CN104418400A - 铁基纳米合金及其在吸附铯中的应用 - Google Patents

铁基纳米合金及其在吸附铯中的应用 Download PDF

Info

Publication number
CN104418400A
CN104418400A CN201310365732.6A CN201310365732A CN104418400A CN 104418400 A CN104418400 A CN 104418400A CN 201310365732 A CN201310365732 A CN 201310365732A CN 104418400 A CN104418400 A CN 104418400A
Authority
CN
China
Prior art keywords
iron
absorption
application
nanoalloy
ferrophosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310365732.6A
Other languages
English (en)
Other versions
CN104418400B (zh
Inventor
那平
蔡晓娇
周世民
王娜
刘帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201310365732.6A priority Critical patent/CN104418400B/zh
Publication of CN104418400A publication Critical patent/CN104418400A/zh
Application granted granted Critical
Publication of CN104418400B publication Critical patent/CN104418400B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了铁基纳米合金及其在吸附铯中的应用,首先利用液相化学还原法制备磷铁纳米合金材料;然后制备的磷铁合金材料用于吸附水溶液中铯离子。本发明技术方案中利用铁基纳米合金材料通过吸附去除水中铯离子,铁基纳米合金材料具有制备过程简单、耐酸、耐辐射、易回收等特点,并且对铯离子吸附容量可观。

Description

铁基纳米合金及其在吸附铯中的应用
技术领域
本发明属于无机材料吸附技术领域,更加具体地说,涉及一种铁基纳米合金在吸附铯中的应用。
背景技术
以核能为代表的新能源发展越来越受到众多国家的重视。核燃料后处理是目前己知的最复杂和最具挑战性的化学处理过程之一,这也是核燃料后处理技术进展比较缓慢的重要原因之一。137Cs是高放废液中寿命较长的高释热裂变产物,所占放射性份额较大,在分离工艺去除和回收137Cs,既可将高放废液变为中低放废液,还可进行资源化利用。从废液中分离铯的常用手段包括离子交换法、沉淀法和溶剂萃取法。无机离子交换技术成熟,处理设备简单,不引入危险溶剂,具有对目标元素选择性好、可稳定存在(状态稳定)、抗辐射性强等特点,成为目前应用较为广泛的处理手段。用于除铯的无机离子交换材料主要有杂多酸盐,多价金属磷酸盐,不溶性铁氰化合物,钛硅化合物,天然及人造沸石等,其中沸石类材料交换容量易受溶液的酸度和盐含量影响,仅适于处理低酸度、低盐含量的放射性废液,对于高盐度、高酸性废液效果低下;不溶性亚铁氰化物交换剂交换平衡时间长,不能重复再生使用;合成硅钛化合物主要是针对碱性的高放废液,在酸性高放废液中去除铯的涉及较少;NASICON构型的磷酸盐适合用于固定放射性废料载体,对于水体中铯离子的去除分配系数较低,吸附容量不大。
发明内容
本发明的目的在于克服现有技术的不足,提供一种铁基纳米合金及其在吸附铯中的应用,利用铁基纳米合金材料通过吸附去除水中铯离子,铁基纳米合金材料具有制备过程简单、耐酸、耐辐射、易回收等特点,并且对铯离子吸附容量可观。
本发明的技术目的通过下述技术方案予以实现:
铁基纳米合金及其在吸附铯中的应用,首先利用液相化学还原法制备磷铁(铁基)纳米合金材料;然后制备的磷铁(铁基)合金材料用于吸附水溶液中铯离子即可。
在进行水体中铯的吸附时,选择将铁基纳米合金置于水体中,吸附后进行过滤分离,由于材料中含有具有磁性的铁元素,可利用外加磁场对吸附后材料分离,通过材料制备环节调节材料的磁性强度,提高分离效率。
在进行吸附时,选择常温常压即可(20—25摄氏度,一个大气压),并可选择进行搅拌(例如超声或者机械搅拌),吸附时间选择至少在1h之上,优选2—4h。
本发明技术方案中利用铁基纳米合金作为吸附载体,选择磷铁合金、磷铁镍合金或者磷铁钴合金,制备方法可参考下述文献进行:
(1)磷铁合金制备:Physicochemical and catalytic properties of Fe–Pultrafineamorphous catalysts,Baskaran Rajesh,Natarajan Sasirekha,Yu-Wen Chen,MolecularCatalysis A:Chemical275(2007)174–182;
(2)磷铁镍合金制备:A Fe-promoted Ni–P amorphous alloy catalyst(Ni–Fe–P)forliquidphase hydrogenation of m-and p-chloronitrobenzene。Xinhuan Yana,,Junqing Suna,Youwen Wangb,Jianfeng Yanga.Journal of Molecular Catalysis A:Chemical252(2006)17–22;
(3)磷铁钴合金制备:Preparation of Fe-Co-P amorphousalloys by electrodeposition,J.Herreros,J.M.Barandiar,A.Garcia-Arribas。Journal of Non-Crystalline Solids201(1996)102-109。
在具体制备中也可按照下述方案进行:配置铁离子的水溶液和次磷酸钠的水溶液进行混合,其中可根据添加元素种类和要求向铁离子的水溶液中加入镍、钴,在选择铁源、镍源、钴源时,选择相应的可溶性盐即可,并通过1mol/L的盐酸调节混合液的pH至1.5,然后向混合液中滴加KBH4水溶液,待滴加完毕反应结束后将产生的棕黑色沉淀,将此沉淀依次用去离子水、乙醇、丙酮洗涤数次去掉游离离子,于80℃真空干燥,700℃下煅烧0.5—1h即可得到铁基纳米合金。
其中铁源可选择FeCl2、FeSO4、FeCl3等可溶铁盐,所述KBH4加入量需根据混合液中金属离子和磷元素进行还原所需的化学反应计量进行添加。
使用的磷铁合金、磷铁镍合金、磷铁钴合金中,三种元素的摩尔比在下述范围内选择:
(1)磷铁合金:Fe/P:(4—7):1
(2)磷铁镍合金:Ni:Fe:P=9:30:(10—11)
(3)磷铁钴合金:Fe:Co:P=(28—30):15:(7—10)
在完成吸附过滤之后,将滤液利用原子吸收分光光度计(日本日立公司型号:Z-5300)测定吸附后溶液中铯离子浓度,即可计算材料的吸附容量。
本发明的技术方案通过铁基纳米合金作为吸附载体,直接投入水体中进行铯的吸附,通过检测吸附后溶液中铯离子浓度,确定材料的吸附容量(平均可达35—40mg/g);并在实验室模拟高放废液环境(1500ppm的铯离子硝酸水溶液,硝酸的浓度为3mol/L)中进行吸附,材料的吸附容量亦可达到上述平均值,并同时较为完好地保持材料的形貌,说明吸附材料具有耐酸、耐腐蚀等特点。
附图说明
图1是本发明实施例中制备的铁基纳米合金的扫描电镜照片(SEM,日本日立公司,S-4800)。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
将5.40gFeCl3·6H2O溶于100ml去离子水中,完全溶解后,加入次磷酸钠固体溶解,会有白色沉淀产生不影响后续试验进行,将上述溶液调节pH值至1.5左右得到磷铁溶液。配制1mol/L的KBH4水溶液,溶解完全后。在搅拌得得情况下缓慢加入到磷铁溶液中,出现棕黑色沉淀,滴加结束,继续搅拌1小时。然后离心洗涤数次。80℃真空干燥,在700℃下煅烧1h。
实施例2
磷铁合金制备:Physicochemical and catalytic properties of Fe–Pultrafine amorphouscatalysts,Baskaran Rajesh,Natarajan Sasirekha,Yu-Wen Chen,Molecular Catalysis A:Chemical275(2007)174–182;磷铁合金:Fe/P:4:1
实施例3
磷铁合金制备:Physicochemical and catalytic properties of Fe–Pultrafine amorphouscatalysts,Baskaran Rajesh,Natarajan Sasirekha,Yu-WenChen,Molecular Catalysis A:Chemical275(2007)174–182;磷铁合金:Fe/P:7:1
实施例4
磷铁镍合金制备:A Fe-promoted Ni–P amorphous alloy catalyst(Ni–Fe–P)forliquidphase hydrogenation of m-and p-chloronitrobenzene。Xinhuan Yana,,Junqing Suna,Youwen Wangb,Jianfeng Yanga.Journal of Molecular CatalysisA:Chemical252(2006)17–22;Ni:Fe:P=9:30:10
实施例5
磷铁镍合金制备:A Fe-promoted Ni–P amorphous alloy catalyst(Ni–Fe–P)forliquidphase hydrogenation of m-and p-chloronitrobenzene。Xinhuan Yana,,Junqing Suna,Youwen Wangb,Jianfeng Yanga.Journal of Molecular Catalysis A:Chemical252(2006)17–22;Ni:Fe:P=9:30:11
实施例6
磷铁钴合金制备:Preparation of Fe-Co-P amorphousalloys by electrodeposition,J.Herreros,J.M.Barandiar,A.Garcia-Arribas。Journal of Non-Crystalline Solids201(1996)102-109;Fe:Co:P=28:15:7
实施例7
磷铁钴合金制备:Preparation of Fe-Co-P amorphousalloys by electrodeposition,J.Herreros,J.M.Barandiar,A.Garcia-Arribas。Journal of Non-Crystalline Solids201(1996)102-109;Fe:Co:P=30:15:10
实施例8
磷铁镍合金制备:A Fe-promoted Ni–P amorphous alloy catalyst(Ni–Fe–P)forliquidphase hydrogenation of m-and p-chloronitrobenzene。Xinhuan Yana,,Junqing Suna,Youwen Wangb,Jianfeng Yanga.Journal of Molecular Catalysis A:Chemical252(2006)17–22;Ni:Fe:P=9:29.9:11.1
将实施例2—8中制备的吸附材料80℃真空干燥,在700℃下煅烧1h;将煅烧后的实施例1—8研细用于吸附实验,预先配制浓度为150ppm(150mg/L)铯离子水溶液100ml,称取0.4g吸附剂加入铯离子溶液中,超声分散均匀,然后磁力搅拌反应2h,取样5ml用0.45μm滤膜过滤,滤液稀释使用原子吸收分光光度计测定吸附后铯离子溶液浓度,计算材料的吸附容量(每组实施例进行三次试验然后计算平均),如下
(1)实施例1:35.2mg/g
(2)实施例2:36.4mg/g
(3)实施例3:40.3mg/g
(4)实施例4:37.2mg/g
(5)实施例5:38.3mg/g
(6)实施例6:39.8mg/g
(7)实施例7:37.1mg/g
(8)实施例8:36.4mg/g
配制1500ppm的铯离子硝酸水溶液,其中硝酸的浓度为3mol/L,加入准确称量的1.0g吸附材料加入铯离子溶液中,超声分散均匀,然后磁力搅拌反应2h,取样5ml用0.45μm滤膜过滤,滤液稀释使用原子吸收分光光度计测定吸附后铯离子溶液浓度,计算材料的吸附容量(每组实施例进行三次试验然后计算平均),如下
(1)实施例1:35.4mg/g
(2)实施例2:36.2mg/g
(3)实施例3:39.9mg/g
(4)实施例4:37.1mg/g
(5)实施例5:38.7mg/g
(6)实施例6:38.4mg/g
(7)实施例7:36.9mg/g
(8)实施例8:37.4mg/g
针对两种不同环境中的Cs,材料的吸附容量均可达到比较理想的水平,在酸性条件下同时较为完好地保持材料的形貌,说明吸附材料具有耐酸、耐腐蚀等特点。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.铁基纳米合金在吸附铯中的应用,其特征在于,在进行水体中铯的吸附时,将磷铁(铁基)纳米合金置于水体中,吸附后进行过滤分离。
2.根据权利要求1所述的铁基纳米合金在吸附铯中的应用,其特征在于,利用外加磁场对吸附后材料分离,通过材料制备环节调节材料的磁性强度,提高分离效率。
3.根据权利要求1所述的铁基纳米合金在吸附铯中的应用,其特征在于,在进行吸附时,选择常温常压,例如20—25摄氏度和一个大气压。
4.根据权利要求1所述的铁基纳米合金在吸附铯中的应用,其特征在于,在进行吸附时,选择进行搅拌,例如超声或者机械搅拌。
5.根据权利要求1所述的铁基纳米合金在吸附铯中的应用,其特征在于,在进行吸附时,吸附时间选择至少在1h之上,优选2—4h。
6.根据权利要求1所述的铁基纳米合金在吸附铯中的应用,其特征在于,所述磷铁(铁基)纳米合金选择磷铁合金、磷铁镍合金或者磷铁钴合金。
7.根据权利要求6所述的铁基纳米合金在吸附铯中的应用,其特征在于,所述磷铁合金中元素摩尔比为Fe/P:(4—7):1;所述磷铁镍合金中元素摩尔比为Ni:Fe:P=9:30:(10—11);所述磷铁钴合金中元素摩尔比为Fe:Co:P=(28—30):15:(7—10)。
8.根据权利要求1所述的铁基纳米合金在吸附铯中的应用,其特征在于,所述磷铁(铁基)纳米合金具体制备方法按照下述方案进行:配置铁离子的水溶液和次磷酸钠的水溶液进行混合,其中根据添加元素种类和要求向铁离子的水溶液中加入镍、钴,在选择铁源、镍源、钴源时,选择相应的可溶性盐即可,并通过1mol/L的盐酸调节混合液的pH至1.5,然后向混合液中滴加KBH4水溶液,待滴加完毕反应结束后将产生的棕黑色沉淀,将此沉淀依次用去离子水、乙醇、丙酮洗涤数次去掉游离离子,于80℃真空干燥,700℃下煅烧0.5—1h即可得到铁基纳米合金。
9.根据权利要求8所述的铁基纳米合金在吸附铯中的应用,其特征在于,所述铁源可选择FeCl2、FeSO4、FeCl3等可溶铁盐。
10.根据权利要求8所述的铁基纳米合金在吸附铯中的应用,其特征在于,所述KBH4加入量需根据混合液中金属离子和磷元素进行还原所需的化学反应计量进行添加。
CN201310365732.6A 2013-08-20 2013-08-20 铁基纳米合金及其在吸附铯中的应用 Expired - Fee Related CN104418400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310365732.6A CN104418400B (zh) 2013-08-20 2013-08-20 铁基纳米合金及其在吸附铯中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310365732.6A CN104418400B (zh) 2013-08-20 2013-08-20 铁基纳米合金及其在吸附铯中的应用

