CN104466997A - 分层分布式微电网储能电池配置方法 - Google Patents

分层分布式微电网储能电池配置方法 Download PDF

Info

Publication number
CN104466997A
CN104466997A CN201410715223.6A CN201410715223A CN104466997A CN 104466997 A CN104466997 A CN 104466997A CN 201410715223 A CN201410715223 A CN 201410715223A CN 104466997 A CN104466997 A CN 104466997A
Authority
CN
China
Prior art keywords
energy
micro
configuration
storage battery
capacitance sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410715223.6A
Other languages
English (en)
Other versions
CN104466997B (zh
Inventor
冯金生
徐海波
徐顺刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong East Power Co Ltd
Original Assignee
Guangdong East Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong East Power Co Ltd filed Critical Guangdong East Power Co Ltd
Priority to CN201410715223.6A priority Critical patent/CN104466997B/zh
Publication of CN104466997A publication Critical patent/CN104466997A/zh
Application granted granted Critical
Publication of CN104466997B publication Critical patent/CN104466997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及微电网技术领域,具体涉及一种分层分布式微电网储能电池配置方法,其包括:下层低压母线蓄电池配置;按照微电网中蓄电池的功能进行配置,容量配置包括平抑中低频功率波动、削峰填谷、为微电网系统孤岛运行提供电压支撑;下层低压母线超级电容配置;按照微电网中超级电容的功能,容量配置主要为平抑本地高频负荷波动;上层高压母线蓄电池配置;按照微电网中蓄电池的功能,容量配置包括平抑母线功率波动,维持系统孤岛运行,并在PCC点处对整个微电网提供功率因素补偿。本发明通过精确的配置计算方法,实现了微电网内部并网运行于功率因素为一,在充分利用清洁能源条件下有效平抑了微电网与大电网功率波动;有效实现了系统电压频率的稳定及重要负荷的持续运行。

Description

分层分布式微电网储能电池配置方法
技术领域
本发明涉及微电网技术领域,特别是涉及一种分层分布式微电网储能电池配置方法。
背景技术
微电网中,通过合理的储能电池配置方案,可以实现微电网内部对清洁能源的充分利用,减少对大电网的冲击以及可以有效抵抗电网断电对微电网内部正常运行的影响。
中国发明专利申请号:201310007059.9,公开了一种用于微电网群的多元复合储能容量配置方法,其方案主要为:计算任意一段时间范围内子微网中风力发电和光伏发电的发电量和负荷数据;计算子微网中的风机发电输出功率;确定子微网中光伏发电输出功率;计算子微网中发电与负荷之间供需不平衡功率;计算子微网从时刻tj开始离网运行至T 1-T3时间所累计的不平衡能量;计算故障状态下子微网从tj+T1-T3时刻开始继续稳定运行至时间T3,需要储能备用的最小放电能量;计算需要储能提供的最小放电能量;计算储能吸收的最小充电能量;计算需要储能提供的最小容量;计算计算子微网中能量型储能最小的额定容量;计算各个子微网中负荷的最大功率需求;计算子微网中功率型储能的额定功率;根据各个子微网的储能容量配置,再对微网群的主储能容量进行配置。
上述储能配置方法估算笼统,储能类型单一,对于实际应用来说,不具有指导性,与本发明所述配置方法与应用领域存在本质差别。
发明内容
为解决上述问题,本发明提供一种分层分布式微电网储能电池配置方法,其采用分层分布式储能电池配置方法,通过精确的配置计算方法,实现了微电网内部并网运行与功率因素为一,在充分利用清洁能源条件下有效平抑了微电网与大电网功率波动;在微电网孤岛运行时,有效实现了系统电压频率的稳定及重要负荷的持续运行。
为实现上述目的,本发明所采用的技术方案是:分层分布式微电网储能电池配置方法,其包括:下层低压母线蓄电池配置:按照微电网中蓄电池的功能进行配置,容量配置包括平抑中低频功率波动、削峰填谷、为微电网系统孤岛运行提供电压支撑;下层低压母线超级电容配置:按照微电网中超级电容的功能,容量配置主要为平抑本地高频负荷波动;上层高压母线蓄电池配置:按照微电网中蓄电池的功能,容量配置包括平抑母线功率波动,维持系统孤岛运行,并在PCC点处对整个微电网提供功率因素补偿。
优选地,所述分层分布式微电网储能电池配置方法具体为:根据系统运行要求以及微电网实现的功能,储能电池采用分层分布式结构:判断是否上层高压母线位置,如是,则上层高压母线储能,通过上层蓄电池储能并进行配置,根据上层蓄电池在微电网中不同位置所扮演的角色及负荷类型提出储能电池的配置方法,上层蓄电池容量配置包括平抑母线功率波动,维持系统孤岛运行,并在PCC点处对整个微电网提供功率因素补偿;若非上层高压母线位置,则根据平抑本地高频负荷波动频率范围,分别采用下层超级电容或下层蓄电池储能并进行配置,下层超级电容配置主要为平抑高频负荷波动;下层蓄电池容量配置包括平抑中低频功率波动、削峰填谷、为微电网系统孤岛运行提供电压支撑。
优选地,所述上层蓄电池储能配置方法为:平抑母线功率波动配置容量:P31=(ΣP5n-ΣP6n)*m/n;其中ΣP5n为n组高峰期且光照条件差时日用电功率总和;ΣP6n为n组高峰期且光照条件好时日用电功率总和;m为所取高峰期数据组数;维持系统孤岛运行配置容量:其中Pu_n为不可控负载的额定功率;Tu_n为不可控负载的维持时间;在PCC点处对整个微电网提供功率因素补偿配置容量:P33=(ΣP7n)*(1-Q)/m;其中ΣP7n为m组高峰期t小时且光照条件差时用电功率总和;Q为功率因素值平均值;m为所取高峰期数据组数。
优选地,所述下层超级电容储能配置方法为:平抑高频负荷波动配置容量:Psc_1=(ΣP3n-ΣP4n)/n;其中ΣP3n为n组高峰期的日用电功率总和;ΣP4n为n组闲时日用电功率总和。
优选地,所述下层蓄电池储能配置方法为:平抑中低频功率波动配置容量:P11=(ΣP1n-ΣP2n)*m/n;其中ΣP1n为n组光照条件好且无明显乌云的天气光伏日发电量总和;ΣP2n为n组光照条件好且多云的天气光伏日发电量总和;m为实际需要储能容量与计算容量相比的系数;削峰填谷配置容量:P12=(Pgrid_1-Pu_1)*Td_1;其中Pgrid_1为太阳能电池板_1的装机容量;Pu_1为本地不可控负载_1的额定功率;Td_1为日用电低峰期时间;微电网系统孤岛运行提供电压支撑配置容量:其中为k个数量的本地可控负荷La1、La2…Lak的额定工作功率之和;为k个数量的本地可控负荷La1、La2…Lak的离网状态下的工作时间之和。
优选地,所述微电网包括微电网中央控制器MGCC、智能网关SW、智能电表TP、储能逆变器INV以及储能电池BATT,储能逆变器INV包括DC/DC模块、DC/AC模块、LC滤波模块以及输出隔离变压器模块,还包括环境辐射仪ENV;所述微电网中央控制器MGCC通过采集智能网关SW、智能电表TP、储能逆变器INV以及环境辐射仪ENV的数据,根据不同的调度控制策略,实现对智能网关SW的开启与关闭、对负荷的管控、对储能逆变器INV的输出进行调节,以及对储能逆变器INV的二次调压调频进行控制;智能网关SW实现对多端口数据的采集与处理、电网孤岛检测、故障检测与故障录波,以及对负载、储能逆变器INV的投切操作;储能逆变器INV为多功能逆变器,其根据微电网中央控制器MGCC不同的调度需要,可工作于VF、PQ、DROOP、VSG等多种工作模式,满足微电网系统的并网离网运行;并实现对储能电池BATT的电池状态监测及充放电管理;储能电池BATT满足并网情况下功率因素调节、平抑功率波动;在离网情况下维持不同负荷运转,并为微电网系统预同步控制提供电压支撑。
优选地,所述电池BATT储能容量为:Pb=(P11+P12+P13)/(h*n);其中h为电池BATT的放电深度;n为储能逆变器INV的效率;P11为下层蓄电池储能配置中平抑中低频功率波动的功率;P12为下层蓄电池储能配置中削峰填谷的功率;P13为下层蓄电池储能配置中微电网系统孤岛运行提供电压支撑的功率。
优选地,所述储能逆变器INV的超级电容阵列最低输出电压为: V _ sc 3 = ( 2 2 * Uac * k _ sc 3 ) / ( k _ sc 1 * k _ sc 2 ) ; 其中K_sc2为储能逆变器INV的DC/AC部分的最大调制比;k_sc1为储能逆变器INV的DC/DC部分最大升压比;k_sc3为储能逆变器INV与输出隔离变压器TM的变比;Uac为电网电压有效值。
优选地,所述储能逆变器INV的超级电容容量配置为:Psc=Psc_1/(K_sc4*K_sc5*K_sc6);其中Psc_1为下层超级电容储能配置中的平抑高频负荷波动功率;K_sc4为超级电容放电系数;K_sc5为储能逆变器INV的AC/DC效率;K_sc6为储能逆变器INV的DC/DC效率。
优选地,所述超级电容放电系数K_sc4为k_sc4=1-V_sc32/V_sc22;其中 V _ sc 3 = ( 2 2 * Uac * k _ sc 3 ) / ( k _ sc 1 * k _ sc 2 ) ; V_sc2为超级电容阵列额定输出电压;k_sc1为储能逆变器INV的DC/DC部分最大升压比;k_sc3为储能逆变器INV与输出隔离变压器TM的变比;Uac为电网电压有效值。
所述的分层分布式微电网储能电池配置方法,相比现有技术的有益效果是:
本发明根据微电网要实现的功能采用储能电池分层分布式结构,下层低压母线储能电池根据平抑功率波动频率范围采用蓄电池和超级电容储能方式,上层根据系统运行要求采用蓄电池储能,并根据储能电池在微电网中不同位置所扮演的角色及负荷类型提出储能电池的配置方法,通过对分层分布式储能电池的合理配置,通过精确的配置计算方法,实现了微电网内部并网运行于功率因素为一,在充分利用清洁能源条件下有效平抑了微电网与大电网功率波动。
且在微电网孤岛运行时,有效实现了系统电压频率的稳定及重要负荷的持续运行。
附图说明
图1为本发明实施例分层分布式微电网的结构图;
图2为本发明实施例分层分布式微电网的储能逆变器结构图;
图3为本发明实施例分层分布式微电网储能电池配置方法原理图。
具体实施方式
下面将结合附图对本发明作进一步的说明。
实施例:
参照图1,本发明所述的分层分布式微电网储能电池配置方法,是根据微电网要实现的功能采用储能电池分层分布式结构,下层低压母线储能电池根据平抑功率波动频率范围采用蓄电池和超级电容储能方式,上层根据系统运行要求采用蓄电池储能,并根据储能电池在微电网中不同位置所扮演的角色及负荷类型提出储能电池的配置方法。
其中,微电网包括微电网中央控制器MGCC、智能网关SW、智能电表TP、储能逆变器INV以及储能电池BATT,储能逆变器INV包括DC/DC模块、DC/AC模块、LC滤波模块以及输出隔离变压器模块,还包括环境辐射仪ENV。
微电网中央控制器MGCC通过采集智能网关SW、智能电表TP、储能逆变器INV以及环境辐射仪ENV的数据,根据不同的调度控制策略,实现对智能网关SW的开启与关闭、对负荷的管控、对储能逆变器INV的输出进行调节,以及对储能逆变器INV的二次调压调频进行控制。
智能网关SW实现对多端口数据的采集与处理、电网孤岛检测、故障检测与故障录波,以及对负载、储能逆变器INV的投切操作。
储能逆变器INV为多功能逆变器,其根据微电网中央控制器MGCC不同的调度需要,可工作于VF、PQ、DROOP、VSG等多种工作模式,满足微电网系统的并网离网运行;并实现对储能电池BATT的电池状态监测及充放电管理。
储能电池BATT满足并网情况下功率因素调节、平抑功率波动;在离网情况下维持不同负荷运转,并为微电网系统预同步控制提供电压支撑。
配置方法具体是:
下层低压母线蓄电池配置:按照微电网中蓄电池的功能进行配置,容量配置包括平抑中低频功率波动、削峰填谷、为微电网系统孤岛运行提供电压支撑。
下层低压母线超级电容配置:按照微电网中超级电容的功能,容量配置主要为平抑本地高频负荷波动。
上层高压母线蓄电池配置:按照微电网中蓄电池的功能,容量配置包括平抑母线功率波动,维持系统孤岛运行,并在PCC点处对整个微电网提供功率因素补偿。
更具体是:根据系统运行要求以及微电网实现的功能,储能电池采用分层分布式结构:判断是否上层高压母线位置,如是,则上层高压母线储能,通过上层蓄电池储能并进行配置,根据上层蓄电池在微电网中不同位置所扮演的角色及负荷类型提出储能电池的配置方法,容量配置包括平抑母线功率波动,维持系统孤岛运行,并在PCC点处对整个微电网提供功率因素补偿。
若非上层高压母线位置,则根据平抑本地高频负荷波动频率范围,分别采用下层超级电容或下层蓄电池储能并进行配置,下层超级电容配置主要为平抑高频负荷波动;下层蓄电池容量配置包括平抑中低频功率波动、削峰填谷、为微电网系统孤岛运行提供电压支撑。
其中,上层蓄电池储能配置方法为:平抑母线功率波动功率配置容量(功率):P31=(ΣP5n-ΣP6n)*m/n;其中ΣP5n为n组高峰期且光照条件差时日用电功率总和;ΣP6n为n组高峰期且光照条件好时日用电功率总和;m为实际需要储能容量与计算容量相比的系数。
维持系统孤岛运行配置容量(功率):其中ΣPu_n为不可控负载的总额定功率ΣPu_n;ΣTu_n为不可控负载的总维持时间。
在PCC点处对整个微电网提供功率因素补偿配置容量(功率):P33=(ΣP7n)*(1-Q)/m;其中ΣP7n为m组高峰期t小时且光照条件差时用电功率总和;Q为功率因素值平均值;m为所取高峰期数据组数。
下层超级电容储能配置方法为:平抑高频负荷波动配置容量(功率):Psc_1=(ΣP3n-ΣP4n)/n;其中ΣP3n为n组高峰期的日用电功率总和;ΣP4n为n组闲时日用电功率总和。
下层蓄电池储能配置方法为:平抑中低频功率波动配置容量(功率):P11=(ΣP1n-ΣP2n)*m/n;其中ΣP1n为n组光照条件好且无明显乌云的天气光伏日发电量总和;ΣP2n为n组光照条件好且多云的天气光伏日发电量总和;m为实际需要储能容量与计算容量相比的系数。
削峰填谷配置容量(功率):P12=(Pgrid_1-Pu_1)*Td_1;其中Pgrid_1为太阳能电池板_1的装机容量;Pu_1为本地不可控负载_1的额定功率;Td_1为日用电低峰期时间。
微电网系统孤岛运行提供电压支撑配置容量(功率):其中为k个数量的本地可控负荷La1、La2…Lak的额定工作功率之和;为k个数量的本地可控负荷La1、La2…Lak的离网状态下的工作时间之和。
举例如下,参照图1微电网的具体结构。
1、下层低压母线储能蓄电池配置方法:(1)下层低压母线储能电池容量主要包括平抑中低频功率波动,削峰填谷,以及为微电网孤岛运行提供电压支撑,因此储能方式主要以蓄电池为主,并以图1的BATT_1为例。通过智能电表TP_21及环境辐射仪ENV记录并统计数据,取n组光照条件好且无明显乌云的天气光伏日发电量总和ΣP1n,取n组光照条件好且多云的天气光伏日发电量总和ΣP2n。由于平抑中低频功率波动是个光伏功率输出的大时间常数平滑滤波过程,实际需要储能容量为计算容量的系数m,则平抑中低频功率波动部分需要容量(功率)为P11=(ΣP1n-ΣP2n)*m/n。
(2)基于并网不上网原则,白天用电低峰期对光伏的削峰填谷容量P12必不可少,P12根据太阳能电池板_1的装机容量Pgrid_1和本地不可控负载_1额定功率Pu_1,以及日用电低峰期时间Td_1得到P12=(Pgrid_1-Pu_1)*Td_1。
(3)为实现就地平衡,维持微电网子系统孤岛运行时的负荷运转容量和微电网系统由离网状态到并网状态的二次调压调频电压支撑容量为P13,P13的计算需要由MGCC根据本地可控负荷La1,La2…的重要度分配权值Ka1,Ka2…和离网状态下的工作时间Ta1,Ta2…。La1,La2…负荷的额定工作功率分别为Pa1,Pa2…,负荷数量为k,则
(4)电池BATT_1放电深度为h_1,储能逆变器INV_1效率为n_1,则BATT_1的储能容量为Pb_1=(P11+P12+P13)/(h_1*n_1)。
(5)逆变器输出隔离变压器TM_c1变比为k_1,逆变器最大调制比为m_1,储能电池单体额定电压为V_1,单体电池容量为A_1(h),底层电网电压有效值为Uac,由逆变器调制比计算公式得电池串联个数为 N ≥ 2 2 * Uac * k _ 1 / ( m _ 1 * V _ 1 ) , 电池并联组数M≥Pb_1/(A_1*N*V_1)。
2、下层低压母线超级电容储能配置方法
(1)冲击性负荷如数控机床,高压冲床等会对电网引入高频谐波并可引起保护装置误动作,为平抑高频负荷波动,具有快速吸收释放能力的超级电容储能在本微电网中必不可少。
(2)超级电容配置以图1的SC_1为例,通过智能电表TP_22采集并统计数据,取n组高峰期的日用电功率总和ΣP3n和n组闲时日用电功率总和ΣP4n,则平抑高频功率波动部分需要超级电容容量为Psc_1=(ΣP3n-ΣP4n)/n。
超级电容储能逆变器INV2分为两部分,DC/AC部分和DC/DC部分,其中DC/DC部分最大升压比为K_sc1,DC/AC部分最大调制比为K_sc2,逆变器输出隔离变压器TM_c3变比为k_sc3,超级电容单体额定电压为V_sc1,超级电容阵列额定输出电压为V_sc2,电网电压有效值为Uac,结合逆变器调制比计算公式,则超级电容阵列最低输出电压为 V _ sc 3 = ( 2 2 * Uac * k _ sc 3 ) / ( k _ sc 1 * k _ sc 2 ) , 结合超级电容容量计算公式,则超级电容放电系数为k_sc4=1-V_sc32/V_sc22
(3)逆变器INV_3的AC/DC效率为K_sc5,DC/DC效率为K_sc6,则超级电容容量配置为Psc=Psc_1/(K_sc4*K_sc5*K_sc6)。
超级电容阵列容量C=2Psc/V_sc22,单体电容容量为C1,则超级电容串联数为N=V_sc2/V_sc1,电容并联数为M≥2Psc*N/(C1*V_sc22)。
3、上层高压母线储能蓄电池配置方法:
(1)上层高压母线储能以蓄电池为主,以BATT_3为例,容量分配包括:1.平抑母线功率波动,吸收子层光伏发电逆流功率。2.维持系统孤岛运行,并为系统离网到并网二次调频调压提供电压支持。3.对整个微电网提供功率因素补偿,并实现微电网PCC点处单位功率因数运行。
(2)智能电表TP_11采集并统计数据,取n组高峰期且光照条件差时日用电功率总和ΣP5n,取n组高峰期且光照条件好时日用电功率总和ΣP6n,结合上文下层低压母线储能电池配制方法第①点阐述,则平抑母线功率波动及吸收子层逆功率P31=(ΣP5n-ΣP6n)*m/n。
(3)根据不可控负载(不可控负载_1,不可控负载_2…n)总额定功率ΣPu_n及维持时间Tu_1,Tu_2…得到维持系统孤岛运行及系统离网到并网二次调频调压提供电压支持 P 32 = Σ 1 n ( Pu _ n * Tu _ n ) .
(4)智能电表TP_11采集并统计数据,取m组高峰期t小时且光照条件差时用电功率总和ΣP7n,将TP_11采集的高峰期t小时功率因素值存入MYSQL,通过MYSQL求取功率因素值平均值Q,微电网提供功率因素补偿P33=(ΣP7n)*(1-Q)/m。
(5)逆变器INV_6效率n,电池放电深度为h,则P=(P31+P32+P33)/(n*h)。
上层高压母线蓄电池串并联配置方法可参考下层低压母线蓄电池配置方法中的(5)。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种分层分布式微电网储能电池配置方法,其特征在于,包括:
下层低压母线蓄电池配置:按照微电网中蓄电池的功能进行配置,容量配置包括平抑中低频功率波动、削峰填谷、为微电网系统孤岛运行提供电压支撑;
下层低压母线超级电容配置:按照微电网中超级电容的功能,容量配置主要为平抑本地高频负荷波动;
上层高压母线蓄电池配置:按照微电网中蓄电池的功能,容量配置包括平抑母线功率波动,维持系统孤岛运行,并在PCC点处对整个微电网提供功率因素补偿。
2.根据权利要求1所述分层分布式微电网储能电池配置方法,其特征在于,具体配置方法为:
根据系统运行要求以及微电网实现的功能,储能电池采用分层分布式结构:
判断是否上层高压母线位置,如是,则上层高压母线储能,通过上层蓄电池储能并进行配置,根据上层蓄电池在微电网中所扮演的角色及负荷类型提出储能电池的配置方法,上层蓄电池容量配置包括平抑母线功率波动,维持系统孤岛运行,并在PCC点处对整个微电网提供功率因素补偿;
若非上层高压母线位置,则根据平抑本地高频负荷波动频率范围,分别采用下层超级电容或下层蓄电池储能并进行配置,下层超级电容配置主要为平抑高频负荷波动;下层蓄电池容量配置包括平抑中低频功率波动、削峰填谷、为微电网系统孤岛运行提供电压支撑。
3.根据权利要求2所述分层分布式微电网储能电池配置方法,其特征在于:所述上层蓄电池储能配置方法为:
平抑母线功率波动配置容量:P31=(ΣP5n-ΣP6n)*m/n;其中ΣP5n为n组高峰期且光照条件差时日用电功率总和;ΣP6n为n组高峰期且光照条件好时日用电功率总和;m为实际需要储能容量与计算容量相比的系数;
维持系统孤岛运行配置容量:其中Pu_n为不可控负载的额定功率;Tu_n为不可控负载的维持时间;
在PCC点处对整个微电网提供功率因素补偿配置容量:P33=(ΣP7n)*(1-Q)/m;其中ΣP7n为m组高峰期t小时且光照条件差时用电功率总和;Q为高峰期内功率因素值平均值;m为所取高峰期数据组数。
4.根据权利要求2所述分层分布式微电网储能电池配置方法,其特征在于:所述下层超级电容储能配置方法为:
平抑高频负荷波动配置容量:Psc_1=(ΣP3n-ΣP4n)/n;其中ΣP3n为n组高峰期的日用电功率总和;ΣP4n为n组闲时日用电功率总和。
5.根据权利要求2所述分层分布式微电网储能电池配置方法,其特征在于:所述下层蓄电池储能配置方法为:
平抑中低频功率波动配置容量:P11=(ΣP1n-ΣP2n)*m/n;其中ΣP1n为n组光照条件好且无明显乌云的天气光伏日发电量总和;ΣP2n为n组光照条件好且多云的天气光伏日发电量总和;m为实际需要储能容量与计算容量相比的系数;
削峰填谷配置容量:P12=(Pgrid_1-Pu_1)*Td_1;其中Pgrid_1为太阳能电池板_1的装机容量;Pu_1为本地不可控负载_1的额定功率;Td_1为日用电低峰期时间;
微电网系统孤岛运行提供电压支撑配置容量:其中为k个数量的本地可控负荷La1、La2…Lak的额定工作功率之和;为k个数量的本地可控负荷La1、La2…Lak的离网状态下的工作时间之和。
6.根据权利要求1所述分层分布式微电网储能电池配置方法,其特征在于:所述微电网包括微电网中央控制器MGCC、智能网关SW、智能电表TP、储能逆变器INV以及储能电池BATT,储能逆变器INV包括DC/DC模块、DC/AC模块、LC滤波模块以及输出隔离变压器模块,还包括环境辐射仪ENV;
所述微电网中央控制器MGCC通过采集智能网关SW、智能电表TP、储能逆变器INV以及环境辐射仪ENV的数据,根据不同的调度控制策略,实现对智能网关SW的开启与关闭、对负荷的管控、对储能逆变器INV的输出进行调节,以及对储能逆变器INV的二次调压调频进行控制;
智能网关SW实现对多端口数据的采集与处理、电网孤岛检测、故障检测与故障录波,以及对负载、储能逆变器INV的投切操作;
储能逆变器INV为多功能逆变器,其根据微电网中央控制器MGCC不同的调度需要,可工作于VF、PQ、DROOP、VSG等多种工作模式,满足微电网系统的并网离网运行;并实现对储能电池BATT的电池状态监测及充放电管理;储能电池BATT满足并网情况下功率因素调节、平抑功率波动;在离网情况下维持不同负荷运转,并为微电网系统预同步控制提供电压支撑。
