CN104423413A - 用于控制过程变量的控制器和方法以及包括功率供应和控制器的功率供应电路 - Google Patents

用于控制过程变量的控制器和方法以及包括功率供应和控制器的功率供应电路 Download PDF

Info

Publication number
CN104423413A
CN104423413A CN201410434132.5A CN201410434132A CN104423413A CN 104423413 A CN104423413 A CN 104423413A CN 201410434132 A CN201410434132 A CN 201410434132A CN 104423413 A CN104423413 A CN 104423413A
Authority
CN
China
Prior art keywords
signal
resonator
feedback
controller
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410434132.5A
Other languages
English (en)
Other versions
CN104423413B (zh
Inventor
胡佳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Intel Deutschland GmbH
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN104423413A publication Critical patent/CN104423413A/zh
Application granted granted Critical
Publication of CN104423413B publication Critical patent/CN104423413B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/462Indexing scheme relating to amplifiers the current being sensed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

一种用于控制过程变量(202)的控制器(100;200)包括被配置成接收反馈信号的输入接口(102),所述反馈信号指示要被控制的过程变量(202)和针对过程变量的设定点(104)之间的误差。至少第一积分器(108)被配置成使用依赖于反馈信号的积分器输入信号而导出累积误差信号;并且具有预定谐振频率的至少一个谐振器被配置成使用依赖于反馈信号的谐振器输入信号提供谐振器输出信号。输出接口(130)被配置成提供用于影响过程变量(202)的操作信号,所述操作信号是使用累积误差信号和谐振器输出信号导出的。

