CN104529328A - High-crack-resistant palm fiber self-compacting concrete - Google Patents
High-crack-resistant palm fiber self-compacting concrete Download PDFInfo
- Publication number
- CN104529328A CN104529328A CN201410756637.3A CN201410756637A CN104529328A CN 104529328 A CN104529328 A CN 104529328A CN 201410756637 A CN201410756637 A CN 201410756637A CN 104529328 A CN104529328 A CN 104529328A
- Authority
- CN
- China
- Prior art keywords
- content
- water
- concrete
- palm fiber
- compacting concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011376 self-consolidating concrete Substances 0.000 title claims abstract description 24
- 239000000835 fiber Substances 0.000 title abstract description 92
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000004568 cement Substances 0.000 claims abstract description 25
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 18
- 239000004576 sand Substances 0.000 claims abstract description 16
- 239000010881 fly ash Substances 0.000 claims abstract description 15
- 235000019738 Limestone Nutrition 0.000 claims abstract description 8
- 239000006028 limestone Substances 0.000 claims abstract description 8
- 238000005336 cracking Methods 0.000 claims description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 4
- 239000011398 Portland cement Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 240000000961 Setaria parviflora Species 0.000 claims 9
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims 1
- 239000003469 silicate cement Substances 0.000 claims 1
- 239000004567 concrete Substances 0.000 abstract description 36
- 238000013461 design Methods 0.000 abstract description 3
- 230000001737 promoting effect Effects 0.000 abstract 1
- 239000004575 stone Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
本发明公开一种高抗裂棕榈纤维自密实混凝土,包括水泥、粉煤灰、河砂、石灰岩、水和减水剂,其特征在于,还包括棕榈纤维,其中水泥含量为320~380kg/m3,粉煤灰含量为170~230kg/m3,河砂含量为780~860kg/m3,石灰岩含量为920~980kg/m3,棕榈纤维含量为0.6~1.5kg/m3,水的含量为175~240kg/m3,减水剂含量为10~12.5kg/m3。采用本发明的设计,在现有的混凝土中参入棕榈纤维,有效的提高了混凝土的抗压强度、劈拉强度、抗裂性能,提升了混凝土的综合性能,同时成本低廉,具备良好的市场前景及推广价值。The invention discloses a high-crack-resistant palm fiber self-compacting concrete, which includes cement, fly ash, river sand, limestone, water and a water reducer, and is characterized in that palm fiber is also included, and the cement content is 320-380kg/m 3. The fly ash content is 170-230kg/m 3 , the river sand content is 780-860kg/m 3 , the limestone content is 920-980kg/m 3 , the palm fiber content is 0.6-1.5kg/m 3 , the water content 175~240kg/m 3 , and the content of water reducing agent is 10~12.5kg/m 3 . Adopting the design of the present invention, adding palm fiber into the existing concrete effectively improves the compressive strength, splitting tensile strength and crack resistance of the concrete, improves the comprehensive performance of the concrete, and at the same time is low in cost and has a good market prospect and promotional value.
Description
技术领域technical field
本发明属无机非金属材料技术领域,具体涉及一种新型棕榈纤维自密实混凝土。The invention belongs to the technical field of inorganic non-metallic materials, and in particular relates to a novel palm fiber self-compacting concrete.
背景技术Background technique
作为现今使用量最大的建筑材料,混凝土存在抗拉强度低﹑脆性大和易开裂的缺点,同时由于自重大和需要振捣等缺点也限制了混凝土在现代新型建筑结构中的使用。As the most widely used building material today, concrete has the disadvantages of low tensile strength, high brittleness and easy cracking. At the same time, due to its own weight and the need for vibration, it also limits the use of concrete in modern new building structures.
目前,国际上普遍认为在混凝土中掺加纤维有助于克服混凝土抗拉强度低、脆性大和易开裂等缺陷;而自密实混凝土的出现,有效解决了密集配筋混凝土施工困难以及需要振捣等缺点。纤维自密实混凝土集中了纤维混凝土和自密实混凝土的优点。混凝土材料中引入纤维制成纤维混凝土材料能够抑制混凝土裂缝,是提高混凝土抗拉强度等性能的有效措施之一。目前工程上常用的纤维为钢纤维和聚丙烯纤维,但是钢纤维价格较贵,聚丙烯纤维具有憎水性,与混凝土基体粘结较弱,容易结团,分散不均匀,且价格较贵,大大增加了工程成本。At present, it is generally believed in the world that adding fibers to concrete can help overcome the defects of low tensile strength, high brittleness and easy cracking of concrete; and the emergence of self-compacting concrete has effectively solved the difficulties in the construction of densely reinforced concrete and the need for vibration. shortcoming. Fiber self-compacting concrete combines the advantages of fiber concrete and self-compacting concrete. Introducing fibers into concrete materials to make fiber concrete materials can inhibit concrete cracks, and is one of the effective measures to improve concrete tensile strength and other properties. At present, the commonly used fibers in engineering are steel fibers and polypropylene fibers, but steel fibers are more expensive, polypropylene fibers are hydrophobic, weakly bonded to the concrete matrix, easy to agglomerate, unevenly dispersed, and more expensive, greatly Increased engineering costs.
发明内容Contents of the invention
为了解决上述混凝土存在的抗拉强度低、脆性大和易开裂等缺陷,本发明公开一种高抗裂棕榈纤维自密实混凝土,本发明采用如下技术方案来解决上述技术问题:In order to solve the defects of low tensile strength, high brittleness and easy cracking of the above-mentioned concrete, the present invention discloses a high-crack-resistant palm fiber self-compacting concrete. The present invention adopts the following technical solutions to solve the above-mentioned technical problems:
一种高抗裂棕榈纤维自密实混凝土,包括水泥、粉煤灰、河砂、石灰岩、水和减水剂,还包括棕榈纤维,其中水泥含量为320~380kg/m3,粉煤灰含量为170~230kg/m3,河砂含量为780~860kg/m3,石灰岩含量为920~980kg/m3,棕榈纤维含量为0.6~1.5kg/m3,水的含量为175~240kg/m3,减水剂含量为10~12.5kg/m3。A high anti-cracking palm fiber self-compacting concrete, including cement, fly ash, river sand, limestone, water and water reducing agent, also includes palm fiber, wherein the cement content is 320-380kg/m 3 , and the fly ash content is 170~230kg/m 3 , river sand content 780~860kg/m 3 , limestone content 920~980kg/m 3 , palm fiber content 0.6~1.5kg/m 3 , water content 175~240kg/m 3 , the content of water reducer is 10~12.5kg/m 3 .
优选的,在上述的一种高抗裂棕榈纤维自密实混凝土中,所述棕榈纤维经如下步骤处理:浸于浓度为2.5%的NaOH溶液中,于50℃下处理8h,取出后用去离子水清洗至中性,在烘干箱控制温度为60℃烘干备用。Preferably, in the above-mentioned high-cracking-resistant palm fiber self-compacting concrete, the palm fiber is processed through the following steps: soaking in a NaOH solution with a concentration of 2.5%, treating it at 50°C for 8 hours, taking it out and using a deionized Wash with water until neutral, and dry in a drying oven at a controlled temperature of 60°C for later use.
优选的,在上述的一种高抗裂棕榈纤维自密实混凝土中,所述水泥为强度等级为42.5的硅酸盐水泥或普通硅酸盐水泥。Preferably, in the aforementioned high-crack-resistant palm fiber self-compacting concrete, the cement is Portland cement or ordinary Portland cement with a strength grade of 42.5.
优选的,在上述的一种高抗裂棕榈纤维自密实混凝土中,所述河砂细度模数为2.4~3.2。Preferably, in the aforementioned high-crack-resistant palm fiber self-compacting concrete, the fineness modulus of the river sand is 2.4-3.2.
优选的,在上述的一种高抗裂棕榈纤维自密实混凝土中,所述石灰岩粒径为5mm~25mm。Preferably, in the above-mentioned high-crack-resistant palm fiber self-compacting concrete, the particle size of the limestone is 5 mm to 25 mm.
优选的,在上述的一种高抗裂棕榈纤维自密实混凝土中,所述减水剂为聚羧酸高效减水剂。Preferably, in the above-mentioned high-cracking-resistant palm fiber self-compacting concrete, the water reducer is a polycarboxylate high-efficiency water reducer.
