CN104525144B - 用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用方法 - Google Patents

用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用方法 Download PDF

Info

Publication number
CN104525144B
CN104525144B CN201410843624.XA CN201410843624A CN104525144B CN 104525144 B CN104525144 B CN 104525144B CN 201410843624 A CN201410843624 A CN 201410843624A CN 104525144 B CN104525144 B CN 104525144B
Authority
CN
China
Prior art keywords
heavy metal
aluminum sulfate
modified iron
based biomaterial
metal adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410843624.XA
Other languages
English (en)
Other versions
CN104525144A (zh
Inventor
朱建裕
甘敏
刘新星
宋子博
周双
杨宝军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Kaiqing Environmental Protection Technology Co ltd
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201410843624.XA priority Critical patent/CN104525144B/zh
Publication of CN104525144A publication Critical patent/CN104525144A/zh
Application granted granted Critical
Publication of CN104525144B publication Critical patent/CN104525144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0281Sulfates of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用方法,属于废水处理技术领域。通过在9K培养基中逐渐增加硫酸铝浓度,对铁氧化细菌进行驯化,获得目的菌株。然后在9K培养基中进行扩大培养和离心收集后,获得大量菌体。将菌体投加于不同比例的硫酸亚铁和硫酸铝体系中,基于细菌的亚铁氧化作用和生物模板作用,合成不同形貌和尺寸的硫酸铝改性铁基生物材料。该产品通过细菌合成,绿色环保,能耗低,可实现对产品的可控合成,适用于处理不同种类,不同浓度重金属废水。利用低pH水溶液洗涤之后能够再生利用。

