CN104459744A - 一种虚拟稳定基线卫星定向方法及装置 - Google Patents

一种虚拟稳定基线卫星定向方法及装置 Download PDF

Info

Publication number
CN104459744A
CN104459744A CN201410770733.3A CN201410770733A CN104459744A CN 104459744 A CN104459744 A CN 104459744A CN 201410770733 A CN201410770733 A CN 201410770733A CN 104459744 A CN104459744 A CN 104459744A
Authority
CN
China
Prior art keywords
satellite
module
orientation
baseline
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410770733.3A
Other languages
English (en)
Inventor
陈晓峰
罗丁
肖茂森
陆卫国
刘建华
朱宇虹
翟玉涛
蒙连胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOURTH INSTITUTE OF SECOND ARTILLERY EQUIPMENT ACADEMY PLA
Hunan Aerospace Electronic Technology Co ltd
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
FOURTH INSTITUTE OF SECOND ARTILLERY EQUIPMENT ACADEMY PLA
Hunan Aerospace Electronic Technology Co ltd
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOURTH INSTITUTE OF SECOND ARTILLERY EQUIPMENT ACADEMY PLA, Hunan Aerospace Electronic Technology Co ltd, XiAn Institute of Optics and Precision Mechanics of CAS filed Critical FOURTH INSTITUTE OF SECOND ARTILLERY EQUIPMENT ACADEMY PLA
Priority to CN201410770733.3A priority Critical patent/CN104459744A/zh
Publication of CN104459744A publication Critical patent/CN104459744A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提出一种虚拟稳定基线卫星定向方法及装置,该方法步骤包括:对卫星信号进行放大、下变频和信号调理,转换为数字信号;对数字信号进行捕获、跟踪和解调,获取卫星的伪距、载波相位和电文等原始观测值;利用原始观测值进行定位解算和载波相位解模糊,计算包含卫星天线基线形变的定向测量值;利用与天线固定连接的光学成像系统测量出卫星天线基线的形变量;用形变量修正卫星天线基线定向结果,得到虚拟的稳定基线的定向结果。本发明在卫星定向系统的基础上增加一套光学成像测角系统,监测卫星天线在形变环境中可能发生的移位,实现了与环境变化无关的稳定基线定向输出。

Description

一种虚拟稳定基线卫星定向方法及装置
技术领域
本发明涉及卫星定向技术领域,尤其涉及一种在形变条件下的卫星定向及数据处理方法和装置。
背景技术
以GPS(Global Positioning System,全球定位系统)为代表的全球卫星导航系统(Global Navigation Satellite System,GNSS)可以提供全天时、全天候的高精度导航、定位和授时服务,在国防和经济建设中产生了巨大效益,是重要的空间和时间基础设施。我国独立自主的“北斗二号”区域卫星导航系统已于2012年底投入正式运营,该系统为我国及周边区域提供与GPS系统类似的服务功能,计划在2020年前后拓展为全球覆盖的卫星导航系统。
传统的卫星导航接收机通过测量接收机天线与至少四颗卫星的距离,可计算出接收机天线的三维位置。随着数据处理技术的发展,人们发现更为精确的接收机载波相位测量信息在完成载波整周模糊解算后,可用于精确的双天线相对定位,从而将单天线的定位功能拓展至多天线的定向定姿功能。早期的GPS系统仅提供单频点的民用服务信号,实现多天线定向的核心是实现快速、稳定的载波相位模糊度解算。随着GPS现代化计划、北斗卫星导航系统计划以及欧洲伽利略(GALILEO)卫星导航系统计划的兴起,未来的GNSS系统将提供双频甚至三频的民用服务信号,极大地加快载波相位解模糊算法的效率,推动基于高精度载波相位测量的卫星定向系统在工程测量、自动控制、航空航天等领域的进一步发展。
传统的卫星定向系统将两个GNSS天线固定在待测量基线两端,卫星定向系统计算出两个天线相位中心连线的方位角,从而确定待测量基线的方位。这种方法适用于GNSS天线易于安装,与待测量基线不发生相对形变的应用场合,但在某些振动、扭转等载体发生形变的应用场合中,GNSS天线的位置随着环境发生变化,与待测量基线之间的关系并不固定,导致卫星定向系统给出的定向结果并不是待测量基线的实时方位,从而限制了卫星定向系统在形变环境的应用。
发明内容
针对现有技术的缺陷,本发明所要解决的问题是在形变环境中利用卫星定向技术实现稳定的待测量基线的方位测量。为解决上述问题,本发明提出一种虚拟稳定基线卫星定向方法及其定向装置,该技术将光学成像测量技术应用于卫星定向系统,利用光学成像测量技术修正因形变导致的卫星定向系统基线与待测量基线偏差的定向方法,从而形成一个不受影响的虚拟稳定基线。
一种虚拟稳定基线卫星定向方法,其步骤如下:
S1.双天线卫星信号前端处理
两个GNSS天线的信号分别经过低噪声放大、自动增益控制、混频、滤波转化为中频模拟信号,再由A/D转换将模拟信号采样为数字信号;
S2.卫星信号基带处理和原始测量值生成
对数字信号进行捕获、跟踪和解调,在本地恢复出多颗卫星的实时载波相位和扩频码,获取对应的伪距、载波相位和电文原始观测数据;
S3.卫星定位定向解算
采用最小二乘或卡尔曼滤波方法进行定位解算得到两个天线的定位结果;采用Lamda算法完成所述的载波相位模糊度求解,若有两个天线基线长度的先验信息,也可采用快速降维法进行求解;根据单差或双差观测方程模型,利用解模糊后的载波相位计算两个卫星天线的相对定向结果;将相对定向结果转换到定位结果表征的当地东北天坐标系,得到卫星基线的定向测量值;
S4.光学成像系统形变测量
与其中一个GNSS天线固连的目标光源发出光束,与另一个GNSS天线固连的成像模块接收光束并对目标光源进行实时成像,根据图像中目标光源的位置变化,计算与光源和成像模块固连的两个天线的相对形变量;
S5.卫星定向结果修正输出
光学成像系统测得的相对形变量除以天线基线长度,得到以弧度表示的GNSS天线方位校正量,用GNSS天线的定向结果减去方位校正量,得到虚拟的稳定基线的定向结果。
一种虚拟稳定基线卫星定向装置,包括:
GNSS天线,用于安装在待测基线两端,若待测基线有多条可利用多个GNSS天线;
卫星定向接收模块,用于接收GNSS天线的导航信号,完成基于载波相位的GNSS天线基线的相对定位定向,输出至综合处理模块;
目标光源模块,该模块与其中一个GNSS天线固定连接,用于发出光束供光学成像模块接收;
光学成像模块,该模块与另一个GNSS天线固定连接,用于接收目标光源发出的光束并成像,获得目标光源的像在图像上的位移变化,作为形变量输出至综合处理模块;
综合处理模块,用于接收卫星定向接收模块的相对定位定向信息和光学成像模块输出的形变量,计算GNSS天线偏离待测基线的偏差并进行校正,输出经校正后的待测基线方位信息完成定向。
优选地,GNSS天线是内置低噪声放大器的零相位中心测量型天线,适合于多个频段GNSS信号的接收。
优选地,卫星定向接收模块进一步可以分为射频模块、信号处理模块和定位定向模块,其中:射频模块包含下变频器、放大器、滤波器、A/D转换模块,将天线接收的信号转换为数字信号;信号处理模块是处理数字信号的多通道捕获、跟踪电路,在本地复制出导航信号的载波相位和扩频码,获取不同卫星的载波相位、伪距和电文观测值,通常采用FPGA、ASIC芯片或FPGA/DSP、FPGA/ARM等软硬件混合方式实现;定位定向模块一般是运行在微处理器中的软件模块,根据原始观测值完成两个GNSS天线的定位和相对定向。
优选地,目标光源模块和光学成像模块是一套光学成像测量系统,分别与两个天线固定连接。其中目标光源是LED光源,光学成像测量模块采用线性CCD阵列或二维CCD阵列对光源成像,输出仅与天线位移相关的形变测量。
优选地,综合处理模块完成定向信息融合和输出,与定位定向模块共用微处理器。
本发明公开了一种在形变条件下利用卫星定向技术和光学成像技术,实现一个虚拟的不随形变变化的稳定基线,并准确测量该基线方位的定向方法和系统。该方法步骤包括:对卫星信号进行放大、下变频和信号调理,转换为数字信号;对数字信号进行捕获、跟踪和解调,获取卫星的伪距、载波相位和电文等原始观测值;利用原始观测值进行定位解算和载波相位解模糊,计算包含卫星天线基线形变的定向测量值;利用与天线固定连接的光学成像系统测量出卫星天线基线的形变量;用形变量修正卫星天线基线定向结果,得到虚拟的稳定基线的定向结果。本发明在卫星定向系统的基础上增加一套光学成像测角系统,监测卫星天线在形变环境中可能发生的移位,实现了与环境变化无关的稳定基线定向输出。
相对于现有技术,本发明提出在传统卫星定向基础上,增加一套光学成像测量系统测量卫星天线基线与待测基线的偏差,通过将卫星定向技术与光学测量技术的组合应用,实现了一种不随环境形变变化的虚拟稳定基线,可应用于振动、摇摆等场景的基线定向,或天线基线因无法固连产生形变的基线监测等应用。
附图说明
图1为本发明利用光学成像测量系统校正卫星基线偏移的原理示意图;
图2为本发明提供的虚拟稳定基线卫星定向方法流程示意图;
图3为本发明提供的一种基于光学测量校正的卫星定向装置的具体结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是利用光学成像测量系统校正卫星基线偏移的原理示意图,AB连线是待测方位角的基线,在非形变环境中天线安装在A和B点,此时天线的基线与待测基线重合,利用卫星定向技术即可直接测量待测基线的方位角。在形变环境中,天线A和天线B都可能发生位置变化,而AB基线的平移是不改变基线方位的,因此图中忽略了平移,假定天线A位置不变,而天线B发生了形变至位置B’,卫星基线变成了AB’,实际待测量方位角是∠CAB。
图2是本发明提供的虚拟稳定基线卫星定向方法流程示意图,包括步骤:
S1,双天线卫星信号前端处理
两个GNSS天线的信号分别经过低噪声放大、自动增益控制、混频、滤波转化为中频模拟信号,再由A/D转换将模拟信号采样为数字信号。
S2,卫星信号基带处理和原始测量值生成
对数字信号进行捕获、跟踪和解调,在本地恢复出多颗卫星的实时载波相位和扩频码,获取对应的伪距、载波相位和电文原始观测数据。
S3,卫星定位定向解算
根据电文给出的卫星星历计算卫星位置,结合至少四颗卫星的伪距观测值,采用最小二乘或卡尔曼滤波方法进行定位解算,获取两个GNSS天线的定位结果;默认地载波相位解模糊采用Lamda算法,若基线长度有约束可采用快速降维法进行求解;根据卫星构型和解模糊后的载波相位观测值,构成单差或双差观测方程,计算包含卫星天线基线形变的相对定位结果,将相对定位结果取模计算基线AB的长度为L;相对定位结果根据定位结果进行当地东北天坐标系转换,得到包含形变的方位角∠CAB’,记为α。
S4,光学成像系统形变量测量
与天线B固连的目标光源发出光束,与天线A固连的光学成像模块对目标光源发出的光束进行成像,根据所成的像中光源的位置变化计算天线B因形变发生偏离基线的位移Δ。
S5,卫星定向结果修正输出
根据基准光线的形变量与天线之间的相对距离计算出形变导致的方位角偏差,修正卫星定向结果进行综合处理,得到不随形变变化的虚拟稳定基线定向结果。当形变量相对基线长度较小时,因形变导致的方位角偏差计算为∠B’AB=Δ/L(rad),记为β。综合形变测量与卫星定向结果,输出修正后的稳定基线方位:
∠CAB=α+β。
更进一步地,步骤S1中两个GNSS天线可以同时支持多个GNSS系统不同频点的信号接收。目前全球四大卫星导航系统中包含的信号频点有GPS的L1/L2/L5、北斗的B1/B2/B3、GLONASS的G1/G2以及Galileo的E1/E5/E6,要求GNSS天线至少支持某个单一系统的两个频点,提供最低程度的载波相位模糊度解算需要的观测信息。
更进一步地,步骤S3中,根据接收卫星信号的种类不同和硬件时钟的差异,优选算法进行载波模糊度求解和定向解算。例如若提供了北斗或GPS三频点的原始观测值,可利用不同频点形成超宽巷、宽巷、窄巷组合加快模糊度求解速度;若两个GNSS天线的采样和信号处理采样相同的数字时钟和本地时间管理,不存在两个天线信号处理的钟差,优选地可以采用单差相对定位模型,否则采用双差相对定位模型。
更进一步地,步骤S5中,卫星定向和形变测量的典型频率是1Hz,输出的虚拟稳定基线方位的频度也是1Hz,根据应用场合的定位频度需求,可进行更长时间的平滑滤波,降低输出频度,提高方位角的输出精度。
图3为本发明提供的一种基于光学测量校正的卫星定向装置的具体结构图,装置由卫星天线A、卫星天线B、目标光源模块、光学成像模块、卫星定位定向主机和若干线缆组成。卫星天线A与光学成像模块固定连接,卫星天线B和目标光源模块固定连接,光学成像模块对目标光源发出的光束成像,测量天线B的位移形变输出至卫星定位定向主机。光学成像可进行倾斜形变等校正提高测量精度,属于光学成像测量领域的常识,这里不再叙述。卫星定位定向主机接收两个卫星天线的信号,完成卫星信号的接收和定位定向解算,将卫星定向结果与形变测量数据进行综合计算输出最终虚拟基线定向结果。卫星定位定向主机内可分解为射频模块、信号处理模块、定位定向模块和综合处理模块,分别与示例一中的S1、S2、S3、S5步骤一一对应。本领域的普通技术人员可理解,其中信号处理模块、定位定向模块和综合处理模块是通过程序指令相关硬件完成的,这里的程序可存储于FLASH、ROM、RAM、光盘等介质中,硬件通常包含FPGA、ASIC、DSP、ARM等嵌入式处理器。
相对于现有技术,本发明将卫星定位定向技术与光学成像测量技术结合起来,提出了一种在形变环境下仍然可以稳定测量基线方位的方法和装置,拓展了卫星定向技术的适用范围,具有方案简单可靠,装置易于实现等优点。
虽然以上结合优选实施例对本发明进行了描述,但本领域的技术人员应该理解,本发明所述的方法和系统并不限于具体实施方式中所述的实施例,在不背离由所附权利要求书限定的本发明精神和范围的情况下,可对本发明作出各种修改、增加、以及替换。

Claims (6)

1.一种虚拟稳定基线卫星定向方法,其特征在于:其步骤如下:
S1.双天线卫星信号前端处理
两个GNSS天线的信号分别经过低噪声放大、自动增益控制、混频、滤波转化为中频模拟信号,再由A/D转换将模拟信号采样为数字信号;
S2.卫星信号基带处理和原始测量值生成
对数字信号进行捕获、跟踪和解调,在本地恢复出多颗卫星的实时载波相位和扩频码,获取对应的伪距、载波相位和电文原始观测数据;
S3.卫星定位定向解算
采用最小二乘或卡尔曼滤波方法进行定位解算得到两个天线的定位结果;采用Lamda算法完成所述的载波相位模糊度求解,当有两个天线基线长度的先验信息时,也能够采用快速降维法进行求解;根据单差或双差观测方程模型,利用解模糊后的载波相位计算两个卫星天线的相对定向结果;将相对定向结果转换到定位结果表征的当地东北天坐标系,得到卫星基线的定向测量值;
S4.光学成像系统形变测量
与其中一个GNSS天线固连的目标光源发出光束,与另一个GNSS天线固连的成像模块接收光束并对目标光源进行实时成像,根据图像中目标光源的位置变化,计算与光源和成像模块固连的两个天线的相对形变量;
S5.卫星定向结果修正输出
光学成像系统测得的相对形变量除以天线基线长度,得到以弧度表示的GNSS天线方位校正量,用GNSS天线的定向结果减去方位校正量,得到虚拟的稳定基线的定向结果。
2.一种虚拟稳定基线卫星定向装置,其特征在于,包括GNSS天线、卫星定向接收模块、目标光源模块、光学成像模块和综合处理模块;
GNSS天线,用于安装在待测基线两端,若待测基线有多条可利用多个GNSS天线;
卫星定向接收模块,用于接收GNSS天线的导航信号,完成基于载波相位的GNSS天线基线的相对定位定向,输出至综合处理模块;
目标光源模块,该模块与其中一个GNSS天线固定连接,用于发出光束供光学成像模块接收;
光学成像模块,该模块与另一个GNSS天线固定连接,用于接收目标光源发出的光束并成像,获得目标光源的像在图像上的位移变化,作为形变量输出至综合处理模块;
综合处理模块,用于接收卫星定向接收模块的相对定位定向信息和光学成像模块输出的形变量,计算GNSS天线偏离待测基线的偏差并进行校正,输出经校正后的待测基线方位信息完成定向。
3.根据权利要求2所述的虚拟稳定基线卫星定向装置,其特征在于,GNSS天线是内置低噪声放大器的零相位中心测量型天线,适合于多个频段GNSS信号的接收。
4.根据权利要求3所述的虚拟稳定基线卫星定向装置,其特征在于,卫星定向接收模块包括射频模块、信号处理模块和定位定向模块,射频模块包含下变频器、放大器、滤波器、A/D转换模块,射频模块将天线接收的信号转换为数字信号;信号处理模块是处理数字信号的多通道捕获、跟踪电路,在本地复制出导航信号的载波相位和扩频码,获取不同卫星的载波相位、伪距和电文观测值,信号处理模块采用FPGA、ASIC芯片或FPGA/DSP、FPGA/ARM软硬件混合方式实现;定位定向模块是运行在微处理器中的软件模块,根据原始观测值完成两个GNSS天线的定位和相对定向。
5.根据权利要求4所述的虚拟稳定基线卫星定向装置,其特征在于,目标光源模块和光学成像模块是一套光学成像测量系统,分别与两个天线固定连接。
6.根据权利要求5所述的虚拟稳定基线卫星定向装置,其特征在于,综合处理模块完成定向信息融合和输出,与定位定向模块共用微处理器。
CN201410770733.3A 2014-12-15 2014-12-15 一种虚拟稳定基线卫星定向方法及装置 Pending CN104459744A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410770733.3A CN104459744A (zh) 2014-12-15 2014-12-15 一种虚拟稳定基线卫星定向方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410770733.3A CN104459744A (zh) 2014-12-15 2014-12-15 一种虚拟稳定基线卫星定向方法及装置

Publications (1)

Publication Number Publication Date
CN104459744A true CN104459744A (zh) 2015-03-25

Family

ID=52906093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410770733.3A Pending CN104459744A (zh) 2014-12-15 2014-12-15 一种虚拟稳定基线卫星定向方法及装置

Country Status (1)

Country Link
CN (1) CN104459744A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959100A (zh) * 2017-03-17 2017-07-18 东南大学 利用gnss天线中心坐标进行摄影测量绝对定向的方法
CN108152843A (zh) * 2017-11-15 2018-06-12 羲和时空(武汉)网络科技有限公司 一种附加拟稳基准的钟差数据融合计算方法
CN109298380A (zh) * 2018-11-21 2019-02-01 北京遥感设备研究所 一种用于干涉仪测角的超宽带天线相位中心校准方法
CN109669196A (zh) * 2019-02-21 2019-04-23 哈尔滨工程大学 一种顾及基线形变的多天线gnss载波相位精密测姿方法
CN110018502A (zh) * 2019-03-07 2019-07-16 清博(昆山)智能科技有限公司 一种卫星定位修正方法
CN110389315A (zh) * 2019-07-31 2019-10-29 杭州中科微电子有限公司 一种有源天线单元的定向装置、定向方法及应用
CN111796311A (zh) * 2020-07-17 2020-10-20 广东星舆科技有限公司 目标对象状态的监测方法、装置及计算机可读介质
CN112147656A (zh) * 2020-09-09 2020-12-29 无锡卡尔曼导航技术有限公司 一种gnss双天线航向安装角度偏置估计方法
CN112698365A (zh) * 2020-12-24 2021-04-23 上海海积信息科技股份有限公司 一种基于双天线的卫星接收机、卫星定位方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065727A1 (en) * 2003-09-20 2005-03-24 Guohui Hu Low cost multisensor high precision positioning and data integrated method and system thereof
WO2006022879A1 (en) * 2004-07-23 2006-03-02 Trimble Navigation Limited Combination laser detector and global navigatino satellite receiver system
JP2008039690A (ja) * 2006-08-09 2008-02-21 Toyota Motor Corp 搬送波位相式測位装置
CN103323855A (zh) * 2012-03-22 2013-09-25 中国科学院电子学研究所 一种基线动态测量系统的精度获取方法
CN103728641A (zh) * 2013-12-27 2014-04-16 北京苍穹数码测绘有限公司 基于北斗系统的三天线阵高精度定向方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065727A1 (en) * 2003-09-20 2005-03-24 Guohui Hu Low cost multisensor high precision positioning and data integrated method and system thereof
WO2006022879A1 (en) * 2004-07-23 2006-03-02 Trimble Navigation Limited Combination laser detector and global navigatino satellite receiver system
JP2008039690A (ja) * 2006-08-09 2008-02-21 Toyota Motor Corp 搬送波位相式測位装置
CN103323855A (zh) * 2012-03-22 2013-09-25 中国科学院电子学研究所 一种基线动态测量系统的精度获取方法
CN103728641A (zh) * 2013-12-27 2014-04-16 北京苍穹数码测绘有限公司 基于北斗系统的三天线阵高精度定向方法及系统

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959100B (zh) * 2017-03-17 2019-04-30 东南大学 利用gnss天线中心坐标进行摄影测量绝对定向的方法
CN106959100A (zh) * 2017-03-17 2017-07-18 东南大学 利用gnss天线中心坐标进行摄影测量绝对定向的方法
CN108152843A (zh) * 2017-11-15 2018-06-12 羲和时空(武汉)网络科技有限公司 一种附加拟稳基准的钟差数据融合计算方法
CN108152843B (zh) * 2017-11-15 2019-11-19 羲和时空(武汉)网络科技有限公司 一种附加拟稳基准的钟差数据融合计算方法
CN109298380A (zh) * 2018-11-21 2019-02-01 北京遥感设备研究所 一种用于干涉仪测角的超宽带天线相位中心校准方法
CN109669196B (zh) * 2019-02-21 2022-07-12 哈尔滨工程大学 一种顾及基线形变的多天线gnss载波相位精密测姿方法
CN109669196A (zh) * 2019-02-21 2019-04-23 哈尔滨工程大学 一种顾及基线形变的多天线gnss载波相位精密测姿方法
CN110018502A (zh) * 2019-03-07 2019-07-16 清博(昆山)智能科技有限公司 一种卫星定位修正方法
CN110389315A (zh) * 2019-07-31 2019-10-29 杭州中科微电子有限公司 一种有源天线单元的定向装置、定向方法及应用
CN110389315B (zh) * 2019-07-31 2021-07-30 杭州中科微电子有限公司 一种有源天线单元的定向装置、定向方法及应用
CN111796311A (zh) * 2020-07-17 2020-10-20 广东星舆科技有限公司 目标对象状态的监测方法、装置及计算机可读介质
CN111796311B (zh) * 2020-07-17 2024-01-26 广东星舆科技有限公司 目标对象状态的监测方法、装置及计算机可读介质
CN112147656A (zh) * 2020-09-09 2020-12-29 无锡卡尔曼导航技术有限公司 一种gnss双天线航向安装角度偏置估计方法
CN112147656B (zh) * 2020-09-09 2021-05-04 无锡卡尔曼导航技术有限公司 一种gnss双天线航向安装角度偏置估计方法
CN112698365A (zh) * 2020-12-24 2021-04-23 上海海积信息科技股份有限公司 一种基于双天线的卫星接收机、卫星定位方法及系统

Similar Documents

Publication Publication Date Title
CN104459744A (zh) 一种虚拟稳定基线卫星定向方法及装置
CN107315345B (zh) 基于双天线gnss和预瞄追踪模型的农机自动导航控制方法
US10613231B2 (en) Portable GNSS survey system
CN102540228B (zh) 一种单频gps高精度单点定位系统及方法
CN104502887A (zh) 一种基于卫星定向的方位标定方法及装置
CN109696697A (zh) Gnss-r镜面反射点的大地水准面-垂线偏差修正方法和系统
Li et al. Review of PPP–RTK: Achievements, challenges, and opportunities
JP2015125119A (ja) 衛星測位システム、測位端末、測位方法、及びプログラム
CN102565834A (zh) 一种单频gps测向系统及其测向定位方法
CN107457784B (zh) 变电站巡检机器人gps北斗差分定位与导航方法
Kim et al. Local deformation monitoring using GPS in an open pit mine: initial study
CN110673170A (zh) 一种动态单点定位精度的测试方法及终端
CN103529451B (zh) 一种水面母船校准海底应答器坐标位置的方法
KR100496814B1 (ko) Gps 측량을 이용한 도로좌표정보 취득 및 수치지도 제작방법
Niu et al. A continuous positioning algorithm based on RTK and VI-SLAM with smartphones
CN104792321A (zh) 一种基于辅助定位的土地信息采集系统及方法
CN104181571A (zh) 实现弱或无cors信号区地面点的精密坐标与高程快速测量的方法
CN116755126B (zh) 一种基于三维模型映射匹配的北斗实时精准定位方法
US20220244407A1 (en) Method for Generating a Three-Dimensional Environment Model Using GNSS Measurements
Zhang et al. 3D digital track map-based GNSS NLOS signal analytical identification method
CN111076700B (zh) 一种基于车载经纬仪的自定位定向系统及方法
Løvås Increasing the accuracy of positioning in mobile mapping systems-a method supported by simultaneous localization and mapping
CN115585807B (zh) 基于机器学习的gnss/ins组合导航方法
CN108459297A (zh) 一种能快速寻找正北方向的精准指北仪
EP3647819B1 (en) Post-processing global navigation satellite system (gnss) position data using mirrored gnss data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150325