采用本发明的设计,在现有的混凝土中掺入棕榈纤维,有效的提高了混凝土的抗压强度、劈拉强度、抗裂性能,提升了混凝土的综合性能,同时成本低廉,具备良好的市场前景及推广价值。Adopting the design of the present invention, palm fiber is mixed into the existing concrete, which effectively improves the compressive strength, splitting tensile strength and crack resistance of the concrete, improves the comprehensive performance of the concrete, and at the same time has low cost and has a good market Prospect and promotion value.
具体实施方式Detailed ways
下面通过具体实施方式对本发明作进一步详细的说明。实验采用相同的配合比和成型工艺成型9组混凝土试样,第1组为不加棕榈纤维对照组,其余8组为实验中。未处理过的棕榈纤维物理力学性能参见表1,处理过的棕榈纤维物理力学性能参见表2。The present invention will be further described in detail through specific embodiments below. In the experiment, 9 groups of concrete samples were formed with the same mix ratio and molding process. The first group was the control group without palm fiber, and the remaining 8 groups were in the experiment. The physical and mechanical properties of untreated palm fiber are shown in Table 1, and the physical and mechanical properties of treated palm fiber are shown in Table 2.
表1未处理过的棕榈纤维物理力学性能Table 1 Untreated palm fiber physical and mechanical properties
表2处理过的棕榈纤维物理力学性能Table 2 Processed palm fiber physical and mechanical properties
实施例1Example 1
一种高抗裂棕榈纤维自密实混凝土的各组分配比为:水泥360kg/m3,粉煤灰210kg/m3,砂820kg/m3,石940kg/m3,棕榈纤维0kg/m3,水200kg/m3,水灰比为0.35,减水剂10kg/m3。The distribution ratio of each component of a high-crack-resistant palm fiber self-compacting concrete is: cement 360kg/m 3 , fly ash 210kg/m 3 , sand 820kg/m 3 , stone 940kg/m 3 , palm fiber 0kg/m 3 , Water 200kg/m 3 , water-cement ratio 0.35, water reducer 10kg/m 3 .
实施例2Example 2
一种棕榈纤维混凝土的各组分配比为:水泥360kg/m3,粉煤灰210kg/m3,砂820kg/m3,石940kg/m3,棕榈纤维0.6kg/m3,水200kg/m3,水胶比为0.35,减水剂10kg/m3。棕榈纤维未经处理。The distribution ratio of each component of a palm fiber concrete is: cement 360kg/m 3 , fly ash 210kg/m 3 , sand 820kg/m 3 , stone 940kg/m 3 , palm fiber 0.6kg/m 3 , water 200kg/m 3 3. The water-binder ratio is 0.35, and the water reducing agent is 10kg/m 3 . Palm fiber is untreated.
实施例3Example 3
一种棕榈纤维混凝土的各组分配比为:水泥360kg/m3,粉煤灰210kg/m3,砂820kg/m3,石940kg/m3,棕榈纤维0.6kg/m3,水200kg/m3,水灰比为0.35,减水剂10kg/m3。棕榈纤维经处理。The distribution ratio of each component of a palm fiber concrete is: cement 360kg/m 3 , fly ash 210kg/m 3 , sand 820kg/m 3 , stone 940kg/m 3 , palm fiber 0.6kg/m 3 , water 200kg/m 3 3. The water-cement ratio is 0.35, and the water reducing agent is 10kg/m 3 . Palm fiber is treated.
实施例4Example 4
一种棕榈纤维混凝土的各组分配比为:水泥360kg/m3,粉煤灰210kg/m3,砂820kg/m3,石940kg/m3,棕榈纤维1.2kg/m3,水200kg/m3,水灰比为0.35,减水剂10kg/m3。棕榈纤维未经处理。The distribution ratio of each component of a palm fiber concrete is: cement 360kg/m 3 , fly ash 210kg/m 3 , sand 820kg/m 3 , stone 940kg/m 3 , palm fiber 1.2kg/m 3 , water 200kg/m 3 3. The water-cement ratio is 0.35, and the water reducing agent is 10kg/m 3 . Palm fiber is untreated.
实施例5Example 5
一种棕榈纤维混凝土的各组分配比为:水泥360kg/m3,粉煤灰210kg/m3,砂820kg/m3,石940kg/m3,棕榈纤维1.2kg/m3,水200kg/m3,水灰比为0.35,减水剂10kg/m3。棕榈纤维经处理。The distribution ratio of each component of a palm fiber concrete is: cement 360kg/m 3 , fly ash 210kg/m 3 , sand 820kg/m 3 , stone 940kg/m 3 , palm fiber 1.2kg/m 3 , water 200kg/m 3 3. The water-cement ratio is 0.35, and the water reducing agent is 10kg/m 3 . Palm fiber is treated.
实施例6Example 6
一种棕榈纤维混凝土的各组分配比为:水泥360kg/m3,粉煤灰210kg/m3,砂820kg/m3,石940kg/m3,棕榈纤维1.5kg/m3,水200kg/m3,水灰比为0.35,减水剂10kg/m3。棕榈纤维未经处理。The distribution ratio of each component of a palm fiber concrete is: cement 360kg/m 3 , fly ash 210kg/m 3 , sand 820kg/m 3 , stone 940kg/m 3 , palm fiber 1.5kg/m 3 , water 200kg/m 3 3. The water-cement ratio is 0.35, and the water reducing agent is 10kg/m 3 . Palm fiber is untreated.
实施例7Example 7
一种棕榈纤维混凝土的各组分配比为:水泥360kg/m3,粉煤灰210kg/m3,砂820kg/m3,石940kg/m3,棕榈纤维1.5kg/m3,水200kg/m3,水灰比为0.35,减水剂10kg/m3。棕榈纤维经处理。The distribution ratio of each component of a palm fiber concrete is: cement 360kg/m 3 , fly ash 210kg/m 3 , sand 820kg/m 3 , stone 940kg/m 3 , palm fiber 1.5kg/m 3 , water 200kg/m 3 3. The water-cement ratio is 0.35, and the water reducing agent is 10kg/m 3 . Palm fiber is treated.
实施例8Example 8
一种棕榈纤维混凝土的各组分配比为:水泥360kg/m3,粉煤灰210kg/m3,砂820kg/m3,石940kg/m3,棕榈纤维2.0kg/m3,水200kg/m3,水灰比为0.35,减水剂10kg/m3。棕榈纤维未经处理。The distribution ratio of each component of a palm fiber concrete is: cement 360kg/m 3 , fly ash 210kg/m 3 , sand 820kg/m 3 , stone 940kg/m 3 , palm fiber 2.0kg/m 3 , water 200kg/m 3 3. The water-cement ratio is 0.35, and the water reducing agent is 10kg/m 3 . Palm fiber is untreated.
实施例9Example 9
一种棕榈纤维混凝土的各组分配比为:水泥360kg/m3,粉煤灰210kg/m3,砂820kg/m3,石940kg/m3,棕榈纤维2.0kg/m3,水200kg/m3,水灰比为0.35,减水剂10kg/m3。棕榈纤维经处理。The distribution ratio of each component of a palm fiber concrete is: cement 360kg/m 3 , fly ash 210kg/m 3 , sand 820kg/m 3 , stone 940kg/m 3 , palm fiber 2.0kg/m 3 , water 200kg/m 3 3. The water-cement ratio is 0.35, and the water reducing agent is 10kg/m 3 . Palm fiber is treated.
上述实施例所提到纤维处理的具体方法是:The concrete method of the mentioned fiber processing of above-mentioned embodiment is:
将棕榈纤维浸于浓度为2.5%的NaOH溶液中,于50℃下处理8h,取出后用去离子水清洗至中性,,在烘干箱控制温度为60℃烘干备用。Soak the palm fiber in NaOH solution with a concentration of 2.5%, and treat it at 50°C for 8 hours, take it out, wash it with deionized water until it is neutral, and dry it in a drying oven at a controlled temperature of 60°C for later use.
上述实施例力学性能测试结果如表3所示。The test results of the mechanical properties of the above examples are shown in Table 3.
表3混凝土力学性能测试结果Table 3 Concrete Mechanical Properties Test Results
1、工作性能分析1. Work performance analysis
由表3可以看出坍落拓展度随着纤维掺量的增加而减小,同时都满足自密实混凝土对工作性能的要求,T50随着纤维掺量的增加而减小,同时对纤维的处理对自密实混凝土的工作性能影响不大。It can be seen from Table 3 that the slump spread decreases with the increase of fiber content, and at the same time, it meets the requirements of self-compacting concrete for working performance. T 50 decreases with the increase of fiber content, while the fiber Treatment has little effect on the working properties of self-compacting concrete.
2、抗压强度分析2. Analysis of compressive strength
由表3可看出:在1,2,4,6,8组中,可以看出棕榈纤维自密实混凝土的7d,28d的抗压强度在棕榈纤维掺量为0-1.5kg/m3范围内,随纤维掺量的增加而增加,6组和8组比较中,可以看出当纤维掺量为2.0kg/m3时,纤维抗压强度下降。在棕榈纤维掺量为1.5kg/m3时,28d的抗压强度比未掺入纤维的对照组增加了22.67%。It can be seen from Table 3: in groups 1, 2, 4, 6, and 8, it can be seen that the 7d and 28d compressive strengths of palm fiber self-compacting concrete are in the range of 0-1.5kg/ m3 when the palm fiber content is 0-1.5kg/m3 , increases with the increase of the fiber content. From the comparison between Group 6 and Group 8, it can be seen that when the fiber content is 2.0kg/m 3 , the fiber compressive strength decreases. When the content of palm fiber was 1.5kg/m 3 , the compressive strength of 28d increased by 22.67% compared with the control group without adding fiber.
3、劈拉强度的分析3. Analysis of splitting tensile strength
在1,2,4,6,8组中,可以看出棕榈纤维自密实混凝土的7d,28d的抗压强度在棕榈纤维掺量为0-1.2kg/m3范围内,随纤维掺量的增加而增加,在1组和5组比较中,棕榈纤维掺量为1.2-2.0kg/m3范围内,随纤维掺量的增加而减少。4、纤维表面处理分析In groups 1, 2, 4, 6, and 8, it can be seen that the 7d and 28d compressive strengths of palm fiber self-compacting concrete are within the range of 0-1.2kg/ m3 of palm fiber content, and the In the comparison between group 1 and group 5, the content of palm fiber is in the range of 1.2-2.0kg/m 3 , and it decreases with the increase of fiber content. 4. Fiber surface treatment analysis
在2和3,4和5,6和7组,8和9组比较中,可以看出相同棕榈纤维掺量的情况下,对纤维表面处理后的抗压强度高于未处理的,在掺量均为1.5kg/m3的6,7组中比较发现,对纤维处理后的28d抗压强度大于未处理的8.6%。In the comparison between 2 and 3, 4 and 5, 6 and 7 groups, and 8 and 9 groups, it can be seen that in the case of the same palm fiber content, the compressive strength of the fiber surface treatment is higher than that of the untreated one. In groups 6 and 7, both of which are 1.5kg/m 3 , it is found that the 28d compressive strength of the fibers after treatment is 8.6% greater than that of untreated fibers.
在2和3,4和5,6和7组,8和9组比较中,可以看出相同棕榈纤维掺量的情况下,对纤维表面的处理后的劈拉强度高于未处理的。在掺量均为1.5kg/m3的6,7组中比较发现,对纤维处理后的28d劈拉强度大于未处理的7.6%。In the comparison of groups 2 and 3, 4 and 5, 6 and 7, and group 8 and 9, it can be seen that in the case of the same palm fiber content, the splitting tensile strength of the treated fiber surface is higher than that of the untreated one. In groups 6 and 7 whose dosage is 1.5kg/m 3 , it is found that the 28d splitting tensile strength of the treated fiber is 7.6% greater than that of the untreated fiber.
上述实施例抗裂性能测试如表4所示。The anti-crack performance test of the above examples is shown in Table 4.
表4混凝土裂缝宽度和单位面积上裂缝面积Table 4 Concrete crack width and crack area per unit area
由表4的数据表明掺加棕榈纤维对减少裂缝宽度的作用非常大,而且掺入量为1.5kg/m3和2.1kg/m3的混凝土试件的裂缝宽度均控制在0.08mm以下,明显优于掺量为0.6kg/m3和2.0kg/m3的试件;在纤维掺量为1.5kg/m3的第6组裂缝宽度与未掺入纤维的第1组裂缝宽度比较,减少了67.8%,因此可以看出棕榈纤维对控制混凝土的裂缝宽度作用非常明显。The data in Table 4 show that the addition of palm fiber has a great effect on reducing the crack width, and the crack width of the concrete specimens with the addition amount of 1.5kg/ m3 and 2.1kg/ m3 are all controlled below 0.08mm, obviously It is better than the specimens with the dosage of 0.6kg/m 3 and 2.0kg/m 3 ; when the fiber dosage is 1.5kg/m 3 , the crack width of the sixth group is less than that of the first group without fiber 67.8%, so it can be seen that the effect of palm fiber on controlling the crack width of concrete is very obvious.
由表4可知在混凝土中掺入棕榈纤维对混凝土的阻裂效果非常明显,同时可以看出,掺量为1.5kg/m3的混凝土试件单位面积上裂缝面积为每平方米350mm2左右,与未掺入纤维的第1组相比较,比未掺入的降低了45%左右.但随着纤维掺量的增加,试件对裂缝面积的控制能力开始放缓。It can be seen from Table 4 that the crack resistance effect of adding palm fiber to concrete is very obvious. At the same time, it can be seen that the crack area per unit area of the concrete specimen with the content of 1.5kg/ m3 is about 350mm2 per square meter. Compared with the first group without adding fiber, it is about 45% lower than that without adding fiber. But with the increase of fiber content, the ability of the specimen to control the crack area begins to slow down.
采用本发明的设计,在现有的混凝土中掺入棕榈纤维,有效的提高了混凝土的抗压强度、劈拉强度、抗裂性能,提升了混凝土的综合性能,同时成本低廉,具备良好的市场前景及推广价值。Adopting the design of the present invention, palm fiber is mixed into the existing concrete, which effectively improves the compressive strength, splitting tensile strength and crack resistance of the concrete, improves the comprehensive performance of the concrete, and at the same time has low cost and has a good market Prospect and promotion value.
上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410756637.3A CN104529328A (en) | 2014-12-10 | 2014-12-10 | High-crack-resistant palm fiber self-compacting concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410756637.3A CN104529328A (en) | 2014-12-10 | 2014-12-10 | High-crack-resistant palm fiber self-compacting concrete |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104529328A true CN104529328A (en) | 2015-04-22 |
Family
ID=52845017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410756637.3A Pending CN104529328A (en) | 2014-12-10 | 2014-12-10 | High-crack-resistant palm fiber self-compacting concrete |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104529328A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107311575A (en) * | 2017-08-31 | 2017-11-03 | 福建省永泰建筑工程公司 | A kind of seismic structural wall, earthquake resistant wall rendering mortar |
CN108840719A (en) * | 2018-09-11 | 2018-11-20 | 台山市河朗新型环保建材有限公司 | A kind of concrete brick and preparation method thereof that the anticorrosive service life is long |
CN111517731A (en) * | 2020-06-28 | 2020-08-11 | 陕西汇丰高性能粉体材料有限公司 | C30 concrete and production process thereof |
CN111606616A (en) * | 2020-05-20 | 2020-09-01 | 中铁二局第二工程有限公司 | Filling type plant fiber, preparation method and high-strength plastic wave-absorbing concrete |
CN114686033A (en) * | 2022-04-27 | 2022-07-01 | 西安德润九州新材料有限公司 | Exterior wall waterproof putty powder and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102674791A (en) * | 2011-03-18 | 2012-09-19 | 棕纤环保科技有限公司 | Sheet material made of oil palm fibres and magnesium oxide and method for producing same |
CN103862759A (en) * | 2014-03-04 | 2014-06-18 | 苏州大学 | Preparation method of palm fibril core and product thereof |
CN103864385A (en) * | 2014-02-26 | 2014-06-18 | 郑州大学 | Self-compacting concrete of fiber-reinforced polymer for assembly hollow plate bridge hinge joint |
WO2014094864A1 (en) * | 2012-12-20 | 2014-06-26 | Qim Projekt & Consult Gmbh | Building material composition for producing a lightweight concrete |
CN104030638A (en) * | 2014-06-16 | 2014-09-10 | 西南交通大学 | Rubber elastic self-compaction concrete for plate-type ballastless tracks |
-
2014
- 2014-12-10 CN CN201410756637.3A patent/CN104529328A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102674791A (en) * | 2011-03-18 | 2012-09-19 | 棕纤环保科技有限公司 | Sheet material made of oil palm fibres and magnesium oxide and method for producing same |
WO2014094864A1 (en) * | 2012-12-20 | 2014-06-26 | Qim Projekt & Consult Gmbh | Building material composition for producing a lightweight concrete |
CN103864385A (en) * | 2014-02-26 | 2014-06-18 | 郑州大学 | Self-compacting concrete of fiber-reinforced polymer for assembly hollow plate bridge hinge joint |
CN103862759A (en) * | 2014-03-04 | 2014-06-18 | 苏州大学 | Preparation method of palm fibril core and product thereof |
CN104030638A (en) * | 2014-06-16 | 2014-09-10 | 西南交通大学 | Rubber elastic self-compaction concrete for plate-type ballastless tracks |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107311575A (en) * | 2017-08-31 | 2017-11-03 | 福建省永泰建筑工程公司 | A kind of seismic structural wall, earthquake resistant wall rendering mortar |
CN107311575B (en) * | 2017-08-31 | 2020-06-05 | 福建省永泰建筑工程公司 | Mortar for plastering anti-seismic wall |
CN108840719A (en) * | 2018-09-11 | 2018-11-20 | 台山市河朗新型环保建材有限公司 | A kind of concrete brick and preparation method thereof that the anticorrosive service life is long |
CN111606616A (en) * | 2020-05-20 | 2020-09-01 | 中铁二局第二工程有限公司 | Filling type plant fiber, preparation method and high-strength plastic wave-absorbing concrete |
CN111517731A (en) * | 2020-06-28 | 2020-08-11 | 陕西汇丰高性能粉体材料有限公司 | C30 concrete and production process thereof |
CN114686033A (en) * | 2022-04-27 | 2022-07-01 | 西安德润九州新材料有限公司 | Exterior wall waterproof putty powder and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Influence of shrinkage reducing admixtures on the performance of cementitious composites: A review | |
Laskar et al. | Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent | |
CN104386966B (en) | A kind of high performance corrosion-proof is dry mixed waterproof mortar | |
CN104529328A (en) | High-crack-resistant palm fiber self-compacting concrete | |
CN105801017B (en) | Room temperature maintaining Reactive Powder Concrete and preparation method thereof | |
CN108424020B (en) | Super-hydrophobic modification method of mineral admixture | |
CN102745963A (en) | Cement-base material with ultra-high performance and preparation method thereof | |
CN101891425A (en) | A kind of active powder concrete and preparation method thereof | |
CN102745928A (en) | High-activity modified metakaolin-based mineral admixture for concrete and preparation method for mineral admixture | |
CN115417650B (en) | Low-shrinkage low-hydration heat ultra-high performance concrete and preparation method thereof | |
CN105236849B (en) | Chopped special thin fine stainless steel wire reinforced reactive-powder-concrete of one kind and preparation method thereof | |
CN105314938B (en) | A kind of low drying shrinkage anti-crack concrete | |
CN104761212A (en) | Low cementitious material self-compact concrete with rice husk ash as internal curing agent | |
CN111018471A (en) | Green high-performance concrete and preparation method thereof | |
CN104310909A (en) | Nano modified polymer repair mortar and preparation method thereof | |
CN104743984A (en) | High-performance frost-resistant concrete prepared from metakaolin | |
CN115286275A (en) | Retarding and water resisting agent suitable for magnesium phosphate cement system | |
CN102408204A (en) | A High Performance Concrete Resistant to High Temperature Explosion | |
CN104151477B (en) | A kind of preparation method of both sexes polycarboxylate clay inhibitor | |
CN104261704A (en) | Jelling material for chlorine-salt-resistant high-performance concrete | |
CN104556785A (en) | Water-reducing metakaolin-based micro-expansion compacting agent and preparation method thereof | |
Jin et al. | Polymer-modified sulphoaluminate cement-based mortar anode and its optimal arrangement for electrochemical chloride extraction | |
CN108439919A (en) | A kind of fibre-reinforced infiltration crystallization type concrete | |
Mijowska et al. | The effect of nanomaterials on thermal resistance of cement-based composites exposed to elevated temperature | |
CN107986710A (en) | A kind of high strength lightweight aggregate concrete based on the shelly-shaped interface area of arch and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150422 |