Description

用于控制过程变量的控制器和方法以及包括功率供应和控制器的功率供应电路
技术领域
本文所述的实例涉及用于控制过程变量(process variable)的控制器以及用于控制过程变量的方法。
背景技术
需要用于控制过程变量的控制器的应用是多种多样的。例如,闭环控制器可用于控制为功率放大器供电的功率供应的输出电压。由功率放大器拉出的电流与动态改变并因此具有宽带频谱的其当前的输入/输出功率有关。继而,交流电流对功率供应的输出电压进行调制,因为它的输出阻抗不是不确定地低。为了避免输出电压不合期望的下降,例如闭环控制器的控制器可用于动态地控制由功率供应提供的输出电压。为了避免将附加噪声引入到由例如移动通信射频(RF)放大器的功率放大器提供的输出信号中,功率供应在需要低噪声的频带中应当具有低阻抗,或者由功率供应引入的噪声分量应当在这些频带中被消除。
附图说明
下面将仅通过实例并参照附图描述装置和/或方法的一些示例,其中:
图1示出用于控制过程变量的控制器的示例;
图2示出图1的控制器的噪声特性的图示;
图3示出传统控制器及其相关联的噪声特性;
图4示出包括由控制器控制的功率供应的功率供应电路的示例;
图5示出传统功率供应的示例;
图6示出另外的传统功率供应;
图7示出功率供应电路的另外的示例;
图8示出功率供应电路的另外的示例;
图9示出功率供应电路的另外的示例;
图10示出用于控制过程变量的方法的示例的示意图;
图11示出用于提供系统的数学描述的模型的控制器和功率供应的示例的示意图;
图12详细示出图11的功率供应的滤波器电路;
图13图示时间离散域中的图11的配置;
图14示出时间离散域中的功率供应电路的示例;
图15示出时间离散域中的另外的示例;以及
图16示出功率供应电路的示例的噪声特性的仿真结果;以及
图17示出移动电信设备的示例。
具体实施方式
现在将参考附图更充分地描述各种示例性示例,在所述附图中图示了一些示例性示例。在图中,为了清楚,可夸大线、层和/或区域的厚度。
因此,虽然示例性示例能够有各种修改和可替换形式,但其示例以示例的方式在图中示出,并且将在本文中被详细描述。然而,应当理解的是:并非旨在将示例性示例限制到公开的特定形式,而是相反,示例性示例将涵盖落入本公开范围之内的所有修改、等同物和替代物。相同的附图标记在图的整个说明中指代相同或类似的元件。
应该理解的是,当元件被称为 “连接”或“耦合”到另一个元件时,它可以直接连接或耦合到另一个元件,或者可能存在中间元件。作为对比,当元件被称为 “直接连接”或“直接耦合”到另一个元件时,不存在中间元件。应该以类似的方式解释用于描述元件之间关系的其它词语(例如“在…之间”与“直接在…之间”,“相邻”与“直接相邻”等)。
本文所用的术语仅用于描述特定示例的目的,并不旨在限制示例性示例。正如本文所使用,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文以其它方式明确指示。应该进一步理解的是,当在本文中使用时,术语“由…组成”、“由…构成”、“包括”和/或“包含”指定存在所陈述的特征、整数、步骤、操作、元件和/或部件,但不排除存在或附加一个或多个其它特征、整数、步骤、操作、元件、部件和/或它们的组。
除非以其它方式定义,否则本文所使用的所有术语(包括技术术语和科学术语)具有和示例所属的领域中普通技术人员通常理解的相同的含义。应进一步理解的是,术语(例如在通常使用的字典中定义的那些术语)应该被解释为具有和相关技术的上下文中的它们的含义一致的含义,并且将不以理想化或过于正式的意义解释,除非本文中如此清楚地定义。
在下文中论述用于控制由另外的设备生成或输出的过程变量或量(quantity)的控制器的一些示例。这些应用是不同的。例如,诸如蜂窝电话之类的移动设备中的包络跟踪射频(RF)功率放大器可能需要跟踪功率放大器(PA)的瞬时输出功率的功率供应。那些RF功率放大器可能是移动设备中最功率消耗的部件。为了降低功耗,可使用包络跟踪,这依赖于用于具有高效率的功率放大器的可调功率供应。例如,85%以上的功率供应效率以及至少两倍的发射带宽和离载波频率或传输频带的预定义频谱距离处的低本底噪声(noise floor)可能是合期望的。此外,当它们将用于移动设备中时,用于向功率放大器提供操作电压或功率的功率供应应当是成本效益的且尺寸小。
为了节省功率,可提供指定最小可接受的但足够量的输出功率的包络信号。包络信号例如可以由移动电信网络的基站提供或由移动设备本身的某个内部逻辑提供。因此,移动设备中功率放大器的功率供应通常由控制器控制,以便确保功率放大器的当前输出以高精确度跟随期望的包络。然而,由功率供应或控制器本身生成的噪声直接从功率供应耦合到射频放大器,使得功率供应本身在由将被满足的特定规范所给出的某些预定义频带处也应是低噪声的,使得发射器作为整体满足期望的谱依从性(compliance)。仅作为示例,在长期演进(LTE)移动网络中,在相对于接收器频带所在的载波频率例如从30MHz至400MHz的频谱距离处噪声电平应当非常低。
这是对提供具有低噪声特性的用于控制过程变量的解决方案的期望。
通过将具有预定谐振频率的谐振器包含为控制器内的元件,例如在其控制环路内,用于控制过程变量的控制器的示例可实现受控过程变量的特定的预定频率处的低噪声电平。
图1示出用于控制过程变量的控制器100的示例。出于更好地理解控制器的目的,图1通过噪声源204代替将由控制器控制的设备,以便能够注意于控制器的噪声特性及其噪声抑制能力。生成的噪声叠加到通过控制器100控制的过程变量202。过程变量202的特定示例将是用于射频放大器或用于任何其它功率消耗设备的供应电压。控制器100包括被适配成接收反馈信号的输入接口102,该反馈信号指示要被控制的过程变量和针对过程变量的设定点(set point)之间的误差。在这个特定的实现方式中,反馈信号由生成的过程变量本身的副本提供,例如通过反馈功率供应的输出电压。设定点例如可被存储为控制器内的固定设定点量104,正如图1中指示。然而,另外的示例还可包括用于设定点的可选的输入接口106,使得设定点可由另外的外部实体或设备控制或给出。控制器100内的第一积分器108用来使用依赖于反馈信号的积分器输入信号110而导出累积误差信号。在图1的特定示例中,通过加法器112生成误差信号,从由第一缩放器(scaler)114生成的第一缩放的反馈信号减去设定点104,以便导出依赖于过程变量202和针对过程变量202的设定点104之间误差的信号,所述第一缩放器114可操作以按第一缩放参数(a1)缩放反馈信号。
然而,根据另外的示例,可以其它方式生成误差信号,例如在控制器100的外部,使得误差信号还可能被直接提供给用于接收反馈信号102的输入接口。生成误差信号的任意的另外的方式还可用于实现相同或相似的结果。控制器100还包括具有预定谐振频率的至少一个谐振器120,至少一个谐振器120被适配成使用依赖于反馈信号的谐振器输入信号而提供谐振器输出信号。
在图1的示例中,谐振器120包括第二积分器122和反馈环路,所述第二积分器122具有耦合到第三积分器124的输入的输出,所述反馈环路耦合在第三积分器124的输出和第二积分器122的输入之间,所述反馈环路至少包括被适配成按第一反馈参数(g1)缩放第三积分器(124)的输出的信号的第一反馈缩放器125。第一反馈参数可用于改变谐振器120的预定参考频率。第二缩放器126被适配成按第二预定缩放参数(a2)缩放反馈信号以通过第二加法器128提供第二缩放的反馈信号作为对第二积分器122的第二积分器输入信号的贡献(contribution)。谐振器120还包括第三缩放器127,其被适配成按第三预定缩放参数(a3)缩放反馈信号以通过第三加法器129提供第三缩放的反馈信号作为对第三积分器124的第三积分器输入信号的贡献。
控制器100还包括输出接口130,其被适配成提供用于影响过程变量202生成的操作信号,操作信号是使用累积误差信号和谐振器输出信号导出的。
关于控制器100的另外的部件,应注意的是,那些部件可以任何任意的技术来实现,在模拟域或数字域中。例如,当在模拟域中实现时,可以使用开关(switching)电容器积分器和放大器实现积分器108、122和124,而可在该情况下使用传统的RLC-电路等来实现谐振器。当在数字域中实现时,可通过数值计算等实现积分和谐振属性。
类似地,操作信号(manipulation signal)可直接用于影响或引导受控设备,或者它可被预先转移到不同的域中,即从模拟到数字或反之亦然。
通过将谐振器120包含到控制器100内的反馈环路内,可高效地抑制在等于或接近于谐振器120的预定谐振频率的频率处的噪声生成免于进入到受控过程变量202。在谐振频率处或接近谐振频率处出现噪声的情况下,谐振器将生成强响应,导致谐振器输出信号对操作信号的高贡献,因此导致操作信号118的相当强的变化。强响应在这个意义上可被理解为具有大于激励信号幅度的幅度的谐振器输出信号。在过程变量内出现接近谐振频率的频率分量的情况下,那些频率分量因此可通过控制器100本身而被高效地抑制。在过程变量202的信号路径中的附加的传统电路可能变成被放弃。因此,与传统方法相比,噪声抑制不仅可以变得更高效,而且更便宜且需要更少的空间和组件,例如,这将在下面关于图3、5和6来论述。
为了在预定谐振频率处实现高效的噪声抑制,可选地可以使用附加的移相器向谐振器反馈信号114施加相移,使得谐振器的反馈环路内的总相移总计达180°。在该情况下,在这种特定频率处的噪声出现被很大程度地抑制。提到180°的相移确实还包括小偏差,由于电路部件的变化的特性,小偏差可能是不可避免的,诸如例如依赖于温度的变化或在生产过程期间出现的变化,这在半导体生产中是常见的。为此,180°的相移例如还可包括大约180°的相移,例如在170°至190°的范围之间,160°到200°的范围之间等。
在图1的示例中,1880°的相移通过谐振器实现方式来固有地获得,所述谐振器实现方式包括第二积分器122、第三积分器124、加法器128和加法器129。此特定实施方式针对经由第一反馈缩放器125反馈的信号自动提供180°的相移,因为每个单独的积分器提供90°的相移,相加达到期望的总的180°的相移。
控制器100还示出可选的设定点输入接口106,该设定点输入接口被适配成接收可以在模拟域或数字域二者中的外部提供的设定点信号132。设定点信号132指示针对过程变量202的合期望的设定点,并且通常是缓慢变化的平滑信号。换句话说,设定点信号132指示应当控制过程变量202的什么量或什么属性,即过程变量202的期望的值。
图2图示控制器100的控制环路的增益特性以及对应的噪声特性。在图2中所示的第一曲线图210中,以定性方式并因此以任意数字给出控制环路的环路增益的频率依赖性。环路增益以-20dB/dec的斜率从DC频率下降(roll off),直到它达到谐振器120的谐振频率211,由于存在被调谐到该频率的控制器100的反馈环路中的谐振器120,其中环路增益在原理上再次最高达无限增益。在谐振频率211之后,增益以三阶滤波器的-60dB/dec的斜率降低。图示噪声特性的噪声传递函数在图2的另外的曲线图212中示出。噪声传递函数是环路增益的倒数,因此从理想化的视角看,在DC和谐振频率211二者处具有无限增益。
一般而言,控制器的示例可使用累积误差信号而确定生成的操作信号的第一部分,并使用谐振器的输出信号确定生成的操作信号的第二部分。这可能允许考虑实现稳定性的误差信号累积以及用操作信号的特别强的变化有效抑制噪声贡献的强响应二者,这可能发生,也可能在相当短的时间尺度上消失。
为了比较的目的,图3图示传统控制器300的环路增益和噪声传递函数,传统控制器300在控制环路中具有一个积分器302,控制环路例如在图5和6中所示的传统功率供应中使用。噪声生成再次由虚拟噪声源304所示。传统控制器300包括单个积分器302和加法器306,以考虑控制环路内的反馈信号,正如图3所示。类似于图2,环路增益的频率响应在图3的右边被示为具有对应于具有单个极点(pole)的滤波器的20dB/dec的斜率的第一曲线图308。当例如被功率供应包含时,由于数字脉冲宽度调制器的量化噪声,或者通过由控制器300控制的设备所生成的信号的调制,噪声还可被传统控制环路300的环路结构衰减。在给定频率处的衰减量,即噪声传递函数,示于图310中,其也具有20dB/dec的斜率。在该环路的带宽周围的频率处,噪声的衰减已经大致为0dB。通常,可以假设在某一频率处的噪声与环路的带宽成比例。然而,如果这样的控制器用于控制例如移动设备的DC-DC转换器,则该带宽被限制为脉冲宽度调制器(PWM)的开关频率,并因此这样的结构不能实现针对超过大约30MHz的频率或频带的低噪声。
例如在具有功率供应的应用中,控制器100的示例可以显露其好处在于:在受控过程变量内(即在提供给放大器的功率供应的供应电压内)的噪声分量也可在主要由谐振器的谐振频率给出的高频处被抑制。
在图4中更详细地图示控制功率供应的供应电压生成的控制器100的示例的应用。图4示出一起在功率供应电路600的原理图内的控制器200的示例,所述功率供应电路600包括用于为射频放大器500(RFPA)提供dc供应电压510的功率供应400。功率供应电路600包括控制器200和可调功率供应400的示例。
已经结合图1论述了控制器200的大部分部件,以使得控制器的基本部件的重复描述被省略。代替地,参考关于那些部件的功能的解释的图1。图4的可调功率供应400是包括脉冲宽度调制器402(PWM)和驱动器电路404的开关功率供应或DC-DC转换器。在依赖于由脉冲宽度调制电路402提供的脉冲宽度调制信号的占空比的时刻期间,驱动器电路404被适配成向功率供应400的输出接口406提供系统供应电压。也就是说,例如,在当脉冲宽度调制的信号为“高”时,系统供应电压可被切换到输出接口406,而驱动器电路404在占空比的剩余部分内不供应电压。在图4的特定示例中,功率供应400还包括在其输出处的低通滤波器,以便在功率供应的输出处抑制PWM中包含的开关纹波。为此,至少一个电容器408耦合在输出接口406和例如地的参考电位之间。LC滤波器的附加电感410用作相同的目的。
除了图2所示的控制器的三个加法器之外,图4的控制器200还包括控制环路内的第四加法器140,用于经由第四缩放器142(a4)向操作信号118添加反馈信号的缩放表示。这可被理解为向控制环路添加比例分量,以使得积分器108提供基于误差信号的积分分量(I)的控制反馈,提供谐振分量的谐振器120以及加法器140用作向反馈(即向操作信号118的导出)添加比例分量(P)。控制器200包括被适配成接收另外的反馈信号的另外的输入接口144。正如图4中所示,功率供应电路600的另外的反馈信号是从电容器408上的电流导出的,因此还指示过程变量之间的误差,即供应电压510和用于所述电压的设定点之间。另外的反馈信号通过第五缩放器146(a5)而被缩放,并通过加法器140而被添加。为此,来自电容器408上电流的另外的反馈信号的导出可向操作信号的导出提供导数(derivative)分量(D)。控制电路200因此还可被看作是考虑过程变量的比例(P)、积分(I)和导数(D)分量以及谐振分量的PID控制器,以便导出适当的操作信号118。为了能够通过操作信号118调节功率供应400的输出电压510,由控制器200生成的操作信号被提供给功率供应400的控制输入接口。
从电容器408上的电流生成另外的反馈信号可具有以下益处:这直接提供依赖于过程变量的导数(即功率供应400的输出电压510的导数)的反馈。这可能是特别有利的,因为导数分量对噪声敏感,并因此其在传统PID控制器中的使用可能导致不稳定性。然而,接收如图4所指示的另外的反馈信号避免生成控制器本身内的反馈信号的导数的必要性并代替地使用本质上指示输出电压510的导数的信号。因此,可以使用该信号分量而不遇到控制环路内的不稳定性的危险。
使用如图4所示的功率供应电路并使用根据示例的控制器200可避免噪声分量包含到具有高效率的射频放大器500的输出,并且无需附加电路。出于比较的原因,在图5和6中示出传统功率供应电路。如图5所示的DC-DC转换器或功率供应传统上用作用于包络跟踪射频放大器500的功率供应。包络信号,即针对控制器的设定点,被输入到包含如图3所示的传统反馈环路的PID控制器700中。根据传统方法,从功率供应400输出的供应电压被复制到PID控制器700,作为反馈信号。虽然整体结构可提供良好的效率,但不能够衰减在接近和高于带宽的频率范围处的噪声,正如已经关于示出PID控制器700的闭环控制的图3解释的。
如前详尽阐述,根据一些示例的控制器200的示例的包含或功率供应电路600的使用可提供噪声抑制能力,而不必使用根据图6的另外的传统方法中的另外的电路。图6图示功率供应电路,其中使用有效地短路预定频率的噪声的附加电路(即陷波(notch)或缓冲器(snubber)滤波器电路452)来消除可能通过功率供应450引入的噪声。在图6的功率供应电路中(其还可用于包络跟踪射频功率放大器500)还进一步建议通过附加包含线性运算放大器454而实现高带宽,以扩展DC-DC转换器或功率供应450的能力。流出和流入运算放大器454的电流456被测量并被馈送到DC-DC转换器或功率供应450的控制环路,即反馈到其控制器700。控制器700用于确保:运算放大器454递送零电流到在静态条件的负载,其中负载电流由DC-DC转换器450提供。由占据负载电流大多数的DC-DC转换器450主导的整体效率可能高,而主要由线性运算放大器确定的带宽与单独使用DC-DC转换器相比可能被增强十分之几的兆赫兹。然而,为了在某一预定义的频带处实现低噪声,需要附加的LC缓冲器或陷波电路452以提供低阻抗并消除该频带处的信号。然而,需要用消耗附加空间的外部SMD部件实现缓冲器电路452的电感器和电容器,所述附加空间在具有有限大小和空间的移动设备中可能是不可接受的。此外,通过包含故障的附加可能点,它们增加了系统复杂性、成本和可靠性。这种方法的另外的问题是:在此结构中使用的放大器进一步限制整体效率。运算放大器454的输出级需要承受电压摆动,使得其设计困难,特别是关于所需要的可靠性。
通过使用例如图4所示的功率供应电路,可在预定谐振频率处或附近以高效率且在不需要包含任何附加的设备或复杂电路的情况下抑制噪声,不过仍然提供噪声的高度抑制。
总的来说,之前论述的示例使用环路滤波器,有时是高阶的,以获得过程变量内或在DC-DC转换器输出处的失真和噪声的高度抑制。谐振器用于消除在预定谐振频率处的噪声和失真,该预定谐振频率还可能在DC-DC转换器的传输带宽外。根据一些示例,在DC-DC转换器输出处的LC滤波器也可被包含到控制环路中,使得能够获得用于噪声整形的高带宽和灵活性,例如通过还考虑控制环路内的导数分量。也就是说,那些示例在某种程度上还可允许预测过程变量的变化,而不遇到变得不稳定的危险。
图7至9示出包括控制器200和功率供应400的功率供应电路600的另外的示例。因为这些示例基于如已经关于图1和4阐述的一般考虑,所以在下面的段落中将仅仅简短论述图7至9的示例的新部件。
图7至9的示例的功率供应400包括两个LC滤波器432和434,以便更高程度地对由驱动器电路404提供的信号进行滤波,并且可能更加好地符合针对功率供应400所馈送的射频放大器500而建立的频谱要求。
这使得能够将两个另外的反馈信号馈送到控制器200,即控制器200具有第三输入接口160和第四输入接口162,第三输入接口160被适配成接收第一LC滤波器432之后的电压作为第三反馈信号,第四输入接口162被适配成接收依赖于流过第一LC滤波器432的电容器的电流的信号,作为指示过程变量和设定点之间误差的第四反馈信号。
类似于图4的示例,反馈信号由关联的缩放器142(a9)146(a8)、164(a7)和166(a6)缩放,而其缩放表示最终由加法器140求和。
通过将两个附加的积分器172和174添加到具有预定的第二谐振频率的第二谐振器176内的控制环路中而增加控制环路的阶。也就是说,第二谐振器176存在于图7和8的控制器200的控制环路内。类似于用于第一谐振器的积分器122和124的反馈信号的缩放,另外的缩放器178(a4)和180(a5)被包含,以便向积分器172和174的积分器输入提供如从输入接口102接收的缩放的反馈信号。控制环路内第二谐振器电路176的包含可提供使得频率范围或带宽更宽的可能性,在该频率范围或带宽内,噪声由控制器的示例有效地抑制。例如,如果谐振器120和176的谐振频率彼此接近,在其中噪声信号的抑制是有效的带宽可大约被加倍。原则上,控制环路中谐振器的数量可被调整到特定的要求,甚至变成任意高。
虽然积分器124、174和108根据图7的积分器的时间离散表示而包含一个采样的附加延迟,但可在没有附加延迟的情况下或通过包含更多数量的采样的延迟而实现另外的示例。
图7和图8的示例之间的主要区别在于图7的示例在模拟域内实现。也就是说,控制器200和LC-LC滤波器(即LC滤波器432和434)的参数的状态变量反馈用模拟电路实现,例如使用开关电容器积分器和放大器。输出信号,即在输出接口116处提供的操作信号,用作去往PWM发生器402的输入。由可调功率供应400的控制输入接口接收的操作信号与内部斜坡信号比较,以便生成具有与输入信号成比例的占空比的脉冲宽度调制信号。
作为对比,图8的示例至少部分地在数字域内实现。特别地,五阶控制器部分190用数字电路实现。因此,在输出接口116处提供的操作信号也被理解为数字信号,该数字信号被馈送到控制驱动器电路404的数字可控的脉冲宽度调制电路402(DPWM)。控制器200的模拟部分192用模拟电路实现,以便反馈LC-LC滤波器432和434的状态变量。为了将反馈信号从模拟部分192传送到控制器200的数字部分190中,模数转换器(ADC)494和496被实现。
使用根据图8的示例可增加实现方式的灵活性,因为数字域电路(即控制器的数字部分190)可能在没有费时和昂贵的重新设计的情况下被适配到特定需求,例如通过简单地更新对应控制器的操作软件或固件。
图9图示基于图8的示例的功率供应电路的示例。其中,数字脉冲宽度调制器402提供关于彼此反相的两个脉冲宽度调制信号。那两个信号同时驱动两个驱动器电路404a和404b,有效地使开关频率加倍。
总结之前论述的示例中的一些,除了积分器之外,包括DC-DC功能的功率供应电路还可以包含控制器200的控制环路内的谐振器。谐振器在预定的谐振频率处和其附近提供高环路增益,使得控制环路能够有效地衰减该频率处的噪声。预定的谐振频率可以是可编程的或固定的,这取决于特定实现方式。控制环路本身可包括多个反馈,以便调整反馈缩放器(即用于根据需要提供反馈信号的缩放表示并提供环路所需的稳定性的缩放器)的系数。此外,DC-DC转换器或功率供应本身的滤波器的输出可以被视为控制环路的一部分。例如,在驱动器电路404的输出处的LC滤波器的电容器的电压和电流可以提供经由关联的缩放器反馈到控制环路内的反馈信号。控制环路的响应的数学描述的极点以及因此闭环系统的稳定性由反馈环路内的系数确定,即,例如依赖于图7至9的示例的系数a1至a9
图10图示示出用于控制过程变量的方法的示例的框图。
该方法包括:接收800反馈信号,该反馈信号指示要被控制的过程变量和针对过程变量的设定点之间的误差。
该方法还包括:使用依赖于反馈信号的输入信号而导出累积误差信号802,并使用具有预定谐振频率的谐振器和依赖于反馈信号的谐振器输入信号而导出谐振器输出信号804。
该方法还包括:导出用于影响过程变量的操作信号806,该操作信号是使用累积误差信号和谐振器输出信号而导出的。
连同图11至15的图示,下面将示出关于根据图7至9的功率供应电路内的系数可如何被确定以便达到合期望的稳定控制,同时通过控制器内的谐振器而衰减噪声。
为此,关于连续时间电路如何被转到离散时间表示的一些理论上的考虑被预先执行。该考虑始于具有状态变量反馈的DC-DC转换器的简单实现。图11的示例性环路包括消除静态调节误差的积分器1200。误差信号(即来自输入处的参考电压的DC-DC转换器的输出电压的偏差)被缩放器1202(系数a1)缩放,并被积分器1200累积。包括电感1204(L)、电阻1206(R)和电容1208(C)的二阶系统的状态变量,即电容器1208的电压Vc和电流Ic,通过缩放器1210和1212而按系数a2和a3缩放,并被添加到积分器输出。为了控制环路的线性分析,DC-DC转换器的脉冲宽度调制器1214和驱动器被忽略,并且那些部件被视为如图11底部图示中简化电路图中所示的附加噪声源。脉冲宽度调制器和驱动器电路被建模为被噪声发生器叠加的线性缩放器。
在能够计算系数a1至a3之前,正如图12中再次示出的二阶滤波器1218(LCR滤波器)应当从时间连续系统转换成离散时间系统,尤其转换成提供反馈量1220(Vc)和1222(Ic)的时间离散表示。
这可使用下面的公式执行:
假设离散时间系统由以下形式描述:
转换的系统可用以下形式导出:
由于用符号表达的从连续时间到离散时间系统的转换是不可能的,所述转换是数值完成的。假设L=11n,C=2nF,R=10欧姆,T=1/300MHz=3.33ns,并且在输入处没有延迟得出:
在LCR滤波器的离散化之后,可继续控制环路的系数的导出。在来自积分器的附加的阶的情况下,处理如图13所示的三阶系统。在图13中,电容器1208的电压被重新定义为x2,电容器1208的电流被重新定义为x3,而积分器1200的输出被重新定义为x3
在图14中,该系统,图13的系统被进一步修改为对应于图4的示例。为此,谐振器和附加的积分器被添加到控制环路,以便用还可消除高频噪声的DC-DC转换器作为结果。从图14的表示中可以导出包括以离散时间形式的LC-LC滤波器的控制环路的下列状态空间描述:
信号传递函数可被计算为:
比较信号传递函数的分母和目标分母,然后能够数值地计算系数。例如可使用下面的伪代码执行计算:
%定义dcdc的输出滤波器和开关频率
%定义期望的极点和陷波频率
%将极点转换为分母
%输出滤波器的连续时间状态空间描述
%将连续时间模型转换为离散时间模型
%向变量分配状态空间参数
%定义符号,并稍后求解出该符号
%定义整个控制器的状态空间模型
%计算传递函数的分母
%比较期望的分母和控制器的分母
%并计算系数
图15图示用于图7和8的示例的模型。等效地,具有图7和8的四阶LC-LC滤波器的五阶控制器的状态空间描述是:
在相同的考虑之后,下面可给出计算系数的伪代码:
%定义dcdc的输出滤波器和开关频率
%定义期望的极点和陷波频率
%将极点转换成分母
%输出滤波器的连续时间状态空间描述
%将连续时间模型转换为离散时间模型
%向变量分配状态空间参数
%定义符号,并稍后求解出该符号
%定义整个控制器的状态空间模型
%计算传递函数的分母
%比较期望的分母和控制器的分母
%并计算系数
图16图示使用先前导出的系数和参数的如图9所示的功率供应电路的示例的仿真的噪声特性。x轴902图示对数刻度上以赫兹为单位的频率。Y轴904给出以dB为单位的噪声电平。简短回顾,图9的五阶控制器包含两个谐振器,而LC-LC滤波器提供四个反馈系数。数字脉冲宽度调制器(DPWM)具有5位的分辨率,而两个反相的输出是为了建模多相位DC-DC转换器。用dc电压源和电流控制的电压源来检测两个电容器的电流。仿真该控制器,以300MHz的采样频率运行,而双相位DPWM 以150MHz运行,以消除输出频谱中的150MHz杂散。DC-DC转换器用Spectre模拟,并且其正弦信号被用作输入激励。该功率供应电路是稳定的,并且跟随输入信号。DPWM的粒度生成量化噪声,该量化噪声由控制器的示例内的控制环路整形。图16图示功率供应电路的噪声频谱,并且举例说明该噪声如期望的那样在75MHz处下陷,并且其电平在预定的谐振频率处大约升到-140dBm/Hz。在接近300MHz处的明显的开关噪声大约等于-138dBm/Hz。
图17示意性地示出包括射频放大器电路的示例的移动设备或蜂窝电话。也就是说,移动设备100包括由功率供应电路600供电的放大器500,功率供应电路600包括控制器200和功率供应400的示例。放大器500具有供应电压输入接口502,该供应电压输入接口502耦合到由控制器200控制的功率供应400的功率输出接口406。因此,由于使用控制器200来控制功率供应400,可以在不将附加的噪声插入到放大器500的频谱内的情况下执行包络跟踪。
在下文中,示例涉及另外的示例。
示例1是用于控制过程变量的控制器。所述控制器包括:输入接口,其被配置成接收反馈信号,所述反馈信号指示要被控制的过程变量和针对过程变量的设定点之间的误差;至少第一积分器,其被配置成使用依赖于反馈信号的积分器输入信号而导出累积误差信号;具有预定谐振频率的至少一个谐振器,所述至少一个谐振器被配置成使用依赖于反馈信号的谐振器输入信号而提供谐振器输出信号;以及输出接口,其被配置成提供用于影响过程变量的操作信号,所述操作信号是使用累积误差信号和谐振器输出信号而导出的。
在示例2中,示例1的主题可以可选地包括所述操作信号是使用谐振器输出信号的信号分量和累积误差信号的信号分量之和导出的。
在示例2中,示例1或2的主题可以可选地包括第一缩放器,其被配置成按第一缩放参数缩放反馈信号以提供第一缩放的反馈信号作为对积分器输入信号的贡献。
在示例4中,任何前述示例的主题可以可选地包括谐振器,所述谐振器包括:具有耦合到第三积分器的输入的输出的第二积分器;以及耦合在第三积分器的输出和第二积分器的输入之间的反馈环路,所述反馈环路包括至少第一反馈缩放器,其被配置成按第一反馈参数缩放第三积分器的输出的信号。
在示例5中,示例4的主题可以可选地包括第二缩放器,其被配置成按第二缩放参数缩放反馈信号以提供第二缩放的反馈信号作为对第二积分器的第二积分器输入信号的贡献。
在示例6中,示例4或5的主题可以可选地包括第三缩放器,其被配置成按第三缩放参数缩放反馈信号以提供第三缩放的反馈信号作为对第三积分器的第三积分器输入信号的贡献。
在示例7中,任何前述示例的主题可以可选地包括设定点输入接口,其被配置成接收指示针对过程变量的设定点的设定点信号。
在示例8中,任何前述示例的主题可以可选地包括具有预定的第二谐振频率的第二谐振器,所述第二谐振器被配置成使用依赖于反馈信号的第二谐振器输入信号而提供第二谐振器输出信号。
在示例9中,示例8的主题可以可选地包括第二谐振器,其包括:具有耦合到第五积分器的输入的输出的第四积分器;以及耦合在第五积分器的输出和第四积分器的输入之间的反馈环路,所述反馈环路包括至少第二反馈缩放器,其被配置成按第二预定反馈参数缩放第五积分器的输出的信号。
示例10是一种功率供应电路,其包括可调功率供应,所述可调功率供应具有被配置成提供当前供应电压的功率输出接口以及被配置成接收控制信号的控制输入接口,其中当前供应电压依赖于控制信号;以及根据示例1至9中任一个的控制器,所述控制器使其输出接口耦合到用于提供控制器的操作信号作为控制信号的功率供应的控制输入接口。
在示例11中,示例10的主题可以可选地包括耦合到控制器的输入接口的功率供应的功率输出接口,使得关于当前供应电压的信息作为反馈信号被提供给控制器。
在示例12中,示例10或11的主题可以可选地包括脉冲宽度调制器,用于提供具有依赖于控制信号的占空比的脉冲宽度调制信号;以及驱动器电路,其被配置成在依赖于占空比的时刻向功率输出接口提供系统供应电压。
在示例13中,示例10至13的主题可以可选地包括耦合在功率输出接口和参考电位之间的至少一个电容器。
在示例14中,示例13的主题可以可选地包括控制器,所述控制器包括另外的输入接口,其被配置成接收指示过程变量和设定点之间误差的另外的反馈信号;并且其中可调功率供应耦合到另外的输入接口,使得另外的反馈信号依赖于穿过所述至少一个电容器的电流。
示例15是一种用于控制过程变量的方法,所述方法包括:接收反馈信号,所述反馈信号指示要被控制的过程变量和针对过程变量的设定点之间的误差;使用依赖于反馈信号的输入信号而导出累积误差信号;使用具有预定谐振频率的谐振器以及依赖于反馈信号的谐振器输入信号而导出谐振器输出信号;以及导出用于影响过程变量的操作信号,所述操作信号是使用累积误差信号和谐振器输出信号而导出的。
在示例16中,示例15的主题可以可选地包括导出操作信号,其包括使用谐振器输出信号的信号分量和累积误差信号的信号分量之和。
示例17是一种射频放大器电路,包括根据示例10至14中任一个的功率供应电路;以及放大器,所述放大器包括供应电压输入接口,放大器的供应电压输入接口耦合到功率供应电路的功率输出接口。
在示例18中,示例17的主题可以可选地包括:信号输入接口,其被配置成接收要被放大的信号;以及射频输出接口,其被配置成提供在信号输入接口处接收的信号的放大表示。
示例19是包括根据示例17或18的射频放大器电路的移动电信设备。
在示例20中,示例19的主题可以可选地包括耦合到射频输出接口的天线。
示例21是一种包括代码的机器可读介质,如果所述代码由机器执行,则使得机器执行示例15或16。
示例22是一种具有程序代码的计算机程序,当在计算机或处理器上执行所述计算机程序时,所述程序代码用于执行示例15或16。
示例23是用于控制过程变量的装置,包括:用于接收反馈信号的装置,所述反馈信号指示要被控制的过程变量和针对过程变量的设定点之间的误差;用于使用依赖于反馈信号的输入信号而导出累积误差信号的装置;用于使用具有预定谐振频率的谐振器以及依赖于反馈信号的谐振器输入信号而导出谐振器输出信号的装置;以及用于导出用于影响过程变量的操作信号的装置,所述操作信号是使用累积误差信号和谐振器输出信号导出的。
在示例24中,示例23的主题可以可选地包括用于导出谐振器输出信号的信号分量和累积误差信号的信号分量之和的装置。
示例25是用于提供供应电压的装置,包括:用于接收控制信号并用于提供依赖于控制信号的当前供应电压的装置;以及
用于根据示例23或24控制过程变量并用于提供操作信号作为控制信号的装置。
在示例26中,示例25的主题可以可选地包括用于向用于控制过程变量的装置提供关于当前供应电压的信息作为反馈信号的装置。
示例27是用于放大信号的装置,包括:用于接收要被放大的信号的装置;用于使用供应电压生成要被放大的信号的放大表示的装置;以及根据示例25或26的用于提供供应电压的装置。
在示例28中,示例27的主题可以可选地包括用于提供信号的放大表示的装置。
当在计算机或处理器上执行计算机程序时,示例还可提供具有用于执行上述方法之一的程序代码的计算机程序。本领域技术人员将容易认识到:各种上述方法的步骤可由编程的计算机执行。本文中,一些示例还旨在涵盖机器或计算机可读的并且编码机器可执行的或计算机可执行的指令程序的程序存储设备,例如数字数据存储介质,其中所述指令执行上述方法的一些或所有动作。程序存储设备例如可以是数字存储器、诸如磁盘和磁带之类的磁存储介质、硬盘驱动器或光学可读的数字数据存储介质。该示例还旨在涵盖被编程以执行上述方法的动作的计算机,或者被编程以执行上述方法的动作的(现场)可编程逻辑阵列((F)PLA)或(现场)可编程门阵列((F)PGA)。
说明书和附图仅仅示出本公开的原理。因此将理解的是:本领域技术人员将能够想到虽然在本文中未被明确描述或示出但是体现本公开原理并包括在其精神和范围之内的各种布置。此外,本文陈述的所有示例主要旨在明确为仅用于教学目的,以帮助读者理解本公开的原理和由一个或多个发明人贡献的概念以促进本领域,并且将被理解为没有对这种具体陈述的示例和条件的限制。此外,在本文中陈述本公开的原理、方面和示例的所有陈述以及其具体示例旨在包含其等同物。
被表示为“用于…的装置”(执行某一功能)的功能块应分别被理解为包括被配置成执行某一功能的电路的功能模块。因此,“用于某事的装置”也可被理解为“被配置成或适于某事的装置”。被配置成执行某一功能的装置因此并不暗指这样的装置一定正在执行功能(在给定时刻)。
可通过使用专用硬件(诸如“信号提供器”、“信号处理单元”、“处理器”、“控制器”等)以及能够执行与适当的软件相关联的软件的硬件而提供附图中所示的各种元件的功能,所述各种元件包括被标记为“装置”、“用于提供传感器信号的装置”、“用于生成发送信号的装置”等的任何功能块 。此外,本文中被描述为“装置”的任何实体可对应于或被实现为“一个或多个模块”、“一个或多个设备”、“一个或多个单元”等。当由处理器提供时,该功能可由单个专用处理器、由单个共享处理器或由其部分可被共享的多个单独的处理器提供。此外,术语“处理器”或“控制器”的明确使用不应被解释为排他性地指代能够执行软件的硬件,并且可隐含地包括但不限于:数字信号处理器(DSP)硬件、网络处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、用于存储软件的只读存储器(ROM)、随机存取存储器(RAM)和非易失性存储设备。其它的传统和/或定制的硬件也可包括在内。
应被本领域技术人员理解的是:本文的任何框图表示体现本公开原理的说明性电路的概念图。类似地,将理解的是:任何流程图表、流程图、状态转移图、伪代码等表示可在计算机可读介质中被实质性地表示并因此由计算机或处理器执行的各种过程,无论这样的计算机或处理器是否被明确示出。
此外,下面的权利要求由此包含到具体实施方式中,其中每个权利要求可独立作为单独示例存在。虽然每个权利要求可独立作为单独示例存在,但应注意的是,虽然从属权利要求可以在权利要求中指代与一个或多个其它权利要求的具体组合,其它示例也可包括从属权利要求与每个其它从属或独立的权利要求的主题的组合。本文中提出这种组合,除非陈述具体组合不是所意图的。此外,旨在还包括任何其它独立权利要求的权利要求的特征,即使此权利要求并不直接从属于独立权利要求。
还将注意的是:说明书或权利要求中公开的方法可由具有用于执行这些方法的各个动作中的每一个的装置的设备实现。
此外,将理解的是:说明书或权利要求中公开的多个动作或功能的公开不应被解释为以具体的次序。因此,多个动作或功能的公开将不会将这些限制到特定次序,除非这样的动作或功能由于技术原因不能互换。此外,在一些示例中,单个动作可包括或者可拆分成多个子动作。这样的子动作可包括在内,并且可以是该单个动作的公开的一部分,除非明确地排除。

Claims (24)

1.一种用于控制过程变量(202)的控制器(100;200),包括:
输入接口(102),其被配置成接收反馈信号,所述反馈信号指示要被控制的过程变量(202)和针对过程变量的设定点(104)之间的误差;
至少第一积分器(108),其被配置成使用依赖于反馈信号的积分器输入信号而导出累积误差信号;
具有预定谐振频率的至少一个谐振器(120),所述至少一个谐振器(120)被配置成使用依赖于反馈信号的谐振器输入信号而提供谐振器输出信号;以及
输出接口(130),其被配置成提供用于影响过程变量(202)的操作信号,所述操作信号是使用累积误差信号和谐振器输出信号导出的。
2.根据权利要求1的控制器(100;200),其中所述操作信号是使用谐振器输出信号的信号分量和累积误差信号的信号分量之和导出的。
3.根据权利要求1或2的控制器(100;200),还包括第一缩放器(114),其被配置成按第一缩放参数缩放反馈信号以提供第一缩放的反馈信号作为对积分器输入信号的贡献。
4.根据权利要求1或2的控制器(100;200),其中所述谐振器(120)包括:
第二积分器(122),其具有耦合到第三积分器(124)的输入的输出,以及
耦合在第三积分器(124)的输出和第二积分器(122)的输入之间的反馈环路,所述反馈环路包括至少第一反馈缩放器(125),其被配置成按第一反馈参数缩放第三积分器(124)的输出的信号。
5.根据权利要求1或2的控制器(100;200),还包括:
第二缩放器(126),其被配置成按第二缩放参数缩放反馈信号以提供第二缩放的反馈信号作为对第二积分器(124)的第二积分器输入信号的贡献。
6.根据权利要求4或5中任一个的控制器(100;200),还包括第三缩放器(127),其被配置成按第三缩放参数缩放反馈信号以提供第三缩放的反馈信号作为对第三积分器(124)的第三积分器输入信号的贡献。
7.根据权利要求1或2的控制器(100;200),还包括设定点输入接口(106),其被配置成接收指示针对过程变量的设定点的设定点信号。
8.根据权利要求1或2的控制器(100;200),还包括具有预定的第二谐振频率的第二谐振器(176),所述第二谐振器被配置成使用依赖于反馈信号的第二谐振器输入信号而提供第二谐振器输出信号。
9.根据权利要求8的控制器(100;200),其中所述第二谐振器(176)包括具有耦合到第五积分器(174)的输入的输出的第四积分器(172),以及
耦合在第五积分器(174)的输出和第四积分器(172)的输入之间的反馈环路,所述反馈环路包括至少第二反馈缩放器,其被配置成按第二预定反馈参数缩放第五积分器(174)的输出的信号。
10.一种功率供应电路(600),包括:
可调功率供应(400),具有被配置成提供当前供应电压的功率输出接口(406)以及被配置成接收控制信号的控制输入接口,其中当前供应电压依赖于控制信号;以及
根据权利要求1或2的控制器(100;200),所述控制器(100;200)使其输出接口耦合到用于提供控制器(100;200)的操作信号作为控制信号的功率供应的控制输入接口。
11.根据权利要求10的功率供应电路(600),其中功率供应的功率输出接口(406)耦合到控制器(100;200)的输入接口(102),使得关于当前供应电压的信息作为反馈信号被提供给控制器(100;200)。
12.根据权利要求10或11的功率供应电路(600),其中功率供应(400)包括:
脉冲宽度调制器(402),用于提供具有依赖于控制信号的占空比的脉冲宽度调制信号;以及
驱动器电路(404),其被配置成在依赖于占空比的时刻向功率输出接口(406)提供系统供应电压。
13.根据权利要求10或11的功率供应电路(600),还包括耦合在功率输出接口(406)和参考电位之间的至少一个电容器(408)。
14.根据权利要求13的功率供应电路(600),其中所述控制器(100;200)包括另外的输入接口(144),其被配置成接收指示过程变量和设定点之间的误差的另外的反馈信号;以及
其中可调功率供应(400)耦合到另外的输入接口(144),使得另外的反馈信号依赖于穿过所述至少一个电容器(408)的电流。
15.一种用于控制过程变量的方法,所述方法包括:
接收(800)反馈信号,所述反馈信号指示要被控制的过程变量和针对过程变量的设定点之间的误差;
使用依赖于反馈信号的输入信号而导出(802)累积误差信号;
使用具有预定谐振频率的谐振器以及依赖于反馈信号的谐振器输入信号而导出(804)谐振器输出信号;以及
导出(806)用于影响过程变量的操作信号,所述操作信号是使用累积误差信号和谐振器输出信号而导出的。
16.根据权利要求15的方法,其中导出操作信号包括使用谐振器输出信号的信号分量和累积误差信号的信号分量之和。
17.射频放大器电路,包括:
根据权利要求10的功率供应电路(600);以及
包括供应电压输入接口的放大器(500),放大器的供应电压输入接口耦合到功率供应电路的功率输出接口。
18.根据权利要求17的射频放大器电路,还包括信号输入接口,其被配置成接收要被放大的信号;以及
射频输出接口,其被配置成提供在信号输入接口处接收的信号的放大表示。
19.一种包括根据权利要求17或18的射频放大器电路的移动电信设备(1000)。
20.一种包括代码的机器可读介质,如果所述代码由机器执行,则使得机器执行权利要求15或16的方法。
21.一种具有程序代码的计算机程序,当在计算机或处理器上执行所述计算机程序时,所述程序代码用于执行权利要求15或16的方法。
22.用于控制过程变量的装置,包括:
用于接收反馈信号的装置,所述反馈信号指示要被控制的过程变量和针对过程变量的设定点之间的误差;
用于使用依赖于反馈信号的输入信号而导出累积误差信号的装置;
用于使用具有预定谐振频率的谐振器以及依赖于反馈信号的谐振器输入信号而导出谐振器输出信号的装置;以及
用于导出用于影响过程变量的操作信号的装置,所述操作信号是使用累积误差信号和谐振器输出信号而导出的。
23.用于提供供应电压的装置,包括:
用于接收控制信号并用于提供依赖于控制信号的当前供应电压的装置;以及
用于根据权利要求23或24控制过程变量并用于提供操作信号作为控制信号的装置。
24.用于放大信号的装置,包括:
用于接收要被放大的信号的装置;
用于使用供应电压生成要被放大的信号的放大表示的装置;以及
根据权利要求23的用于提供供应电压的装置。
CN201410434132.5A 2013-08-30 2014-08-29 用于控制过程变量的控制器和方法以及包括功率供应和控制器的功率供应电路 Expired - Fee Related CN104423413B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013109441.4 2013-08-30
DE102013109441.4A DE102013109441B4 (de) 2013-08-30 2013-08-30 Steuereinrichtung und Verfahren zum Steuern einer Prozessvariable und Leistungsversorgungsschaltung, umfassend eine Leistungsversorgung und eine Steuereinrichtung

Publications (2)

Publication Number Publication Date
CN104423413A true CN104423413A (zh) 2015-03-18
CN104423413B CN104423413B (zh) 2017-01-04

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292909A (zh) * 2015-12-11 2018-07-17 罗德施瓦兹两合股份有限公司 功率放大器、射频电子设备及用于操作功率放大器的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174796A (ja) * 1993-06-25 1995-07-14 At & T Corp ピーク信号値を評価する方法および評価回路
CN1223031A (zh) * 1996-06-20 1999-07-14 特里帕斯科技公司 过采样,噪声整形,混合信号处理器
US20010001546A1 (en) * 1999-03-09 2001-05-24 Ahuja Bhupendra K. Power efficient line driver
CN1509519A (zh) * 2000-11-01 2004-06-30 �����ɷ� 控制多级电路的级的方法和装置
US20070200621A1 (en) * 2003-03-29 2007-08-30 Lee Wai L Pwm digital amplifier with high-order loop filter
US20090102557A1 (en) * 2005-03-18 2009-04-23 Yamaha Corporation Class D amplifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174796A (ja) * 1993-06-25 1995-07-14 At & T Corp ピーク信号値を評価する方法および評価回路
CN1223031A (zh) * 1996-06-20 1999-07-14 特里帕斯科技公司 过采样,噪声整形,混合信号处理器
US20010001546A1 (en) * 1999-03-09 2001-05-24 Ahuja Bhupendra K. Power efficient line driver
CN1509519A (zh) * 2000-11-01 2004-06-30 �����ɷ� 控制多级电路的级的方法和装置
US20070200621A1 (en) * 2003-03-29 2007-08-30 Lee Wai L Pwm digital amplifier with high-order loop filter
US20090102557A1 (en) * 2005-03-18 2009-04-23 Yamaha Corporation Class D amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292909A (zh) * 2015-12-11 2018-07-17 罗德施瓦兹两合股份有限公司 功率放大器、射频电子设备及用于操作功率放大器的方法
CN108292909B (zh) * 2015-12-11 2022-04-08 罗德施瓦兹两合股份有限公司 功率放大器、射频电子设备及用于操作功率放大器的方法

Also Published As

Publication number Publication date
DE102013109441A1 (de) 2015-03-05
US20150061610A1 (en) 2015-03-05
DE102013109441B4 (de) 2015-06-11
US9362813B2 (en) 2016-06-07

Similar Documents

Publication Publication Date Title
US9362813B2 (en) Controller and a method for controlling a process variable and a power supply circuit comprising a power supply and a controller
Routimo et al. LCL type supply filter for active power filter-Comparison of an active and a passive method for resonance damping
Wang et al. Non‐linear adaptive hysteresis band pulse‐width modulation control for hybrid active power filters to reduce switching loss
US20190028027A1 (en) Switch mode power supply using a reconfigurable delta-sigma modulator and method of driving the same
Salimi et al. Experimental design of the adaptive backstepping control technique for single‐phase shunt active power filters
CN106105003A (zh) 多相开关功率转换器的平均电流模式控制
Su et al. Gain scheduling control scheme for improved transient response of DC/DC converters
Razi et al. Simple control scheme for single‐phase uninterruptible power supply inverters with Kalman filter‐based estimation of the output voltage
Rymarski et al. Influence of Z‐source output impedance on dynamic properties of single‐phase voltage source inverters for uninterrupted power supply
US7250887B2 (en) System and method for spur cancellation
WO2014137709A2 (en) Transfer function generation based on pulse-width modulation information
Erickson et al. Input filter design
US6504348B2 (en) Remote sensing by high-order filtering
Fallah et al. A modified indirect extraction method for a single-phase shunt active power filter with smaller DC-link capacitor size
Sobaszek Self-tuned class-D audio amplifier with post-filter digital feedback implemented on digital signal controller
Tran et al. Mathematical Analysis and Design of Parallel RLC Network in Step-down Switching Power Conversion System
Zhao et al. Self-Programmable PID compensator for digitally controlled SMPS
Faiz et al. H∞ robust control with improved harmonics suppression for inverter‐based distributed generation systems
Kim Robust output voltage tracking algorithm for three‐phase rectifier with variable sliding surface
CN114583995A (zh) 用于逆变器双环控制的方法、装置、逆变器及存储介质
Frgal Average current mode interleaved PFC control
Inanlou et al. An asynchronous pulse width modulator for DC‐DC buck converter
CN104423413B (zh) 用于控制过程变量的控制器和方法以及包括功率供应和控制器的功率供应电路
Yousefzadeh Advances in digital power control
Subramanian et al. Analysis and mitigation of EMI in DC–DC converters using QR interaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Neubiberg, Germany

Applicant after: Intel Mobile Communications GmbH

Address before: Neubiberg, Germany

Applicant before: Intel Mobile Communications GmbH

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104

Termination date: 20170829

CF01 Termination of patent right due to non-payment of annual fee