7.根据权利要求6所述分层分布式微电网储能电池配置方法,其特征在于:所述电池BATT储能容量为:Pb=(P11+P12+P13)/(h*n);其中h为电池BATT的放电深度;n为储能逆变器INV的效率;P11为下层蓄电池储能配置中平抑中低频功率波动的功率;P12为下层蓄电池储能配置中削峰填谷的功率;P13为下层蓄电池储能配置中微电网系统孤岛运行提供电压支撑的功率。
8.根据权利要求6所述分层分布式微电网储能电池配置方法,其特征在于:
所述储能逆变器INV的超级电容阵列最低输出电压为: V _ sc 3 = ( 2 2 * Uac * k _ sc 3 ) / ( k _ scl * k _ sc 2 ) ; 其中K_sc2为储能逆变器INV的DC/AC部分的最大调制比;k_sc1为储能逆变器INV的DC/DC部分最大升压比;k_sc3为储能逆变器INV与输出隔离变压器TM的变比;Uac为电网电压有效值。
9.根据权利要求6所述分层分布式微电网储能电池配置方法,其特征在于:所述储能逆变器INV的超级电容容量配置为:Psc=Psc_1/(K_sc4*K_sc5*K_sc6);其中Psc_1为下层超级电容储能配置中的平抑高频负荷波动功率;K_sc4为超级电容放电系数;K_sc5为储能逆变器INV的AC/DC效率;K_sc6为储能逆变器INV的DC/DC效率。
10.根据权利要求9所述分层分布式微电网储能电池配置方法,其特征在于:所述超级电容放电系数K_sc4为k_sc4=1-V_sc32/V_sc22;其中 V _ sc 3 = ( 2 2 * Uac * k _ sc 3 ) / ( k _ scl * k _ sc 2 ) ; V_sc2为超级电容阵列额定输出电压;k_sc1为储能逆变器INV的DC/DC部分最大升压比;k_sc3为储能逆变器INV与输出隔离变压器TM的变比;Uac为电网电压有效值。
CN201410715223.6A 2014-11-28 2014-11-28 分层分布式微电网储能电池配置方法 Active CN104466997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410715223.6A CN104466997B (zh) 2014-11-28 2014-11-28 分层分布式微电网储能电池配置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410715223.6A CN104466997B (zh) 2014-11-28 2014-11-28 分层分布式微电网储能电池配置方法

Publications (2)

Publication Number Publication Date
CN104466997A true CN104466997A (zh) 2015-03-25
CN104466997B CN104466997B (zh) 2017-02-22

Family

ID=52912590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410715223.6A Active CN104466997B (zh) 2014-11-28 2014-11-28 分层分布式微电网储能电池配置方法

Country Status (1)

Country Link
CN (1) CN104466997B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656081A (zh) * 2016-03-03 2016-06-08 北京清能世福科技有限公司 一种大容量新能源发电系统
CN105762836A (zh) * 2016-04-12 2016-07-13 上海紫竹新兴产业技术研究院 一种提高分布式光伏并网发电系统孤岛检测成功率的方法
CN106253345A (zh) * 2016-09-12 2016-12-21 新奥科技发展有限公司 一种电力网络及其控制方法、装置和系统
CN106385042A (zh) * 2016-10-09 2017-02-08 江苏现代能源微网系统有限公司 一种应用于微电网的网络式储能系统及其运行控制方法
CN106786552A (zh) * 2017-01-17 2017-05-31 无锡协鑫分布式能源开发有限公司 一种本地消纳下的电源选择与容量优化算法
CN106786687A (zh) * 2017-02-24 2017-05-31 深圳市昊睿智控科技服务有限公司 储能设备的参数配置方法和系统
CN106911149A (zh) * 2017-04-14 2017-06-30 许继集团有限公司 一种基于分层储能的主动配电网需求响应控制方法
CN108933451A (zh) * 2018-09-10 2018-12-04 合肥阳光新能源科技有限公司 微电网系统及其微网中央控制器和功率分配控制方法
CN109921470A (zh) * 2019-04-18 2019-06-21 尚特杰电力科技有限公司 一种防御大电网扰动的微电网及其离网切换方法
CN110474354A (zh) * 2019-08-13 2019-11-19 南瑞集团有限公司 含锂电池和超级电容的微电网孤岛运行模式协调控制方法
CN111641221A (zh) * 2020-05-19 2020-09-08 国网新疆电力有限公司电力科学研究院 微电网混合储能功率协调控制方法和系统
CN112002121A (zh) * 2020-08-24 2020-11-27 上海能辉科技股份有限公司 储能微电网dlt-645非接触式智能抄表系统
CN112242709A (zh) * 2020-10-19 2021-01-19 华翔翔能科技股份有限公司 一种具有微电网系统负荷可靠供电的混合储能容量确定方法
CN112771748A (zh) * 2018-09-27 2021-05-07 费斯科姆股份公司 空间分布的电力负荷的集中式控制方法
CN115036920A (zh) * 2022-07-05 2022-09-09 东南大学 一种混合储能参与调频辅助服务市场的容量投标方法
CN115149555A (zh) * 2022-06-02 2022-10-04 国网浙江省电力有限公司嘉兴供电公司 一种储能型超级电容储能电网调度方法
CN116937623A (zh) * 2023-09-14 2023-10-24 北京盛藏技术有限公司 一种利用新能源预测的混合储能辅调频控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094926A (zh) * 2013-01-09 2013-05-08 清华大学 一种用于微电网群的多元复合储能容量配置方法
CN103475017A (zh) * 2013-09-23 2013-12-25 国家电网公司 一种自适应移动微电网的能量交互系统
CN103647274A (zh) * 2013-11-26 2014-03-19 中国西电电气股份有限公司 一种用于可并网和离网运行的微电网系统及能量控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094926A (zh) * 2013-01-09 2013-05-08 清华大学 一种用于微电网群的多元复合储能容量配置方法
CN103475017A (zh) * 2013-09-23 2013-12-25 国家电网公司 一种自适应移动微电网的能量交互系统
CN103647274A (zh) * 2013-11-26 2014-03-19 中国西电电气股份有限公司 一种用于可并网和离网运行的微电网系统及能量控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李介夫等: "一种利用混合储能系统平抑风光功率波动的控制策略", 《东北电力大学学报》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656081A (zh) * 2016-03-03 2016-06-08 北京清能世福科技有限公司 一种大容量新能源发电系统
CN105762836A (zh) * 2016-04-12 2016-07-13 上海紫竹新兴产业技术研究院 一种提高分布式光伏并网发电系统孤岛检测成功率的方法
CN105762836B (zh) * 2016-04-12 2019-02-15 上海紫竹新兴产业技术研究院 一种提高分布式光伏并网发电系统孤岛检测成功率的方法
CN106253345B (zh) * 2016-09-12 2018-12-18 新奥科技发展有限公司 一种电力网络及其控制方法、装置和系统
CN106253345A (zh) * 2016-09-12 2016-12-21 新奥科技发展有限公司 一种电力网络及其控制方法、装置和系统
CN106385042A (zh) * 2016-10-09 2017-02-08 江苏现代能源微网系统有限公司 一种应用于微电网的网络式储能系统及其运行控制方法
CN106385042B (zh) * 2016-10-09 2019-01-11 江苏现代能源微网系统有限公司 一种应用于微电网的网络式储能系统及其运行控制方法
CN106786552A (zh) * 2017-01-17 2017-05-31 无锡协鑫分布式能源开发有限公司 一种本地消纳下的电源选择与容量优化算法
CN106786687A (zh) * 2017-02-24 2017-05-31 深圳市昊睿智控科技服务有限公司 储能设备的参数配置方法和系统
CN106911149A (zh) * 2017-04-14 2017-06-30 许继集团有限公司 一种基于分层储能的主动配电网需求响应控制方法
CN108933451B (zh) * 2018-09-10 2023-01-10 阳光新能源开发股份有限公司 微电网系统及其微网中央控制器和功率分配控制方法
CN108933451A (zh) * 2018-09-10 2018-12-04 合肥阳光新能源科技有限公司 微电网系统及其微网中央控制器和功率分配控制方法
CN112771748A (zh) * 2018-09-27 2021-05-07 费斯科姆股份公司 空间分布的电力负荷的集中式控制方法
CN109921470A (zh) * 2019-04-18 2019-06-21 尚特杰电力科技有限公司 一种防御大电网扰动的微电网及其离网切换方法
CN110474354A (zh) * 2019-08-13 2019-11-19 南瑞集团有限公司 含锂电池和超级电容的微电网孤岛运行模式协调控制方法
CN111641221A (zh) * 2020-05-19 2020-09-08 国网新疆电力有限公司电力科学研究院 微电网混合储能功率协调控制方法和系统
CN111641221B (zh) * 2020-05-19 2022-05-10 国网新疆电力有限公司电力科学研究院 微电网混合储能功率协调控制方法和系统
CN112002121A (zh) * 2020-08-24 2020-11-27 上海能辉科技股份有限公司 储能微电网dlt-645非接触式智能抄表系统
CN112242709A (zh) * 2020-10-19 2021-01-19 华翔翔能科技股份有限公司 一种具有微电网系统负荷可靠供电的混合储能容量确定方法
CN115149555A (zh) * 2022-06-02 2022-10-04 国网浙江省电力有限公司嘉兴供电公司 一种储能型超级电容储能电网调度方法
CN115036920A (zh) * 2022-07-05 2022-09-09 东南大学 一种混合储能参与调频辅助服务市场的容量投标方法
CN116937623A (zh) * 2023-09-14 2023-10-24 北京盛藏技术有限公司 一种利用新能源预测的混合储能辅调频控制方法及系统
CN116937623B (zh) * 2023-09-14 2023-12-12 北京盛藏技术有限公司 一种利用新能源预测的混合储能辅调频控制方法及系统

Also Published As

Publication number Publication date
CN104466997B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN104466997B (zh) 分层分布式微电网储能电池配置方法
Zhou et al. A microgrid cluster structure and its autonomous coordination control strategy
CN202586367U (zh) 光伏发电储能系统
CN105098807B (zh) 储能系统中多个混合储能装置间的互补优化控制方法
CN104362656B (zh) 一种基于混合储能vsi平抑微网功率波动的控制方法
CN104810842B (zh) 基于不同时间尺度的独立微电网分层协调控制方法
CN107579698A (zh) 一种光伏电站储能方法
CN202586481U (zh) 微电网智能平衡充电供电系统
CN202405863U (zh) 混合逆变装置
CN102931683A (zh) 基于变电站典型日负荷曲线的风光直流微电网并网控制方法
CN203761319U (zh) 一种综合型分布式光伏储能系统
CN203850910U (zh) 基于直流微电网的电动汽车供电装置
CN102904278A (zh) 分布式并网光伏系统电源
CN202333831U (zh) 新能源不间断供电系统
CN102969730A (zh) 一种双级链式储能变流器控制方法
Belsky et al. The use of hybrid energy storage devices for balancing the electricity load profile of enterprises
CN105162135B (zh) 级联型静止无功发生器及控制方法
CN109245160A (zh) 一种平抑光伏功率波动的光储并网控制方法及装置
CN205646940U (zh) 一种离网型风光储电动汽车充电桩
CN201774266U (zh) 储能控制系统
CN103560577B (zh) 一种新型光伏vrb储能混合系统的优化配置系统
Aarathi et al. Grid connected photovoltaic system with super capacitor energy storage and STATCOM for power system stability enhancement
CN105140947A (zh) 智能社区微电网电池储能系统
CN105006602A (zh) 一种节能型电池化成设备
CN104600811A (zh) 一种智能光伏充电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant