CN104466421A - 人工电磁材料及其制备方法、天线罩、天线系统 - Google Patents

人工电磁材料及其制备方法、天线罩、天线系统 Download PDF

Info

Publication number
CN104466421A
CN104466421A CN201310430684.4A CN201310430684A CN104466421A CN 104466421 A CN104466421 A CN 104466421A CN 201310430684 A CN201310430684 A CN 201310430684A CN 104466421 A CN104466421 A CN 104466421A
Authority
CN
China
Prior art keywords
fiber grating
composite material
preparation
artificial electromagnetic
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310430684.4A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Institute of Advanced Technology
Original Assignee
Kuang Chi Institute of Advanced Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Institute of Advanced Technology filed Critical Kuang Chi Institute of Advanced Technology
Priority to CN201310430684.4A priority Critical patent/CN104466421A/zh
Publication of CN104466421A publication Critical patent/CN104466421A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及人一种工电磁材料及其制备方法、天线罩、天线系统。其中所述人工电磁材料的制备方法,包括如下步骤:P1、准备一层或多层堆叠的复合材料;P2、准备光纤光栅,除去所述光纤光栅的保护层;P3、在所述一层或多层复合材料的外表面上铺贴除去保护层的所述光纤光栅一端,所述光纤光栅另一端连接监测仪;P4、对所述一层或多层复合材料整体加热固化。采用本方法,在复合材料进行固化时和固化后可通过其内部或外表面上的光纤光栅进行实时监控,从而了解复合材料固化内应力的变化过程,有利于更好地确定人工电磁材料的电学性能和机械性能。

Description

人工电磁材料及其制备方法、天线罩、天线系统
技术领域
本发明涉及电磁材料领域,特别是一种人工电磁材料及其制备方法、天线罩、天线系统。
背景技术
人工电磁材料是一种能够对电磁波产生特殊响应的材料,例如对电磁波的全反射、全透射、部分频段带通或者部分频段带阻等。通过这些功能的方式一方面是寻求具有相关特性的材料,另一种是基于超材料技术,在现有的材料上通过设置具有特殊形状、尺寸和排布的导电几何结构来实现。其中,导电几何结构式对材料的电磁性能起决定性作用,而支承导电几何结构的载体则对整个材料的力学性能有主要作用。
目前,人工电磁材料的载体通常有树脂基复合材料制成,为了达到一定的强度,通常都是有多层复合材料构成。其在固化成型为一体的过程中不同层复合材料之间的界面会产生脱粘、分层、弱胶结等缺陷,并且若这种内应力过大会导致复合材料内部各组分及各方向铺层间产生随机缺陷。因此,控制内应力决定了固化后材料的力学性能。
因人工电磁材料对电磁特性有着较高的要求,在其内部植入常用的电子应力感应元件会对电磁性能产生干扰,因此无法适用于人工电磁材料中。
发明内容
针对上述现有技术的缺陷,本发明提出一种能对固化过程进行准确地、实时地监控且不影响电磁性能的人工电磁材料及其制备方法、天线罩、天线系统。
本发明的一种人工电磁材料的制备方法,包括如下步骤:
P1、准备一层或多层堆叠的复合材料;
P2、准备光纤光栅,除去所述光纤光栅的保护层;
P3、在所述一层或多层复合材料的外表面上铺贴除去保护层的所述光纤光栅一端,所述光纤光栅另一端连接监测仪;
P4、对所述一层或多层复合材料整体加热固化。
进一步地,所述步骤P3与步骤P4顺序互换。
进一步地,步骤P3与步骤P4之间还包括步骤P30:
P30、在铺贴有光纤光栅的一层或多层复合材料的外表面上铺设一层或多层复合材料;
进一步地,所述复合材料为预浸料、蜂窝结构材料、热固性树脂材料中的一种或几种。
进一步地,不同层的所述复合材料相同或不同。
进一步地,所述复合材料为预浸料,所述预浸料包括基层和附着在基层上、平行铺排的多根纤维。
进一步地,所述光纤光栅的方向与所述预浸料的纤维方向成锐角交叉或为0度平行。
进一步地,所述光纤光栅位于所述多层复合材中最中间的两层复合材料之间。
进一步地,步骤P2包括:
P21、腐蚀掉所述光纤光栅的保护层;
P22、对腐蚀掉保护层后的光纤光栅进行清洗。
进一步地,步骤P21中采用盐酸对所述保护层进行腐蚀。
进一步地,步骤P22包括:
依次用蒸馏水和有机溶液清洗所述光纤光栅;
对所述光纤光栅加热,使所述有机溶液蒸发。
进一步地,至少其中一层所述复合材料表面上附着有多个导电几何结构。
进一步地,所述多个导电几何结构通过蚀刻、粘接、机械固定方式附着在所述复合材料上。
进一步地,所述监测仪为光纤光栅解调仪。
进一步地,在步骤P4之后还包括步骤P5:
P5、所述多层复合材料固化成型,剪断所述光纤光栅,使其与所述复合材料边缘齐平。
本发明还保护一种人工电磁材料,包括一层或多层复合材料,至少其中一层复合材料表面设有光纤光栅,所述光纤光栅为除去保护层后余下的纤芯和包覆在纤芯外表面的包层。
进一步地,至少其中一层所述复合材料表面附着有导电几何结构。
本发明还保护一种天线罩,由上述的人工电磁材料制成。
本发明还保护一种天线系统,包括天线主体和设置在所述天线主体外的上述天线罩。
进一步地,所述天线系统为飞行器、交通工具、雷达或基站。
采用本发明,具有以下有益效果:在复合材料进行固化时和固化后可通过其内部或外表面上的光纤光栅进行实时监控,从而了解复合材料固化内应力的变化过程,有利于更好地确定人工电磁材料的电学性能和机械性能。同时,由于光纤光栅采用石英玻璃制成,具有耐高温的特点,因此在加热过程中能够保持良好的检测性能;而石英玻璃质量轻、体积小且不具有电磁特性,因此光纤光栅最终保留在人工电磁材料中也不会影响到人工电磁材料整体的力学性能和电磁特性。具有该人工电磁材料的天线罩和天线系统也因获得更好的人工电磁材料,进而具有更好的使用性能。
附图说明
在下文中将基于仅为非限定性的实施例并参考附图来对本发明进行更详细的描述。其中:
图1是根据本发明的一种人工电磁材料的制备方法的流程图;
图2是根据本发明的另一种人工电磁材料的制备方法的流程图。
在图中,相同的构件由相同的附图标记标示。附图并未按照实际的比例绘制。
具体实施方式
以下是本发明的具体实施例并结合附图对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
本发明涉及一种人工电磁材料的制备方法,其相对于现有的制备方法,能够更好地监控到整个制备过程,从而有利于精确地控制过程中的各个参数,使得最终制得的人工电磁材料既保证有良好的电磁性能,又能具有良好的力学性能。
具体地,如图1所示,本发明的人工电磁材料的制备方法包括如下步骤:
P1、准备一层或多层堆叠的复合材料;
P2、准备光纤光栅,除去所述光纤光栅的保护层;
P3、在所述一层或多层复合材料的外表面上铺贴除去保护层的所述光纤光栅一端,所述光纤光栅另一端连接监测仪;
P4、对所述一层或多层复合材料整体加热固化。
光纤光栅是一种石英玻璃制成的传感器,能够检测温度变化、内应力变化等多项参数,而石英玻璃的耐高温性,使得其可以直接置于被加热固化的材料上,并将通过光栅的变化信号可反馈给检测仪提供数据来源。同时,由于石英玻璃是一种对电磁波没有响应的材料,因此,将光纤光栅增加到复合材料中,不会影响到最终的人工电磁材料的电磁性能。
所以,在复合材料层中夹有光纤光栅,既能够对复合材料内部的温度、内应力等直接进行检测,能够不会影响人工电磁材料特性,这是现有的应力检测元件所无法实现的。
上述制备方法是先将光纤光栅贴附到复合材料表面,然后对具有光纤光栅的复合材料进行固化;也以先将复合材料固化,然后在固化后的复合材料外表面铺贴光纤光栅,具体制备方法如图2所示,包括以下步骤:
P1、准备一层或多层堆叠的复合材料;
P2、准备光纤光栅,除去所述光纤光栅的保护层;
P3’、对所述一层或多层复合材料整体加热固化;
P4’、在固化成一体的所述复合材料的外表面上铺贴除去保护层的所述光纤光栅一端,所述光纤光栅另一端连接监测仪。
前一种制备方法中的光纤光栅用于测量在加热固化过程中的应力变化情况,而后一种制备方法则用于测量固化后复合材料的残余应力释放情况,均属于本发明的保护范围。
其中,上述复合材料可以为预浸料、蜂窝结构材料或热固性树脂材料,或者不同层的复合材料不完全相同,例如可以预浸料、蜂窝结构材料依次堆叠,或者三种材料或其他材料随机在不同层叠放。
另外,步骤P2可以在任何时间进行,可以与P1同时进行,也可与P3’同时进行,或者在P1之前就已经进行,只要其在需要铺设光纤光栅以前已经除去保护层即可。
下面就根据多个实施例来说明本发明所要保护的制备方法的具体方案。
实施例一:
P1、选择复合材料为预浸料,将五层预浸料层叠起来。
预浸料包括基层和附着在基层上的多根(通常数百、数千根以上)纤维,这些纤维相互平行地铺满基层。优选五层预浸料按照纤维都沿同一个方向来放置,可以保持预浸料在后续加热时避免因应力方向不同而固化结合不牢固。
P21、准备光纤光栅,通过稀盐酸、稀硫酸等酸液将光纤光栅的保护层腐蚀掉。
通常光纤光栅包括最内部的进行光传导的纤芯、包覆在纤芯外层用于进行全反射的包层、包层外用于隔离杂光的涂覆层,通常还会包括涂覆层外表面的护套,护套为尼龙或其他有机材料,用来增加光纤强度。
这里的保护层是指涂覆层和护套,为了增强光纤光栅的强度,保护纤芯不被折断。但是在进行应力监测时,保护层会影响监测结果的准确性,所以需要将保护层先腐蚀掉。
P22、对上述腐蚀掉保护层后的光纤光栅进行清洗,具体为,先通过蒸馏水清洗,使稀盐酸被清洗掉,然后通过有机溶液清洗,最后将清洗过的光纤光栅放入烘箱中加热,直至水分和有机溶液均蒸发完全为止。
P3、将多根光纤光栅的有光栅的一端设置在最上层预浸料的外表面上,并且,光纤光栅在预浸料上放置的一段其方向与预浸料的纤维方向成0度即平行设置,这样可以减少因应力变化而带来的误差。
当然,光纤光栅与纤维方向成一较小的锐角而交叉放置,也是允许的。
光纤光栅另一端连接监测仪,监测仪即为光纤光栅解调仪。
P4、对贴附有光纤光栅的所有预浸料整体进行加热,使其固化,从而得到人工电磁材料。加热前启动光纤光栅解调仪,从而对光纤光栅所在的预浸料固化的应力进行监控。
加热过程中,光纤光栅上的光栅会发生变化,该变化会变成回波信号反馈给光纤光栅解调仪,该解调仪通过软件运算可以得出预浸料内部的应力变化。
当应力变化不符合预先设定的预期时,即可对加热程序进行适时调整,从而控制最终固化的人工电磁材料的性能。
应当理解的是,上述步骤P21、P22是对除去保护层的常规步骤,可适用于各个不同实施例中,因此在其他实施例中不再赘述。
实施例二:
本实施例与实施例一具有相同的步骤,与实施例一得区别在于,步骤P3与步骤P4之间还包括步骤P30:
P30、在铺贴有光纤光栅的五层预浸料上表面上再铺设五层预浸料。
然后将中间夹有光纤光栅的十层预浸料进行整体固化。
当然,光纤光栅上方和下方的预浸料层数可以相同,也可不同,优选层数相同或基本接近,可以确保光纤光栅监测到的是复合材料最内部的应力变化,而不因太靠近外部环境而受外部环境温度的影响。对于其他实施例中,类似的,优选光纤光栅位于多层复合材料中最中间的两层复合材料中。
实施例三:
P1、选择复合材料为热固性有机树脂,例如环氧树脂。将三层环氧树脂堆叠起来。其中位于中间的一层环氧树脂表面镀铜,然后通过化学蚀刻工艺在环氧树脂表面留下周期性排布的多个导电几何结构,其余部分均被蚀刻掉。导电几何结构为由铜线组成的具有一定几何图案的结构,例如工字形、十字形等。
可以理解的是,环氧树脂上也可镀银或其他导电金属然后再蚀刻的方式得到导电几何结构,也可以直接制得导电几何结构并将其粘接或机械固定到环氧树脂表面上。通过设计不同形状、尺寸和排布的导电几何结构,使得具有到点集合结构的环氧树脂能够具有特殊的电磁相应特性,例如对特定频段的电磁波透过、其他频段吸收或反射等。
当然,其它层的环氧树脂上也可具有导电几何结构,本文不作限制。
P3’、将上述三层环氧树脂整体加热固化;
P2、准备光纤光栅,通过上述实施例一所述的步骤除去光纤光栅的保护层;
P4’、将除去保护层的光纤光栅的光栅一端通过光纤专用胶黏剂粘到固化后的环氧树脂外表面上,光纤光栅另一端连接光纤光栅解调仪。
当在其他实施例中,最上层的环氧树脂外表面也附着有导电几何结构,优选光纤光栅的光栅端避免放置在导电几何结构上,因为导电几何结构在复合材料加热固化时基本不产生应力形变,不利于光纤光栅接收应力变化从而影响测量。
P5、多层复合材料固化成型、应力释放过程完全后,剪断光纤光栅,使其与复合材料边缘齐平,得到贴有光纤光栅的人工电磁材料。
实施例四:
本实施例与实施例二基本相同,区别仅在于,在上述五层预浸料的最上表面上另铺设多根光纤光栅,并在该光纤光栅上方再覆盖有一层或多层复合材料,例如蜂窝结构材料、预浸料或环氧树脂或其他复合材料。该多根光纤光栅另一端也连接入另一台或同一台光纤光栅解调仪中进行监测。
可以理解的是,可以在多个不同层之间植入光纤光栅,因此光纤光栅层也可以有一层、两层或多于两层,本文不作限制。
基于上述制备方法,本发明还保护由上述方法制得的人工电磁材料。根据上述对制备方法的描述可知,本发明的人工电磁材料必然包括一层多层复合材料,这里的多层是指两层或多于两层。至少其中一层复合材料表面设有光纤光栅,并且该光纤光栅为去除了保护层以后余下的纤芯和纤芯外表面的包层。这里的复合材料可以是各种包括多种成分组合而成的热固性材料,例如预浸料、热固性树脂、蜂窝结构材料等。人工电磁材料的各层复合材料其成分可以相同,也可不同层具有不同的成分。
并且,基于上述实施例可知,其中一层或多层复合材料表面可以附着有上述的导电几何结构,使得该人工电磁材料具有特殊的电磁响应特性。
基于上述人工电磁材料,本发明还保护一种天线罩,其由本发明的人工电磁材料制得。由于天线罩通常具有非平面的立体结构,因此在对人工电磁材料的多层复合材料进行加热固化时,需要将其设置在一成形模具上,该成型模具具有天线罩所需的立体结构,在加热时同时对该多层复合材料加压成形,固化后即可得到本发明所要保护的天线罩。
进一步地,本发明还保护一种天线系统,例如飞行器、交通工具、雷达、基站等,其具有用于发射和接收信号的天线主体,还包括罩在天线主体外的上述天线罩,用于对天线主体进行保护、防止外力破坏和水汽腐蚀。另外,除了物理隔离保护以外,本发明的人工电磁材料可以具有特殊的电磁透波、反射波等性能,因此能够进一步增强天线系统的通信功能。
综上所述,采用本发明的人工电磁材料的制备方法,使得在对复合材料进行加热固化以及固化后可通过其内部或表面的光纤光栅进行实时监控,从而了解固化的整个应力变化过程,在检测到应力不合适时及时对固化工艺参数做出调整。
同时,由于光纤光栅采用石英玻璃制成,具有耐高温的特点,因此在加热过程中能够保持良好的检测性能;而石英玻璃质量轻、体积小且不具有电磁特性,因此光纤光栅最终保留在人工电磁材料中也不会影响到人工电磁材料整体的力学性能和电磁特性。具有该人工电磁材料的天线罩和天线系统也因获得更好的人工电磁材料,进而具有更好的使用性能。
上述这些情形,都属于本发明所要保护的范围,并不仅限于上述实施例。本发明所属技术领域的技术人员可以对所描述的具体实施例作各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (20)

1.一种人工电磁材料的制备方法,其特征在于,包括如下步骤:
P1、准备一层或多层堆叠的复合材料;
P2、准备光纤光栅,除去所述光纤光栅的保护层;
P3、在所述一层或多层复合材料的外表面上铺贴除去保护层的所述光纤光栅一端,所述光纤光栅另一端连接监测仪;
P4、对所述一层或多层复合材料整体加热固化。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤P3与步骤P4顺序互换。
3.根据权利要求1所述的制备方法,其特征在于,步骤P3与步骤P4之间还包括步骤P30:
P30、在铺贴有光纤光栅的一层或多层复合材料的外表面上再铺设一层或多层复合材料。
4.根据权利要求1所述的制备方法,其特征在于,所述复合材料为预浸料、蜂窝结构材料、热固性树脂材料中的一种或几种。
5.根据权利要求4所述的制备方法,其特征在于,不同层的所述复合材料相同或不同。
6.根据权利要求4所述的制备方法,其特征在于,所述复合材料为预浸料,所述预浸料包括基层和附着在基层上、平行铺排的多根纤维。
7.根据权利要求6所述的制备方法,其特征在于,所述光纤光栅的方向与所述预浸料的纤维方向成锐角交叉或为0度平行。
8.根据权利要求3所述的制备方法,其特征在于,所述光纤光栅位于所述多层复合材中最中间的两层复合材料之间。
9.根据权利要求1所述的制备方法,其特征在于,步骤P2包括:
P21、腐蚀掉所述光纤光栅的保护层;
P22、对腐蚀掉保护层后的光纤光栅进行清洗。
10.根据权利要求9所述的制备方法,其特征在于,步骤P21中采用酸液对所述保护层进行腐蚀。
11.根据权利要求9所述的制备方法,其特征在于,步骤P22包括:
依次用蒸馏水和有机溶液清洗所述光纤光栅;
对所述光纤光栅加热,使所述有机溶液蒸发。
12.根据权利要求1所述的制备方法,其特征在于,至少其中一层所述复合材料表面上附着有多个导电几何结构。
13.根据权利要求12所述的制备方法,其特征在于,所述多个导电几何结构通过蚀刻、粘接、机械固定方式附着在所述复合材料上。
14.根据权利要求1所述的制备方法,其特征在于,所述监测仪为光纤光栅解调仪。
15.根据权利要求1所述的制备方法,其特征在于,在步骤P4之后还包括步骤P5:
P5、所述多层复合材料固化成型,剪断所述光纤光栅,使其与所述复合材料边缘齐平。
16.一种人工电磁材料,其特征在于,包括一层或多层复合材料,至少其中一层复合材料表面设有光纤光栅,所述光纤光栅为除去保护层后余下的纤芯和包覆在纤芯外表面的包层。
17.根据权利要求16所述的人工电磁材料,其特征在于,至少其中一层所述复合材料表面附着有导电几何结构。
18.一种天线罩,其特征在于,由权利要求16至17所述的人工电磁材料制成。
19.一种天线系统,其特征在于,包括天线主体和设置在所述天线主体外的天线罩,所述天线罩为权利要求18所述的天线罩。
20.根据权利要求19所述的天线系统,其特征在于,所述天线系统为飞行器、交通工具、雷达或基站。
CN201310430684.4A 2013-09-18 2013-09-18 人工电磁材料及其制备方法、天线罩、天线系统 Pending CN104466421A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310430684.4A CN104466421A (zh) 2013-09-18 2013-09-18 人工电磁材料及其制备方法、天线罩、天线系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310430684.4A CN104466421A (zh) 2013-09-18 2013-09-18 人工电磁材料及其制备方法、天线罩、天线系统

Publications (1)

Publication Number Publication Date
CN104466421A true CN104466421A (zh) 2015-03-25

Family

ID=52912070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310430684.4A Pending CN104466421A (zh) 2013-09-18 2013-09-18 人工电磁材料及其制备方法、天线罩、天线系统

Country Status (1)

Country Link
CN (1) CN104466421A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221962A (en) * 1978-04-24 1980-09-09 Northrop Corporation Fiber-optic moisture sensor for composite structures
CN101570065A (zh) * 2009-06-10 2009-11-04 沈阳航空工业学院 一种用于结构纵向应变监测的智能复合材料层板制作方法
CN101571491A (zh) * 2009-06-10 2009-11-04 沈阳航空工业学院 复合材料固化残余应变的光纤光栅监测方法
CN102809790A (zh) * 2012-07-06 2012-12-05 上海复合材料科技有限公司 复合材料内置光纤的保护方法
CN103296437A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 超材料板材的制造方法、超材料天线罩及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221962A (en) * 1978-04-24 1980-09-09 Northrop Corporation Fiber-optic moisture sensor for composite structures
CN101570065A (zh) * 2009-06-10 2009-11-04 沈阳航空工业学院 一种用于结构纵向应变监测的智能复合材料层板制作方法
CN101571491A (zh) * 2009-06-10 2009-11-04 沈阳航空工业学院 复合材料固化残余应变的光纤光栅监测方法
CN103296437A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 超材料板材的制造方法、超材料天线罩及其制造方法
CN102809790A (zh) * 2012-07-06 2012-12-05 上海复合材料科技有限公司 复合材料内置光纤的保护方法

Similar Documents

Publication Publication Date Title
WO2018064949A1 (zh) 一种复合材料封装的光纤光栅传感器及其制造方法
EP3097606B1 (en) System and method for transmitting data or power across a structural component
JP5866266B2 (ja) 電磁波シールドフィルム、電磁波シールドフィルムの製造方法、およびフレキシブルプリント配線板の製造方法
EP2310190B1 (en) Electrical circuit assemblies and structural components incorporating same
EP1962123B1 (en) Composite material structure having an embedded optical fibre in one of the surface layers thereof and method for connecting and repairing the same
CN102006995A (zh) 用于制造集成雷击防护材料的系统和方法
CN105045456A (zh) 金属网格透明导电体、其制备方法与电容式触摸屏
CN112009039B (zh) 一种红外、微波兼容的低可探测性结构材料及其制备方法
US20110165403A1 (en) Ply and method for the metallization of a part made of a composite material
CN106671557A (zh) 一种芳纶纤维复合材料频率选择面反射器成型方法
CN103439263A (zh) 一种波纹型复合材料机翼蒙皮渐进损伤监测方法及系统
CN101879656A (zh) 超声波焊接制备铝基智能复合材料方法
US20240023240A1 (en) Ultra-thin Composite Transparent Conductive Film and Preparation Method Therefor
CN101783443A (zh) 一种有铝层反射表面之复合天线的制造方法
CN103963313B (zh) 一种具有防静电功能玻璃钢制品及制备方法
CN103171173B (zh) 一种碳纤维电磁吸波材料及其制备方法
CN104466421A (zh) 人工电磁材料及其制备方法、天线罩、天线系统
Huang et al. Multifunctional carbon fiber reinforced multilayered metastructure with broadband microwave absorption and effective mechanical resistance
CN117154398B (zh) 一种耐高温天线罩及其制备方法
CN106908474B (zh) 利用碳纳米纸传感器监测聚合物基复合材料固化度的方法
CN104466420A (zh) 人工电磁材料及其制备方法、天线罩、天线系统
CA2916498A1 (en) Dissipation of static electricity
CN211178779U (zh) 一种状态监测一体化复合材料结构
WO2015061670A1 (en) Microwave absorbing composite for turbine blade applications
Jang et al. Carbon-fiber-stitched substrate in coaxial-fed-patch-antenna for removing hole in feeder

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150325

RJ01 Rejection of invention patent application after publication