Description

用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用 方法
技术领域
本发明属于环境工程领域,具体涉及一种用于重金属吸附的硫酸铝改性铁基生物材料,及其制备和在重金属废水处理上的应用。
背景技术
伴随工业化进程有色金属矿床开发、金属加工业、制革业、电镀业、纺织业以及固体废弃物堆置等导致大量重金属进入水体环境中,并在底泥中富集,因此重金属污染已经成为世界范围内共同关注的一个十分严峻的环境问题。重金属不能被生物降解,并可以通过食物链的富集作用逐步进入人体。高效去除水体中的重金属离子已经成为当前十分紧迫的一项系统工程。吸附回收废液中的重金属离子,不仅是污水处理问题的重要组成部分,同时在重金属离子的循环利用方面也有着较为重大的意义。
环境体系中的重金属不能用常规办法分解去除,只能够通过转移其存在位置和转变形态的方式进行处理。通常,重金属废水处理方法大致可以分为三种:(1)通过化学反应将废水中的重金属离子分离去除,主要有中和沉淀法、硫化物沉淀法、铁氧体法、氧化还原法等。化学沉淀法的原理是通过化学反应使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物,再通过过滤和分离使沉淀物从溶液中去除。但其仍存在一定局限性,在处理过程中需要投加化学试剂,这会在一定程度上带来二次污染的风险,同时化学法存在去除极限的问题,当水体中污染物低于一定限度时,其去除效果往往不佳。(2)通过物理手段不改变废水中重金属化学形态的条件下分离重金属的方法,包括吸附、萃取、蒸发浓缩、膜分离与离子交换等。物理方法存在去除成本大,处理时间长以及去除不彻底等问题。(3)第三种是利用微生物或植物的絮凝、吸收、积累等作用,通过重金属在生物中的富集达到去除废水中重金属的目的,包括微生物絮凝法、生物化学法和植物修复法等。生物法处理对时间和空间要求较高,相对处理成本高,难于大规模运用。
基于吸附材料对重金属的去除处理目前被认为是一种深度处理的方法,它能够有效清除其他方法不能作用的残留微量重金属。吸附法是利用吸附剂的独特结构吸附重金属离子,而后通过分离吸附材料去除重金属离子的方法。吸附法具有材料简单、成本低廉、吸附效果好等优点,是一种传统且应用较为广泛的处理方法。经过不断地研发越来越多的吸附材料投入使用。目前使用较广泛的一类是天然吸附材料,如活性炭、腐植酸、壳聚糖类、玉米芯、木材锯屑等。其中活性炭作为传统吸附材料有着广泛的应用,也有着稳定性好、酸碱耐性高、耐高温高压、吸附表面积大等优点。但随着吸附法的发展,其再生效率低,处理后水质难以达到循环标准的缺点也暴露出来,新型吸附材料的开发因而活跃。
本发明利用铝离子对氧化亚铁硫杆菌进行驯化,得到在含有较高浓度铝离子情况下具有稳定亚铁氧化能力的菌株。利用驯化好的菌株在不同FeSO4.7H2O与Al2(SO4)3.18H2O比例的体系中合成具有不同形貌和尺寸的硫酸铝改性铁基生物材料。由于其优良的尺寸效应和结构效应,其具有处理时间短,处理容量大,可再生能力强,无二次污染以及适用于饮用水处理等优点。此种材料的成功控制合成对开发具有简易、高效、低耗,低成本,环境友好的铁基吸附材料具有重要的指导意义。
发明内容
本发明的目的是针对传统技术中的不足,提供一种用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用方法。
本发明的技术方案概述如下:
一种用于重金属吸附的硫酸铝改性铁基生物材料的制备方法,在9K培养基中添加硫酸铝对氧化亚铁硫杆菌驯化,获得具有稳定铁氧化能力的氧化亚铁硫杆菌菌株;将菌株加入到硫酸亚铁和硫酸铝的溶液体系中合成,过滤收集沉淀,洗涤沉淀,干燥,得到铁基重金属吸附材料。
上述方法中随驯化过程逐渐提高硫酸铝浓度直至达到150g/L。
上述方法中驯化时培养基初始pH 2-2.5,温度25-40℃,摇床转速170-200rpm。
上述方法中硫酸亚铁和硫酸铝的质量比例为15/0-15/15,加入细菌后细菌浓度1.0×107-1.0×109个/mL。
上述合成过程中,初始pH 2-2.5,温度25-35℃,转速100-200rpm,合成时间为3-6天,过滤收集沉淀。收集的沉淀用pH 1.5-2.5去离子水洗涤沉淀,自然风干,得到铁基重金属吸附材料。
一种用于重金属吸附的硫酸铝改性铁基生物材料,是由上述的方法制备得到的。
所述的用于重金属吸附的硫酸铝改性铁基生物材料的应用方法,用于处理含有Cu(II),Zn(II),Cd(II),Pb(II),As(III)及Cr(VI)中的一种或几种的废液。
具体是将硫酸铝改性铁基生物材料加入到含有重金属的废液中进行吸附,操作温度是20-40℃,初始pH值是3-8,吸附转速是100-200rpm,吸附时间是10-1440min,处理后的废液和吸附材料通过离心分离。
本发明不同硫酸亚铁与硫酸铝比例合成的吸附材料其吸附容量随硫酸铝浓度增加而增大,见本发明附图4,测试了不同比例硫酸亚铁与硫酸铝合成的吸附材料分别对250mg/L Cu(II)的吸附动力学曲线。
对含有Cu(II)的20mL体系,Cu(II)浓度为250mg/L,初始pH 3-8,吸附材料对Cu(II)的吸附容量随pH上升而增加,在pH 8时为最优,10min达到吸附平衡,吸附容量为53mg/g,见图5。
对含有Cr(VI)的20mL体系,Cr(VI)浓度为250mg/L,初始pH 3-8,吸附材料对Cr(VI)的吸附容量在pH 7达到最佳,吸附容量为70mg/g,平衡时间为60min左右,见图6。
对含有Zn(II)的20mL体系,Zn(II)浓度为250mg/L,初始pH 3-8,吸附材料对Zn(II)的吸附容量在pH 7-8左右较优,吸附容量为51mg/g,见图7。
上述方法将吸附重金属后的吸附材料用pH 2.0-3.0水溶液反复冲洗后,将吸附的重金属离子洗脱,洗脱效率到达85%以上,循环使用至少4次。
本发明的优势如下:
本发明提供的硫酸铝改性铁基生物材料由于其优良的尺寸效应和结构效应,其具有处理时间短,处理容量大,可再生能力强,无二次污染以及适用于饮用水处理等优点。通过硫酸铝的改性可以实现对材料的定向可控合成,合成的硫酸铝改性铁基生物材料其形状从球状渐变至纳米线状,其尺寸从5um左右渐变至纳米线级,随硫酸铝浓度增加其尺寸依次减小,比表面积增大,合成量增加。同时吸附后材料可以通过低pH水溶液进行洗脱再生,再生方法简单,易操作,再生效果优异,能够多次再生,使其循环利用成为可能,极大地降低了使用成本。
附图说明:
图1为本发明中不同FeSO4.7H2O与Al2(SO4)3.18H2O比例条件下合成的具有不同形貌和粒径的硫酸铝改性铁基生物材料;
图2为本发明中不同FeSO4.7H2O与Al2(SO4)3.18H2O比例条件下合成的硫酸铝改性铁基生物材料的红外图谱;曲线对应从下至上分别是FeSO4.7H2O与Al2(SO4)3.18H2O比例依次为15g:0g,15g:7.5g,15g:15g,15g:22.5g,15g:30g;
图3为本发明中不同FeSO4.7H2O与Al2(SO4)3.18H2O比例条件下合成的硫酸铝改性铁基生物材料的XRD图谱;
图4为本发明中不同FeSO4.7H2O与Al2(SO4)3.18H2O比例条件下合成的硫酸铝改性铁基生物材料对250mg/L Cu(II)吸附动力学曲线;
图5为3号样品在0.01M NaNO3背景电解质浓度和不同pH的Cu(II)吸附动力学曲线;
图6为不同初始pH和阴离子对Cr(VI)吸附量影响;
图7为3号样品在pH 3-8条件下对Zn(II)的吸附容量;
图8为0.4,0.2,0.1,0.05,0.01,0.005,0.001M背景阴离子浓度NaNO3,NaCl,Na2SO4,Na3PO4对250mg/L Cu(II)吸附影响;
图9复合重金属Zn,Cd,Cu,Cr离子在20,40,80,120,160和200mg/L浓度下的吸附量。
具体实施方式
以下实施例或实施方式旨在进一步说明本发明,而不是对本发明的限定。
实施例1
(1)硫酸铝对氧化亚铁硫杆菌的的驯化
在9K培养基FeSO4.7H2O 75g/L、(NH4)2SO43.0g/L、KC10.1g/L、K2HPO40.5g/L、MgSO40.5g/L、Ca(NO3)20.01g/L中添加Al2(SO4)3.18H2O对氧化亚铁硫杆菌进行驯化,其初始加入量为37.5g/L,逐渐加大其加入量依次为75g/L,112.5g/L,150g/L,多次传代培养获得在高浓度铝离子存在条件下具有稳定亚铁氧化能力和耐受较低pH值的氧化亚铁硫杆菌菌株。驯化过程在500mL锥形瓶中完成,装液量为200mL,培养基初始pH 2.5,温度30℃,摇床转速180rpm。
(2)菌体扩大培养和收集
将步骤(1)驯化的氧化亚铁硫杆菌通过500mL大量培养,在其指数增长后期(第四天左右),通过0.45um滤纸过滤,去除沉淀,获得滤液,利用高速冷冻离心机12,000rpm离心收集菌体,pH 2.0去离子水洗涤,并显微镜计数。
(3)材料合成
将步骤(2)收集的菌体,加入到FeSO4.7H2O与Al2(SO4)3.18H2O比例依次为15g:0g,15g:7.5g,15g:15g,15g:22.5g,15g:30g的200mL水溶液体系中,菌体密度为1.5×108个/mL,初始pH 2.5左右,温度30℃,转速180rpm,合成时间为5天左右,过滤收集沉淀,并用pH2.0去离子水洗涤沉淀,自然风干。
实施例2
采用实施例1中不同FeSO4.7H2O与Al2(SO4)3.18H2O比例条件下合成的硫酸铝改性铁基生物材料对250mg/L Cu(II)吸附,得到动力学曲线,见图4,说明本发明不同硫酸亚铁与硫酸铝比例合成的吸附材料其吸附容量随硫酸铝浓度增加而增大。
实施例3
1)称取FeSO4.7H2O与Al2(SO4)3.18H2O比例为15:15的3号样品0.05g于6个50mL大离心管中,加入10mL0.01M NaNO3溶液,用稀硝酸调节pH分别为3,4,5,6,7,8。
2)在体系中再分别加入相应pH的10mL250mg/L Cu(II)溶液,在30℃,转速为170rpm的条件下,研究其180min吸附动力学。
3)结果如图5所示,其吸附在10min内基本达到平衡,吸附容量随pH上升而增大。
实施例4
1)称取FeSO4.7H2O与Al2(SO4)3.18H2O比例为15:15的3号样品0.05g于若干个50mL离心管中,分别加入10mL 0.01M NaNO3,NaCl,Na3PO4,Na2SO4溶液,用稀硝酸调节pH分别为3,4,5,6,7,8。
2)在体系中再分别加入相应pH的10mL 250mg/L Cr(VI)溶液,在30℃,转速为170rpm的条件下,研究其吸附容量。
3)结果如图6所示,Na3PO4对Cr(VI)吸附有较为明显的抑制作用,NaNO3有一定的促进作用,在pH7左右吸附容量最高,60分钟达到吸附平衡。
实施例5
对含有Zn(II)的20mL体系,Zn(II)浓度为250mg/L,初始pH 3-8,吸附材料对Zn(II)的吸附容量在pH 7-8左右较优,吸附容量为51mg/g,见图7。
实施例6
3号样品在0.4,0.2,0.1,0.05,0.01,0.005,0.001背景阴离子浓度NaNO3,NaCl,Na2SO4,Na3PO4对250mg/L Cu(II)吸附影响,结果如图8所示,在不同阴离子浓度下对Cu(II)的吸附影响,磷酸根离子在0.01M及以上浓度对Cu(II)吸附有显著促进作用,硫酸钠从低浓度到高浓度呈先促进后抑制效果,在0.1M时达到最大吸附量,氯化钠和硝酸钠的影响不显著。
实施例5:
1)称取3号样品0.05g若干份,加入10mL0.01M NaNO3溶液作为背景电解质。
2)在体系中再分别加入相应pH的10mL含有硝酸铜,硝酸镉,硝酸锌和重铬酸钾的复合重金属溶液,重金属离子终浓度分别达为20,40,80,120,160和200mg/L,用稀硝酸调节pH至7,将离心管置于170rpm摇床上,温度30℃,吸附时间180min。
3)结果如图9所示,在Zn,Cu,Cr,Cd复合重金属离子不同浓度下的吸附量Cu和Cr的吸附容量随初始重金属浓度上升而上升,在200mg/L浓度下分别达到42.14和42.2mg/g;Zn,Cd随浓度上升吸附量改变不明显,材料具有选择吸附性。

Claims (9)

1.一种用于重金属吸附的硫酸铝改性铁基生物材料的制备方法,其特征在于,在9K培养基中添加硫酸铝对氧化亚铁硫杆菌驯化,获得具有稳定铁氧化能力的氧化亚铁硫杆菌菌株;将菌株加入到硫酸亚铁和硫酸铝的溶液体系中合成,过滤收集沉淀,洗涤沉淀,干燥,得到铁基重金属吸附材料。
2.根据权利要求1所述的用于重金属吸附的硫酸铝改性铁基生物材料的制备方法,其特征在于,随驯化过程逐渐提高硫酸铝浓度直至达到150g/L。
3.根据权利要求1所述的用于重金属吸附的硫酸铝改性铁基生物材料的制备方法,其特征在于,驯化时培养基初始pH 2-2.5,温度25-40℃,摇床转速170-200rpm。
4.根据权利要求1所述的用于重金属吸附的硫酸铝改性铁基生物材料的制备方法,其特征在于,合成过程中,初始pH 2-2.5,温度25-35℃,转速100-200rpm,合成时间为3-6天,过滤收集沉淀。
5.根据权利要求1所述的用于重金属吸附的硫酸铝改性铁基生物材料的制备方法,其特征在于,收集的沉淀用pH 1.5-2.5去离子水洗涤沉淀,自然风干,得到铁基重金属吸附材料。
6.一种用于重金属吸附的硫酸铝改性铁基生物材料,其特征在于,是由权利要求1-5任一项所述的方法制备得到的。
7.权利要求6所述的用于重金属吸附的硫酸铝改性铁基生物材料的应用方法,其特征在于,用于处理含有Cu(II),Zn(II),Cd(II),Pb(II),As(III)及Cr(VI)中的一种或几种的废液。
8.根据权利要求7所述的用于重金属吸附的硫酸铝改性铁基生物材料的应用方法,其特征在于,将硫酸铝改性铁基生物材料加入到含有重金属的废液中进行吸附,操作温度是20-40℃,初始pH值是3-8,吸附转速是100-200rpm,吸附时间是10-1440min,处理后的废液和吸附材料通过离心分离。
9.根据权利要求7所述的用于重金属吸附的硫酸铝改性铁基生物材料的应用方法,其特征在于,将吸附重金属后的吸附材料用pH 2.0-3.0水溶液反复冲洗后,将吸附的重金属离子洗脱,洗脱效率到达85%以上,循环使用至少4次。
CN201410843624.XA 2014-12-30 2014-12-30 用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用方法 Active CN104525144B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410843624.XA CN104525144B (zh) 2014-12-30 2014-12-30 用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410843624.XA CN104525144B (zh) 2014-12-30 2014-12-30 用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用方法

Publications (2)

Publication Number Publication Date
CN104525144A CN104525144A (zh) 2015-04-22
CN104525144B true CN104525144B (zh) 2017-04-05

Family

ID=52840877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410843624.XA Active CN104525144B (zh) 2014-12-30 2014-12-30 用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用方法

Country Status (1)

Country Link
CN (1) CN104525144B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107022503A (zh) * 2016-12-12 2017-08-08 东华理工大学 高效生物絮凝剂的制备方法及其在洗砂废水处理上的应用
CN109225163A (zh) * 2018-11-14 2019-01-18 浙江海洋大学 一种复合型磁性微藻生物吸附剂及其吸附废水中镉的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974566A (zh) * 2010-10-30 2011-02-16 中南大学 一种高分子絮凝剂聚硅酸硫酸铁的制备以及应用方法
CN102557208A (zh) * 2011-03-10 2012-07-11 中国环境科学研究院 用赤泥和硫酸亚铁制备聚硅酸铝铁复合絮凝剂的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280750B1 (en) * 1987-03-03 1992-01-29 Dowa Mining Co., Ltd. Method and apparatus for treating h2s containing gases
JP4355522B2 (ja) * 2003-06-05 2009-11-04 日鉄環境エンジニアリング株式会社 廃水中の有害物質処理材及びその製造方法
CN102351343A (zh) * 2011-07-08 2012-02-15 南开大学 一种采用絮凝工艺有效去除水中残留铝的方法
CN102908893B (zh) * 2011-08-01 2014-10-15 中国石油化工股份有限公司 钢铁酸洗废液烟气脱硫副产聚合硫酸铁的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974566A (zh) * 2010-10-30 2011-02-16 中南大学 一种高分子絮凝剂聚硅酸硫酸铁的制备以及应用方法
CN102557208A (zh) * 2011-03-10 2012-07-11 中国环境科学研究院 用赤泥和硫酸亚铁制备聚硅酸铝铁复合絮凝剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《施氏矿物Schwertmannite 的微生物法合成、鉴定及其对重金属的吸附性能》;周顺桂等;《光谱学与光谱分析》;20070228;第27卷(第2期);第367页第1-2段、第367-368页第1.2节 *

Also Published As

Publication number Publication date
CN104525144A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
Al-Rashdi et al. Heavy metals removal using adsorption and nanofiltration techniques
Vijayaraghavan et al. Biosorption of copper (II) and cobalt (II) from aqueous solutions by crab shell particles
Fan et al. Copper and cadmium removal by Mn oxide-coated granular activated carbon
Kadirvelu et al. Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd (II) from aqueous solution
Karthikeyan et al. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu (II) from aqueous solutions
Kumar et al. Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse
Singh et al. Removal of heavy metals from aqueous solution by common freshwater filamentous algae
Wang et al. Recycling of incinerated sewage sludge ash as an adsorbent for heavy metals removal from aqueous solutions
Pandey et al. Studies on Cr (VI), Pb (II) and Cu (II) adsorption–desorption using calcium alginate as biopolymer
Vimala et al. Packed bed column studies on Cd (II) removal from industrial wastewater by macrofungus Pleurotus platypus
Wang et al. High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb (II) removal from wastewater
CN103769058B (zh) 碳化壳聚糖吸附剂的制备方法、产品及应用方法
Singh et al. Removal of Cu (II) and Pb (II) by Pithophora oedogonia: sorption, desorption and repeated use of the biomass
Negi et al. Biosorption of heavy metals by utilising onion and garlic wastes
Chaiyasith et al. Removal of cadmium and nickel from aqueous solution by adsorption onto treated fly ash from Thailand
Othman et al. An overview of fruit waste as sustainable adsorbent for heavy metal removal
Vijayaraghavan et al. A comparative evaluation of sorbents for the treatment of complex metal-bearing laboratory wastewaters
Yao et al. Construction of lignin-based nano-adsorbents for efficient and selective recovery of tellurium (IV) from wastewater
CN104525144B (zh) 用于重金属吸附的硫酸铝改性铁基生物材料及其制备和应用方法
Khan et al. Metal-organic frameworks for reduction of heavy metals
CN102965312A (zh) 一种提高细菌重金属吸附能力的修饰方法、吸附剂及其应用
CN109012571B (zh) 一种改性电解锰废渣及其制备方法以及工业废水处理方法
Hansen et al. Biosorption of lead from acidic aqueous solutions using Durvillaea antarctica as adsorbent
Vibhatabandhu et al. Removal of copper (II) from aqueous solutions using cuttlebone as bio-adsorbent
Hadi et al. Biosorption of heavy metals: Potential and applications of yeast cells for cadmium removal

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240402

Address after: 413000 Ziyang Avenue, Changchun Economic Development Zone, Ziyang District, Yiyang City, Hunan Province

Patentee after: Hunan Kaiqing Environmental Protection Technology Co.,Ltd.

Country or region after: China

Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932

Patentee before: CENTRAL SOUTH University

Country or region before: China