CN104459667A - Sparse array DOA estimation method based on CLEAN - Google Patents

Sparse array DOA estimation method based on CLEAN Download PDF

Info

Publication number
CN104459667A
CN104459667A CN201410720772.2A CN201410720772A CN104459667A CN 104459667 A CN104459667 A CN 104459667A CN 201410720772 A CN201410720772 A CN 201410720772A CN 104459667 A CN104459667 A CN 104459667A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
target
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410720772.2A
Other languages
Chinese (zh)
Other versions
CN104459667B (en
Inventor
杨刚
袁子乔
付学斌
王亚军
赵博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Electronic Engineering Research Institute
Original Assignee
Xian Electronic Engineering Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Electronic Engineering Research Institute filed Critical Xian Electronic Engineering Research Institute
Priority to CN201410720772.2A priority Critical patent/CN104459667B/en
Publication of CN104459667A publication Critical patent/CN104459667A/en
Application granted granted Critical
Publication of CN104459667B publication Critical patent/CN104459667B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/2813Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a sparse array DOA estimation method based on CLEAN. The sparse array DOA estimation method based on CLEAN comprises the following steps that the number of targets is calculated according to the MDL rule; an amplitude square accumulation result of wave beams formed by all snapshot data is calculated; the calculation result is searched for the number of the wave beam corresponding to the maximum value; an accurate number of the wave beam is calculated through an equisignal angle measurement method; a target angle is calculated; whether all signals are detected or not is judged; detected target responses are removed through the CLEAN concept, and then iteration is conducted. By the adoption of the sparse array DOA estimation method based on CLEAN, the influence of action of a strong target and a high sidelobe on weak target angle estimation is well restrained, and a high angular accuracy is achieved; in addition, the consumed time is short, and time consumption is not sensitive to the number of array elements.

Description

Sparse array DOA estimation method based on CLEAN
Technical Field
The invention belongs to the technical field of radar signal processing, and particularly relates to a sparse array DOA estimation method based on CLEAN.
Background
In radar and communication systems, array antennas are used in an extremely wide variety of applications. To date, evenly spaced antennas are one of the simplest and most widely used array antennas. However, the possibility of grating lobes exists in the uniformly spaced antenna arrays, and in order to avoid the grating lobes, the spacing of the antenna arrays is usually required to be not more than half the wavelength. Therefore, if a high angular resolution is desired, a large number of elements are required, which not only increases the cost of the antenna, but also generates a large amount of data that increases the burden on the digital signal processing system.
And (3) carrying out sparsification treatment on the uniformly distributed array, namely randomly removing some array elements from the uniform array, so that the array elements are not regularly arranged any more to obtain the sparse array. The sparse array can effectively inhibit the occurrence of grating lobes and improve the angular resolution, but the peak side lobe and the mean side lobe of the sparse array are high, the response of the interaction of a strong target and the high side lobe is possibly greater than that of a weak target, and the probability of false targets is high.
Direction of Arrival (DOA) estimation is always one of the hot spots in the array signal processing field, and accurate DOA estimation is crucial to subsequent processing. Current research on DOA estimation algorithms focuses mainly on two excellent algorithms, MUSIC and ESPRIT.
The music (multiple Signal classification) algorithm has good resolution, but the algorithm needs to perform spectral peak search at all possible angles, the operation amount is extremely large, and the angle measurement precision is related to the interval of the selected search angle. Root-MUSIC is proposed on the basis of MUSIC, and a closed-form solution is directly obtained without performing spectral peak search. However, the Root-MUSIC algorithm has a strategy of solving the Root of a equation, and the time for solving the Root of the equation is increased rapidly along with the increase of the number of array elements, so that the Root-MUSIC increases the time burden when the number of array elements is large.
Disclosure of Invention
Technical problem to be solved
In order to avoid the defects of the prior art, the invention provides a sparse array DOA estimation method based on CLEAN, which solves the problem that when strong and weak targets coexist, the response corresponding to a false target generated by the interaction of the strong target and the high side lobe of the sparse array is larger than the response of the weak target.
Technical scheme
A sparse array DOA estimation method based on CLEAN is characterized by comprising the following steps:
step 1: calculating the number of targets in the sparse array signal of CLEAN by using a minimum description length MDL rule;
step 2: t is>When 0, calculating the square accumulation result of the amplitude of all the snapshot data formed beamsOtherwise, ending the calculation process; wherein: y issFor the s-th snapshot data xsFormation using FFTBeam data of ys=FFT(xs) (ii) a L is the number of fast beats;
and step 3: searching a beam number corresponding to the maximum value in the amplitude square accumulation result P;
and 4, step 4: calculating 'precise beam number' p by using equal signal angle measurement methodt
<math> <mrow> <msub> <mi>p</mi> <mi>t</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mi>k</mi> <mo>&CenterDot;</mo> <mi>sign</mi> <mo>&CenterDot;</mo> <mi>min</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> <mn>0.5</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein p is1Is the beam number corresponding to the maximum value in P, P2The wave beam number is the second largest value, k is the amplitude comparison angle slope corresponding to the array, sign is the sign bit;
<math> <mrow> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>></mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&le;</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the above-mentioned <math> <mrow> <mi>sign</mi> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
And 5: the target angle is calculated and the target angle is calculated,
wherein, λ is wavelength, d is array element interval, and M is FFT point number;
step 6: and (5) clearing the detected target response by applying a CLEAN idea, reducing the T value by one, and turning to the step 2 for iteration.
The sparse array is formed by randomly removing some array elements in a uniformly spaced array by using an array ArrAnd the element corresponding to the removed array element is 0, and the element corresponding to the reserved array element is 1.
The application of CLEAN idea to clear the detected target response is: approximating the amplitude square accumulation result P of all the snapshot data formed beams calculated in the step 2 to the amplitude square accumulation of one snapshot data formed beam, and firstly solving a target TmCorresponding amplitude
<math> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>sqrt</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>A</mi> <mi>rr</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>jknd</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msup> <mo>&CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <msub> <mi>z</mi> <mi>m</mi> </msub> <mi>n</mi> </mrow> <mi>M</mi> </mfrac> </mrow> </msup> <mo></mo> </mrow> </mfrac> </mrow> </math>
Wherein,Pm-1as a result of the (m) -1) th iteration, zmIs Pm-1The beam number, theta, corresponding to the medium maximum valuemIs a step (f)
Calculated target TmN is the number of array elements, k is 2 pi/λ;
at Pm-1Clearing the target TmResponse to (2)
<math> <mrow> <msub> <mi>P</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mrow> <mo>|</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>jknd</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msup> <msub> <mi>A</mi> <mi>rr</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;qn</mi> </mrow> <mi>M</mi> </mfrac> </mrow> </msup> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0</mn> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>.</mo> </mrow> </math>
Advantageous effects
The invention provides a sparse array DOA estimation method based on CLEAN, which comprises the following steps: (a) calculating a target number using a Minimum Description Length (MDL) criterion; (b) calculating the amplitude square accumulation result of all snapshot data formed wave beams; (c) searching a beam number corresponding to the maximum value in the calculation result; (d) calculating 'accurate beam number' by using an equal signal angle measurement method; (e) calculating a target angle; (f) judging whether all signals are detected, if so, ending, otherwise, turning to (g); (g) and (c) clearing the detected target response by applying a CLEAN idea, and turning to (c) for iteration. The method can well inhibit the influence of strong target and high side lobe effect results on the estimation of the weak target angle, achieves high angle measurement precision, and is short in time consumption and insensitive to array element number.
According to the method, the influence of strong signals on weak signal detection can be eliminated by utilizing the CLEAN idea, and the algorithm is simple in calculation, so that the direction of arrival of the sparse array can be quickly and accurately estimated under the condition that the strong signals and the weak signals coexist.
Drawings
In all figures FAC represents the process of the invention, RM represents the Root-MUSIC process,
FIG. 1 is a flow chart showing the steps of the method of the present invention;
fig. 2 is a schematic diagram showing a directional diagram comparison of a sparse array (shown by SA in the figure) having an array element pitch of 0.5909 λ (λ is wavelength) and a one-dimensional uniform line array (shown by ULA in the figure) having an array element pitch of 0.5 λ in the case where the number of array elements is all 28.
FIG. 3 is a graph of the time comparison of the example method and the Root-MUSIC method with respect to the number of array elements.
FIG. 4 is an exemplary graph of two targets (one SNR of 20dB at an angle of 10 DEG; and the other SNR of 40dB at an angle of 30 DEG) for the method of this example, where (a) is the initial response plot, (b) is the response plot for the strong target, and (c) is the response plot resulting from the removal of (b) from (a).
FIG. 5 is a graph comparing the mean-squared error Root (RSME) against SNR for the method of this example and the Root-MUSIC method, for a target number of 2, for target angles of 10 and 30, respectively, for equal SNR for both targets, varying from 10dB to 70dB, and for a 1dB separation.
FIG. 6 is a graph showing the comparison of the performance of the method of this example with that of the Root-MUSIC method when the two targets have the same SNR (both 20dB) and the incident angles are relatively close (one of the targets is fixed at 20 degrees and the other target is varied from 20.15 degrees to 26 degrees with a spacing of 0.1 degrees), where (a) is an RMSE comparison plot and (b) is an angle comparison plot (the solid blue (angle-1) and the dotted line (angle-2) indicate the true angles of the two targets and the red and green sublists indicate the angle values found by FAC and RM)).
FIG. 7 is a graph showing the comparison of the performance of the method of this example and the Root-MUSIC method when the incident angles are relatively close when the SNR of the two targets are different (target 1 is 20dB and target 2 is 25dB), wherein target 1 is fixed at 20 DEG, target 2 is changed from 20.15 DEG to 26 DEG at an interval of 0.1 DEG, and (a) is an RMSE comparison chart, (b) is an angle comparison chart (the solid blue line (angle-1) and the broken line (angle-2) indicate the true angles of the two targets, and the red and green sublists indicate the angle values obtained by FAC and RM)
Detailed Description
The invention will now be further described with reference to the following examples and drawings:
the present invention is described by taking a one-dimensional array as an example.
For a one-dimensional linear array antenna composed of N elements, a sparse array can be obtained by randomly removing some elements. For convenience of description, a one-dimensional array A containing N elements is usedrrAnd representing a sparse array, wherein the element corresponding to the removed array element is 0, and the element corresponding to the reserved array element is 1. Assuming that the array element spacing is d, there are p incident targets with directions of thetai(i-1, … p), and the noise received by each array element is zero-mean white gaussian noise. The received signal can be expressed as:
X=(AS+N)·Arr(1) in the formula, X is sampling data, S is a target vector, N is a noise vector, and a is a steering vector matrix, specifically:
A=[a(θ1)a(θ2)…a(θp)](2) wherein a (θ)i) A steering vector of the ith signal is specifically:
<math> <mrow> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>jkd</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>jk</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>d</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> </mrow> </msup> <msup> <mo>]</mo> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math> wherein k is 2 pi/lambda, and d is the array element spacing.
Now referring to fig. 1, a sparse array direction of arrival estimation method according to the present invention will be described
The method of the invention firstly needs to judge the number of targets. The accurate determination of the number of targets is important for DOA estimation, false targets can occur if the number of targets is selected to be too large, and targets can be missed if the number of targets is selected to be too small. As shown in fig. 1, in step S101, the Minimum Description Length (MDL) criterion is used in the present algorithm to calculate the target number T.
When forming wave beams, the sampled data of each array element is weighted and summed to obtain array output (4)
y=WHX=WH{(AS+N)·Arr} (4) wherein W ═ W1,W2,…WN]TAnd the weight value is corresponding to each array element. When W is a (theta)i) The beam will be directed at thetaiAnd (4) direction.
At this time, the process of the present invention,
<math> <mrow> <mi>y</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mo>{</mo> <mrow> <mo>(</mo> <mi>AS</mi> <mo>+</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>rr</mi> </msub> <mo>}</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>jknd</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
if the quantization is performed according to equation (6),
<math> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>&lambda;q</mi> <mi>Md</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
then equation (5) becomes the DFT expression of x (t), and in practice, it is often implemented by FFT. Therefore, M-point FFT is performed on the sampled values obtained by the array to obtain M pieces of received beam data, and the relationship between each beam number and the corresponding beam pointing angle is shown in formula (6).
In step S102, judging whether T is larger than zero, if so, performing step S103, otherwise, ending the calculation process
In step S103, the S-th snapshot data is assumed to be xsThen the beamforming result is: y iss=FFT(xs). For the data with the fast beat number L, the obtained accumulation result of the square of the amplitude of the beam formed by all the fast beat data is as follows:
<math> <mrow> <mi>P</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </munderover> <msup> <mrow> <mo>|</mo> <msub> <mi>y</mi> <mi>s</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
the difference to sum beam ratio between the two beams formed by the FFT is approximately proportional to the deviation of the target equal signal axis, and similarly, the amplitudes of the two beams are squared and then summed with the beam Σ and the difference beam Δ, Δ/Σ still being proportional to the deviation of the target from the equal signal axis. Therefore, when the accumulation result of each beam is obtained by equation (7), the ratio of the difference beam to the sum beam of two adjacent beams in P is linearly related to the signal axis such as the target deviation.
In step S104, find out the beam number P corresponding to the maximum value in P1And the next largest value of the beam number p corresponding to the target2
<math> <mrow> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>></mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&le;</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
In step S105, the "precise beam number" p corresponding to the target is obtained by using equation (9)t
<math> <mrow> <msub> <mi>p</mi> <mi>t</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mi>k</mi> <mo>&CenterDot;</mo> <mi>sign</mi> <mo>&CenterDot;</mo> <mi>min</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
K is the amplitude comparison angle slope corresponding to the array, is related to the specific array, utilizes the formula (5) to obtain the multi-beam response y, and then takes P ═ y2A 1 is to p1And p2Selecting any adjacent value of 0 … M-1, and adding ptIs taken as p1And p2The value between k can be obtained by equation (9). sign is a sign bit, and the values are as follows:
<math> <mrow> <mi>sign</mi> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
in step S106, the angle corresponding to the target is obtained by equation (6):
<math> <mrow> <mi>&theta;</mi> <mo>=</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>t</mi> </msub> <mi>&lambda;</mi> </mrow> <mi>Md</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
since the side lobe of the sparse array is relatively high, the value of the generated false target in P is likely to be larger than the value of the real weak target in P, so that the maximum value point in P is likely to correspond to the false target. Therefore, when there are T targets found by the MDL, the maximum T maximum points in P are considered as incorrect targets.
In step S107, in order to suppress the influence of high side lobes, the idea of CLEAN is applied, and after each target is obtained, the response of the target is cleared in the calculation result. The precise method is to eliminate the influence of the target at each snapshot, but the algorithm complexity is very high, and the system requirement cannot be met in the occasion with high real-time requirement. Through simulation experiments, the result obtained by only one clearing operation is very close to the result obtained by one clearing operation per snapshot by regarding the calculation results (namely P) of all snapshots as the calculation result of one snapshot. Suppose a target TmAt Pm-1(result of m-1 iteration) with a corresponding maximum beam number of zmThe angle obtained by the formula (11) is θmThen the amplitude of the target is:
<math> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>sqrt</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>A</mi> <mi>rr</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>jknd</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msup> <mo>&CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <msub> <mi>z</mi> <mi>m</mi> </msub> <mi>n</mi> </mrow> <mi>M</mi> </mfrac> </mrow> </msup> <mo></mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
at Pm-1Clearing the target TmAfter the response of (c), we get:
<math> <mrow> <msub> <mi>P</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mrow> <mo>|</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>jknd</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msup> <msub> <mi>A</mi> <mi>rr</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;qn</mi> </mrow> <mi>M</mi> </mfrac> </mrow> </msup> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0</mn> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
after step S107 is executed, the process proceeds to step S102 to iterate.
To illustrate the effectiveness of the method of the present invention, simulation experiments comparing the method of the present invention with the Root-MUSIC method are performed below. In the subsequent context of the present invention, FAC stands for the method of the present invention and RM for the Root-MUSIC method.
Without loss of generality, we chose to use sparse array Arr=[1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 10 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 00 1 1 1]The array element spacing was 0.5909 λ, and all of the numbers (MC) involved in the Monte Carlo experiments were 200. The noise added in the experiment is additive white Gaussian noise, the fast beat number is 64, and the number of points of all FFT is 128 points. In addition to experiment one, other experiments were performed with two targets and a taylor window was added. The comparison method mainly comprises an average mean square error (RMSE), and the calculation formula corresponding to the 2 targets is as follows:
<math> <mrow> <mi>RMSE</mi> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>MC</mi> </mfrac> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>MC</mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
experiment one: sparse array effective array element number (A) used in this experimentrrNumber of 1 in) is 28, the directional pattern of the sparse array is compared with the directional pattern of 28 uniform linear arrays with an array element spacing of 0.5 lambda, and the result is shown in fig. 2. It can be seen that under the condition of the same (effective) array element, the sparse array (corresponding to red in the figure) can obtain a narrower main lobe, but the mean side lobe and the peak side lobe are both higher.
Experiment two: in order to compare the time complexity of FAC and RM, one-dimensional uniform linear arrays with array elements of 6-60 (interval of 1) are selected, the incidence directions of two targets are 20 degrees and 40 degrees respectively, and SNR is 20 dB. The results of the experiment are shown in FIG. 3. As can be seen from fig. 3, RM consumes less time when the number of array elements is less than 20, and FAC consumes less time when the number of array elements is greater than or equal to 20; it can also be seen that as the number of array elements increases, the time for RM increases rapidly, but the time for FAC increases very slowly. It can be shown that the time of the FAC method is insensitive to the number of array elements and always takes little time.
Experiment three: in order to verify the performance of FAC when the response of the strong target sidelobe is greater than that of the weak target, in this experiment, the SNRs of the two targets are respectively selected to be 20dB and 40dB, and the incident angles are respectively 10 ° and 30 °. The response map calculated by equation (7) is shown in fig. 4(a), and it can be seen that the maximum point corresponds to the target of 30 °, and the response corresponding to the target of 10 ° is not an extreme point, because the side lobe response brought by the target of 30 ° exceeds the response corresponding to the target of 10 °. The response for the 30 ° target (i.e., the second term in equation (13)) is shown in fig. 4(b), and fig. 4(c) is obtained by removing fig. 4(b) from fig. 4(a), and it can be seen that the response for the 30 ° target is well cleared and the peak for the 10 ° target appears. The FAC found results were: 10.031 ° and 29.999 °, the result of the RM calculation is: 10.044 ° and 29.946 °. The experiment shows that the FAC can still accurately estimate the incident angles of all targets under the condition that the sidelobe response of the strong target is larger than that of the weak target.
Experiment four: the two target angles were chosen to be 10 ° and 30 °, with equal SNR, varying from 10dB to 70dB, with 1dB separation, and the experimental results are shown in fig. 5. As can be seen from fig. 5, when the difference between the two target incident angles is large and the SNR is the same, the accuracy of FAC and RM is high, FAC is better than RM, and FAC and RM are not sensitive to SNR variation.
Experiment five: to verify the performance of the algorithm when the two targets have the same SNR and the angles are close, the SNR of both targets is selected to be 20dB, the incident angle of one target is fixed at 20 °, the incident angle of the other target is changed from 20.15 ° to 26 °, the interval is 0.1 °, and the experimental results are shown in fig. 6. As can be seen from fig. 6(a), when the SNR is the same and the two target incident angles are very close, the RM and FAC effect is relatively poor, the FAC effect is relatively good when the angles are very close, as the angle increases, the RM effect gradually becomes better, and when the angle difference is relatively large, the RM effect and FAC effect are both good.
In FIG. 6(b), the solid blue line (angle-1) and the broken line (angle-2) indicate the actual angles of the two targets, and the red and green indicate the angles obtained by FAC and RM, respectively. It can be seen that neither FAC nor RM is very accurate when the two target angles are close. When the two target angles are different greatly, the angles obtained by FAC and RM are very accurate.
Experiment six: to verify the performance of the algorithm when the two targets have different SNRs and the angles are close, the SNR of the first target is taken to be 20dB, the SNR of the second target is taken to be 25dB, the incident angle of the first target is fixed at 20 °, the incident angle of the second target is changed from 20.15 ° to 26 °, the interval is 0.1 °, and the experimental results are shown in fig. 7. As can be seen from fig. 7(a), when the SNR of the two targets is different, the FAC results are superior to the RM results in most cases. As can be seen from fig. 7(b), when the SNR of two targets is different, and the two target angles are relatively close, in most cases, the FAC method can estimate the angle with higher SNR almost exactly, and the value of the other angle is substantially consistent with that of RM estimation; while both angles of the RM estimate have large errors.
By comprehensively considering all simulation experiments, the method disclosed by the invention is low in time consumption, insensitive to array element number and high in target angle estimation precision, and can well inhibit the influence of sparse array strong target and high side lobe effect results on weak target angle estimation.

Claims (3)

1. A sparse array DOA estimation method based on CLEAN is characterized by comprising the following steps:
step 1: calculating the number of targets in the sparse array signal of CLEAN by using a minimum description length MDL rule;
step 2: t is>When 0, calculating the square accumulation result of the amplitude of all the snapshot data formed beamsOtherwise, ending the calculation process; wherein: y issIs as followss snapshot data xsBeam data, y, formed using FFTs=FFT(xs) (ii) a L is the number of fast beats;
and step 3: searching a beam number corresponding to the maximum value in the amplitude square accumulation result P;
and 4, step 4: calculating 'precise beam number' p by using equal signal angle measurement methodt
<math> <mrow> <msub> <mi>p</mi> <mi>t</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mi>k</mi> <mo>&CenterDot;</mo> <mi>sign</mi> <mo>&CenterDot;</mo> <mi>min</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> <mn>0.5</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein p is1Is in PThe beam number, p, corresponding to the maximum value2The wave beam number is the second largest value, k is the amplitude comparison angle slope corresponding to the array, sign is the sign bit;
<math> <mrow> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>></mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&le;</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the above-mentioned <math> <mrow> <mi>sign</mi> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
And 5: the target angle is calculated and the target angle is calculated,
wherein, λ is wavelength, d is array element interval, and M is FFT point number;
step 6: and (5) clearing the detected target response by applying a CLEAN idea, reducing the T value by one, and turning to the step 2 for iteration.
2. The CLEAN-based sparse array direction of arrival DOA estimation method according to claim 1, characterized in that: the sparse array is formed by randomly removing some array elements in a uniformly spaced array by using an array ArrAnd the element corresponding to the removed array element is 0, and the element corresponding to the reserved array element is 1.
3. The CLEAN-based sparse array direction of arrival DOA estimation method according to claim 1, characterized in that: the application of CLEAN idea to clear the detected target response is: all blocks calculated in step 2The amplitude square accumulation result P of the wave beam formed by the beat data is approximate to the amplitude square accumulation of the wave beam formed by the snapshot data, and firstly, the target T is obtainedmCorresponding amplitude
<math> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>sqrt</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>A</mi> <mi>rr</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>jknd</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msup> <mo>&CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <msub> <mi>z</mi> <mi>m</mi> </msub> <mi>n</mi> </mrow> <mi>M</mi> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> </math>
Wherein, Pm-1As a result of the (m) -1) th iteration, zmIs Pm-1The beam number, theta, corresponding to the medium maximum valuemTarget T calculated for step (f)mN is the number of array elements, k is 2 pi/λ;
at Pm-1Clearing the target TmResponse to (2)
<math> <mrow> <msub> <mi>P</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mrow> <mo>|</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>jknd</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msup> <msub> <mi>A</mi> <mi>rr</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;qn</mi> </mrow> <mi>M</mi> </mfrac> </mrow> </msup> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0</mn> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>.</mo> </mrow> </math>
CN201410720772.2A 2014-12-01 2014-12-01 Sparse array DOA estimation method based on CLEAN Active CN104459667B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410720772.2A CN104459667B (en) 2014-12-01 2014-12-01 Sparse array DOA estimation method based on CLEAN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410720772.2A CN104459667B (en) 2014-12-01 2014-12-01 Sparse array DOA estimation method based on CLEAN

Publications (2)

Publication Number Publication Date
CN104459667A true CN104459667A (en) 2015-03-25
CN104459667B CN104459667B (en) 2017-02-01

Family

ID=52906020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410720772.2A Active CN104459667B (en) 2014-12-01 2014-12-01 Sparse array DOA estimation method based on CLEAN

Country Status (1)

Country Link
CN (1) CN104459667B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785315A (en) * 2016-04-20 2016-07-20 西北工业大学 Angle measurement method of linear array, covariance matrix and main diagonal reconstruction
CN106483493A (en) * 2016-09-13 2017-03-08 电子科技大学 A kind of sparse double parallel linear array and estimating two-dimensional direction-of-arrival method
CN107678008A (en) * 2017-09-07 2018-02-09 西安电子工程研究所 A kind of plural clutter map CFAR detection method
CN108287333A (en) * 2018-03-19 2018-07-17 电子科技大学 A kind of main lobe anti-interference method of joint JADE and CLEAN
CN108710103A (en) * 2018-06-12 2018-10-26 西安电子科技大学 Strong and weak multiple target super-resolution direction finding based on thinned array and Sources number estimation method
CN109298395A (en) * 2018-09-28 2019-02-01 西安建筑科技大学 A kind of thinned array Beamforming Method based on maximum Signal to Interference plus Noise Ratio
CN109324309A (en) * 2018-09-10 2019-02-12 中国航天科工集团八五研究所 A kind of rotation single antenna angle-measuring equipment and its measurement method
CN110361760A (en) * 2019-07-02 2019-10-22 河海大学 GNSS receiver multi-beam based on subspace tracking is directed toward anti-interference method
CN110471036A (en) * 2019-08-23 2019-11-19 电子科技大学 A kind of decoy cleaning method in big array near field focus
CN113376601A (en) * 2021-05-10 2021-09-10 西安电子科技大学 Side lobe suppression method of frequency agile radar based on CLEAN algorithm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813764A (en) * 2010-03-25 2010-08-25 电子科技大学 Method for suppressing uniform ultra-sparse array antenna beam pointing fuzziness
KR101426862B1 (en) * 2013-03-19 2014-08-07 국방과학연구소 3 Dimension Array Antenna System and Altitude Angle Estimation Method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813764A (en) * 2010-03-25 2010-08-25 电子科技大学 Method for suppressing uniform ultra-sparse array antenna beam pointing fuzziness
KR101426862B1 (en) * 2013-03-19 2014-08-07 국방과학연구소 3 Dimension Array Antenna System and Altitude Angle Estimation Method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAN LU, RENBIAO WU, HAITAO LIU: "Global positioning system anti-jamming algorithm based on period repetitive CLEAN", 《IET RADAR, SONAR AND NAVIGATION》 *
张桦: "随机稀布阵列CLEAN技术的FPGA设计与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
徐振海,王罗胜斌,熊子源,王伟: "雷达目标最大信号法测角精度研究", 《电气电子教学学报》 *
计征宇,杨向华: "基于FFT与MUSIC的改进DOA估计算法", 《系统仿真学报》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785315A (en) * 2016-04-20 2016-07-20 西北工业大学 Angle measurement method of linear array, covariance matrix and main diagonal reconstruction
CN106483493A (en) * 2016-09-13 2017-03-08 电子科技大学 A kind of sparse double parallel linear array and estimating two-dimensional direction-of-arrival method
CN106483493B (en) * 2016-09-13 2018-12-18 电子科技大学 A kind of sparse double parallel linear array and estimating two-dimensional direction-of-arrival method
CN107678008A (en) * 2017-09-07 2018-02-09 西安电子工程研究所 A kind of plural clutter map CFAR detection method
CN108287333B (en) * 2018-03-19 2020-05-12 电子科技大学 Main lobe anti-interference method combining JADE and CLEAN
CN108287333A (en) * 2018-03-19 2018-07-17 电子科技大学 A kind of main lobe anti-interference method of joint JADE and CLEAN
CN108710103A (en) * 2018-06-12 2018-10-26 西安电子科技大学 Strong and weak multiple target super-resolution direction finding based on thinned array and Sources number estimation method
CN109324309A (en) * 2018-09-10 2019-02-12 中国航天科工集团八五研究所 A kind of rotation single antenna angle-measuring equipment and its measurement method
CN109298395A (en) * 2018-09-28 2019-02-01 西安建筑科技大学 A kind of thinned array Beamforming Method based on maximum Signal to Interference plus Noise Ratio
CN110361760A (en) * 2019-07-02 2019-10-22 河海大学 GNSS receiver multi-beam based on subspace tracking is directed toward anti-interference method
CN110361760B (en) * 2019-07-02 2022-12-06 河海大学 GNSS receiver multi-beam pointing anti-interference method based on subspace tracking
CN110471036A (en) * 2019-08-23 2019-11-19 电子科技大学 A kind of decoy cleaning method in big array near field focus
CN110471036B (en) * 2019-08-23 2022-08-02 电子科技大学 False target cleaning method used in large array near field focusing
CN113376601A (en) * 2021-05-10 2021-09-10 西安电子科技大学 Side lobe suppression method of frequency agile radar based on CLEAN algorithm

Also Published As

Publication number Publication date
CN104459667B (en) 2017-02-01

Similar Documents

Publication Publication Date Title
CN104459667A (en) Sparse array DOA estimation method based on CLEAN
CN103353595B (en) Meter wave radar height measurement method based on array interpolation compression perception
CN106707257B (en) MIMO radar Wave arrival direction estimating method based on nested array
CN105445696A (en) Nested L-shaped antenna array structure and direction of arrival estimation method thereof
CN103235292B (en) Full-dimension and difference angle measurement method for zero setting conformal calibration of a planar phased array
CN108710103B (en) Strong and weak multi-target super-resolution direction finding and information source number estimation method based on sparse array
Nickel et al. Statistical performance prediction of generalized monopulse estimation
CN103616661B (en) A kind of sane far-field narrowband signal source number estimation method
CN108449123B (en) Multi-target detection, identification and two-dimensional angle estimation method for ground spread spectrum communication system
CN109765521B (en) Beam domain imaging method based on subarray division
CN102565790A (en) Self-adaptive sum-difference angle measurement method for plane phased array
CN103885049B (en) The low elevation estimate method of metre wave radar based on minimal redundancy Sparse submatrix
CN113032721B (en) Far-field and near-field mixed signal source parameter estimation method with low computation complexity
CN106980104B (en) Signal direction of arrival self-correction method for sensor array
CN104793177B (en) Microphone array direction-finding method based on least square method
CN103698753A (en) Passive passage correcting method of small-size array
CN111239677B (en) Multi-beam passive monopulse angle measurement method based on digital array
CN103323832B (en) Amplitude-phase error correction method for phased array three-dimensional camera shooting sonar system energy converter array
CN109613504A (en) A kind of quick angle estimation method of sparse linear array
CN108828504B (en) MIMO radar target direction fast estimation method based on partial correlation waveform
KR101468548B1 (en) Radar Apparatus and Method for Estimating Direction of Arrival in the same
CN105572630B (en) Pulse target DOA estimation method based on more ripple positions Combined Treatment
CN110196417B (en) Bistatic MIMO radar angle estimation method based on emission energy concentration
CN115436896A (en) Rapid radar single-snapshot MUSIC angle measurement method
WO2009140998A1 (en) A method for obtaining an array antenna

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant