施例5:三环二萜衍生物对由谷氨酸过度激活诱导的神经元细胞损伤的保护作用检测
检测原理:以MTT法检测细胞存活率。活细胞线粒体中的琥珀酸脱氢酶能使噻唑蓝(MTT)还原为水不溶性的蓝紫色结晶甲瓒并沉积在细胞中,而死细胞无此功能。二甲基亚枫(dimethylsulfoxide,DMSO)能溶解细胞中的甲瓒,通过酶联免疫检测仪测定490nm波长处的光密度(opticaldensity,OD)值,可间接反映活细胞的数量。
样品检测:7-8天乳大鼠的原代小脑颗粒神经元细胞培养第六天时,加入指定浓度的化合物进行预处理,置于正常细胞培养箱中(37℃,5%CO2/95%air)培养24小时后,加入终浓度为200μM的谷氨酸,刺激24小时后进行MTT检测。96孔板每孔加入终浓度为0.5mg/ml的MTT溶液,置于正常细胞培养箱中孵育4小时后吸掉上清液,每孔加入适量二甲基亚枫,待完全溶解后,用酶标仪测定各孔吸光度。
各测试化合物在10μM时对由谷氨酸诱导的大鼠小脑颗粒神经元细胞损伤的保护作用的测试结果见表1。
表1.三环二萜衍生物对由谷氨酸过度激活诱导的神经元细胞损伤的保护作用检测
化合物 %细胞存活率 化合物 %细胞存活率
5 54.0 13 81.7
6 72.4 14 94.1
7 73.1 15 87.5
8 71.0 16 79.1
9 65.1 17 57.1
10 77.3 18 80.9
11 78.2 21 85.2
12 70.7 23 71.5
表1表示本发明所述化合物在10μM时对由谷氨酸过度激活诱导的神经元细胞损伤的保护作用的测试结果。其中,谷氨酸作用后的,神经元细胞受到损伤,平均细胞存活率为40.4%。
可见,与对照组相比(谷氨酸作用后的平均细胞存活率为40.4%),在加入所述化合物后,大多数化合物对谷氨酸诱导的细胞损伤均有较好的保护作用。其中本发明中化合物14、15、21的保护效果最佳,细胞存活率分别为94.1%、87.5%和85.2%。
实施例6:三环二萜衍生物对由缺氧缺糖诱导的神经元细胞损伤的保护作用的检测
检测原理:以MTT法检测细胞存活率。活细胞线粒体中的琥珀酸脱氢酶能使噻唑蓝(MTT)还原为水不溶性的蓝紫色结晶甲瓒并沉积在细胞中,而死细胞无此功能。二甲基亚砜能溶解细胞中的甲瓒,通过酶联免疫检测仪测定490nm波长处的光密度值,可间接反映活细胞的数量。
样品检测:7-8天乳大鼠的原代小脑颗粒神经元细胞培养第六天时,加入指定浓度的化合物进行预处理,置于正常细胞培养箱中(37℃,5%CO2/95%air)培养24小时后,用无糖的厄尔平衡盐(Earle’sbalancedsalts,EBSS)溶液代替正常培养基,置于37℃,5%CO2/95%N2孵箱中培养6小时后将无糖的EBSS溶液换成正常培养基,置于37℃,5%CO2/95%air孵箱中,24小时后进行MTT检测。96孔板每孔加入终浓度为0.5mg/ml的MTT溶液,置于正常细胞培养箱中孵育4小时后吸掉上清液,每孔加入适量二甲基亚砜,待完全溶解后,用酶标仪测定各孔吸光度。
各测试化合物在1μM和10μM时对由缺氧缺糖诱导的大鼠小脑颗粒神经元细胞损伤的保护作用的测试结果见表2。
表2.三环二萜衍生物对由缺氧缺糖诱导的神经元细胞损伤的保护作用的检测
表2显示,本发明所述化合物6、13、14、15、21在1μM和10μM时对由缺氧缺糖诱导的神经元细胞损伤的保护作用的测试结果。其中,缺氧缺糖后神经元细胞受到损伤,与对照组相比,平均细胞存活率为48.7%。可见,在加入所述化合物后,其对缺氧缺糖诱导的细胞损伤均有较好的保护作用。其中,本发明中化合物14、21在缺氧缺糖诱导的神经元损伤的保护作用中效果较好,在10μM时细胞存活率分别为87.4%和74.5%。
实施例7:三环二萜衍生物对神经元细胞的毒性测试
检测原理:以MTT法检测细胞存活率。活细胞线粒体中的琥珀酸脱氢酶能使噻唑蓝(MTT)还原为水不溶性的蓝紫色结晶甲瓒并沉积在细胞中,而死细胞无此功能。二甲基亚砜能溶解细胞中的甲瓒,通过酶联免疫检测仪测定490nm波长处的光密度值,可间接反映活细胞的数量。
样品测试:7-8天乳大鼠的原代小脑颗粒神经元细胞培养第5天时更换培养基,第六天加入指定浓度的化合物进行预处理,置于正常细胞培养箱中培养24小时后进行MTT检测。96孔板每孔加入终浓度为0.5mg/ml的MTT溶液,于置于正常细胞培养箱中孵育4小时后吸掉上清液,每孔加入适量二甲基亚砜,待完全溶解后,用酶标仪测定各孔吸光度。
各测试化合物在1μM和10μM时对大鼠小脑颗粒神经元细胞的细胞毒性测试结果见图1。图1所示的用MTT法测试本发明所述化合物6、13、14、15、21在1μM和10μM时对神经元细胞的毒性测试,其中,纵坐标表示细胞存活率。与对照组相比,大多数化合物对小鼠神经细元胞均无明显毒性,即使是在10μM作用下,所述化合物也无明显毒性,说明该类化合物具有较高的安全性。
可见,与对照组相比,大多数化合物对神经元细胞均无较大毒性,即使是在10μM作用下,所述化合物也无较大毒性。
实施例8:人工膜渗透模型检测三环二萜衍生物对血脑屏障有效渗透系数
测试原理:药物透过血脑屏障(bloodbrainbarrier,BBB)的能力可用平行人工膜渗透模型(Parallelartificialmembranepermeabilitymode,PAMPA)进行预测和评估。PAMPA是利用细胞模型研究药物被动扩散的动力学模型。通过PAMPA,可将含有被测分子的溶液通过磷脂人工膜渗透到不含被测分子的缓冲液,从而测定分子的含量及渗透率。
样品测试:待测化合物用DMSO溶解成5mg/mL的溶液。10μL的样品在PBS中稀释至二级储液(终浓度为25μg/mL)并过滤。将300μL的二级储备液加到供体板中,猪脑脂质提取物用十二烷溶解至浓度为20mg/mL,滴加在受体板的亲脂性滤膜上以模拟生物膜,受体板中加入150μL的磷酸盐缓冲液(PBS)。受体板放至供体板上,使磷脂膜能够接触到供体液,形成三明治结构——待测液的供体液在下层,人工磷脂膜在中央,待测药物分子从供体板中扩散,穿过磷脂膜,进入到上层受体板中。在室温下孵育18小时,待扩散完毕分别吸取受体液和供体液,用紫外分光光度计测定浓度,依据公式得出有效渗透率。
各测试化合物与对照组异搏定、氯压定的有效渗透系数的测试结果见表3。
表3人工膜渗透模型检测三环二萜衍生物对血脑屏障有效渗透系数
化合物 渗透率Pe(10-6cm s-1) 预测结果
6 equi CNS+
13 equi CNS+
14 11.26±0.34 CNS+
15 ND ND
21 equi CNS+
异搏定 13.4±0.98 CNS+
氯压定 5.26±0.49 CNS+
表3显示,通过血脑屏障穿透模型试验测本发明所示化合物6、13、14、15、21及对照组异搏定、氯压定的有效穿透系数。其中,Pe(10-6cms-1-)>4.0,“CNS+”代表化合物具有较高的穿透率,可以穿透血脑屏障;Pe(10-6cms-1-)小于2.0,“CNS-”代表化合物具有低的穿透率,不能穿透血脑屏障。Equi代表化合物在人工膜两侧的浓度达到平衡,具极高的穿透率。根据数据结果可知,目标化合物6、13、14、21的Pe(10-6cms-1-)>4.0,即代表其具有较高渗透率,能够有效透过血脑屏障发挥作用,可见本发明化合物均能有效透过血脑屏障。
综上,本发明三环二萜化合物适宜作为由谷氨酸过度激活或缺氧缺糖导致神经元损伤的神经保护潜在药物。

Claims (7)

1.一种三环二萜衍生物,其特征在于,其结构如式(I)所示:
其中,
2.如权利要求1所述的三环二萜衍生物,其特征在于,所述三环二萜衍生物如式(6)、(8)、(9)所示:
3.如权利要求1所述的三环二萜衍生物,其特征在于,所述三环二萜衍生物如式(10)、(11)、(12)、(13)、(14)、(15)、(16)、(17)、(18)所示:
4.如权利要求1所述的三环二萜衍生物,其特征在于,所述三环二萜衍生物如式(23)所示:
5.如权利要求1-4任一项所述的三环二萜衍生物在制备神经保护药物中的应用。
6.如权利要求5所述的应用,其特征在于,所述三环二萜衍生物保护神经元细胞免受由谷氨酸过度激活或缺氧缺糖造成的损伤。
7.如权利要求6所述的应用,其特征在于,所述的三环二萜衍生物能够穿透血脑屏障。
CN201410802240.3A 2014-12-18 2014-12-18 三环二萜衍生物及其制备方法、及其在制备神经保护药物中的应用 Expired - Fee Related CN104529740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410802240.3A CN104529740B (zh) 2014-12-18 2014-12-18 三环二萜衍生物及其制备方法、及其在制备神经保护药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410802240.3A CN104529740B (zh) 2014-12-18 2014-12-18 三环二萜衍生物及其制备方法、及其在制备神经保护药物中的应用

Publications (2)

Publication Number Publication Date
CN104529740A CN104529740A (zh) 2015-04-22
CN104529740B true CN104529740B (zh) 2016-06-01

Family

ID=52845425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410802240.3A Expired - Fee Related CN104529740B (zh) 2014-12-18 2014-12-18 三环二萜衍生物及其制备方法、及其在制备神经保护药物中的应用

Country Status (1)

Country Link
CN (1) CN104529740B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557602B (zh) * 2015-01-07 2016-08-17 华东师范大学 三环二萜衍生物及其制备方法、及其在制备抗肿瘤药物中的应用
CN106928095A (zh) * 2017-03-14 2017-07-07 华东师范大学 氰基烯酮类三环二萜类似物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495112A (zh) * 2006-11-24 2009-07-29 帝斯曼知识产权资产管理有限公司 用于治疗抑郁症的含有三环二萜及其衍生物的膳食或药学组合物
CN102746259A (zh) * 2012-06-04 2012-10-24 中山大学 半日花烷型二萜类化合物、柏子仁提取物及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495112A (zh) * 2006-11-24 2009-07-29 帝斯曼知识产权资产管理有限公司 用于治疗抑郁症的含有三环二萜及其衍生物的膳食或药学组合物
CN102746259A (zh) * 2012-06-04 2012-10-24 中山大学 半日花烷型二萜类化合物、柏子仁提取物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Diterpenoids from Acanthopanax brachypus Harms;Hao-Bin Hu et al.;《CHEMISTRY & BIODIVERSITY》;20131231;第10卷;第1623-1629页 *
The synthesis and antibacterial activity of pyrazole-fused tricyclic diterpene derivatives;Li-Gang Yu et al.;《European Journal of Medicinal Chemistry》;20141106;第90卷;第10-20页 *

Also Published As

Publication number Publication date
CN104529740A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
Nicolaou et al. Synthesis and biological evaluation of epidithio-, epitetrathio-, and bis-(methylthio) diketopiperazines: synthetic methodology, enantioselective total synthesis of epicoccin G, 8, 8′-epi-ent-rostratin B, gliotoxin, gliotoxin G, emethallicin E, and haematocin and discovery of new antiviral and antimalarial agents
Alizadeh et al. A novel pseudo-seven-component diastereoselective synthesis of λ5-phosphanylidene bis (2, 5-dioxotetrahydro-1H-pyrrole-3-carboxylates) via binucleophilic systems
Shankaraiah et al. Synthesis of different heterocycles-linked chalcone conjugates as cytotoxic agents and tubulin polymerization inhibitors
CN104557602B (zh) 三环二萜衍生物及其制备方法、及其在制备抗肿瘤药物中的应用
Pyrczak-Felczykowska et al. Synthesis of usnic acid derivatives and evaluation of their antiproliferative activity against cancer cells
Elkamhawy et al. Novel quinazoline-urea analogues as modulators for Aβ-induced mitochondrial dysfunction: Design, synthesis, and molecular docking study
CN104529740B (zh) 三环二萜衍生物及其制备方法、及其在制备神经保护药物中的应用
Szulawska‐Mroczek et al. Synthesis and biological evaluation of new bischromone derivatives with antiproliferative activity
Ozaki et al. 2-Aminoethyl diphenylborinate (2-APB) analogues: regulation of Ca2+ signaling
Matos et al. Epoxylathyrol derivatives: modulation of ABCB1-mediated multidrug resistance in human colon adenocarcinoma and mouse T-lymphoma cells
Mahmud et al. Synthesis, characterization and study of antibacterial activity of enaminone complexes of zinc and iron
Li et al. Bioactivity-guided mixed synthesis accelerate the serendipity in lead optimization: Discovery of fungicidal homodrimanyl amides
Yang et al. Semisynthesis and biological evaluation of some novel Mannich base derivatives derived from a natural lignan obovatol as potential antifungal agents
Pavlidis et al. Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper (ΙΙ) in in vitro cell models of Alzheimer's disease
Khan et al. Synthesis, structural characterization and biological screening of heteroleptic palladium (II) complexes
CN103910638A (zh) 氢化诺卜基三乙基碘化铵的制备方法与应用
Bandari et al. Synthesis of new chromeno-carbamodithioate derivatives and preliminary evaluation of their antioxidant activity and molecular docking studies
Chen et al. α, ω-Diacyl-Substituted Analogues of Natural and Unnatural Polyamines: Identification of Potent Bactericides That Selectively Target Bacterial Membranes
Wang et al. Heterocyclic pyrrolizinone and indolizinones derived from natural lactam as potential antifungal agents
Alizadeh et al. One-pot synthesis of functionalized hydantoin derivatives via a four-component reaction between an amine, an arylsulfonyl isocyanate and an alkyl propiolate or dialkyl acetylenedicarboxylate in the presence of triphenylphosphine
Hadden et al. Synthesis and evaluation of radamide analogues, a chimera of radicicol and geldanamycin
Danish et al. Enzyme inhibition and antioxidant potential of new synthesized sulfonamides; synthesis, single crystal and molecular docking
CN106749090B (zh) 2-(4-羟基苯基)噻唑-4-羧酸乙酯衍生物的制备方法及其应用
Banister et al. 7-Azabicyclo [2.2. 1] heptane as a scaffold for the development of selective sigma-2 (σ2) receptor ligands
Ma et al. Synthesis and recognition properties for copper ions and cyanide anions of two coumarin hydrazide compounds

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160601

Termination date: 20211218

CF01 Termination of patent right due to non-payment of annual fee