Publications (2)

Publication Number Publication Date
CN104418400A true CN104418400A (zh) 2015-03-18
CN104418400B CN104418400B (zh) 2017-02-08

Family

ID=52968629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310365732.6A Expired - Fee Related CN104418400B (zh) 2013-08-20 2013-08-20 铁基纳米合金及其在吸附铯中的应用

Country Status (1)

Country Link
CN (1) CN104418400B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950864A (zh) * 2016-05-19 2016-09-21 北京科技大学 利用磁性氧化铁作为吸附剂深度分离钼酸盐中钒的方法
CN112661227A (zh) * 2019-10-15 2021-04-16 韩国原子力研究院 放射性化学废物处理装置以及放射性化学废物处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482845A (en) * 1977-12-13 1979-07-02 Sumitomo Metal Ind Ltd Treatment of waste liquid
JPS6134875B2 (zh) * 1982-10-21 1986-08-09 Ebara Mfg
US20090218289A1 (en) * 2006-03-09 2009-09-03 Lanxess Deutschland Gmbh Radionuclide resins
CN102266745A (zh) * 2011-06-28 2011-12-07 中国原子能科学研究院 一种无机铯选择性吸附剂的制备方法
CN102350297A (zh) * 2011-09-14 2012-02-15 安徽师范大学 一种新型吸附剂、制备方法及其应用
CN102836693A (zh) * 2012-09-19 2012-12-26 清华大学 一种用于去除放射性废水中Cs离子的磁核包覆型无机离子吸附剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482845A (en) * 1977-12-13 1979-07-02 Sumitomo Metal Ind Ltd Treatment of waste liquid
JPS6134875B2 (zh) * 1982-10-21 1986-08-09 Ebara Mfg
US20090218289A1 (en) * 2006-03-09 2009-09-03 Lanxess Deutschland Gmbh Radionuclide resins
CN102266745A (zh) * 2011-06-28 2011-12-07 中国原子能科学研究院 一种无机铯选择性吸附剂的制备方法
CN102350297A (zh) * 2011-09-14 2012-02-15 安徽师范大学 一种新型吸附剂、制备方法及其应用
CN102836693A (zh) * 2012-09-19 2012-12-26 清华大学 一种用于去除放射性废水中Cs离子的磁核包覆型无机离子吸附剂及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950864A (zh) * 2016-05-19 2016-09-21 北京科技大学 利用磁性氧化铁作为吸附剂深度分离钼酸盐中钒的方法
CN112661227A (zh) * 2019-10-15 2021-04-16 韩国原子力研究院 放射性化学废物处理装置以及放射性化学废物处理方法
CN112661227B (zh) * 2019-10-15 2023-08-18 韩国原子力研究院 放射性化学废物处理装置以及放射性化学废物处理方法
US11735329B2 (en) 2019-10-15 2023-08-22 Korea Atomic Energy Research Institute Radioactive chemical waste treatment apparatus

Also Published As

Publication number Publication date
CN104418400B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
Wang et al. Removal of cesium ions from aqueous solutions using various separation technologies
Zhang et al. Unexpected favorable role of Ca2+ in phosphate removal by using nanosized ferric oxides confined in porous polystyrene beads
Chen et al. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade
Zhang et al. Nanoconfined hydrated zirconium oxide for selective removal of Cu (II)-carboxyl complexes from high-salinity water via ternary complex formation
Biswas et al. Selective recovery of silver and palladium from acidic waste solutions using dithiocarbamate-functionalized cellulose
Foster et al. SOHIO process legacy waste treatment: uranium recovery using ion exchange
Kim et al. Recovery of uranium from seawater: a review of current status and future research needs
Kumbasar Selective separation of chromium (VI) from acidic solutions containing various metal ions through emulsion liquid membrane using trioctylamine as extractant
Rajadurai et al. Ionic liquids to remove toxic metal pollution
Zhao et al. Facile synthesis of low-cost MnPO4 with hollow grape-like clusters for rapid removal uranium from wastewater
El-Din et al. Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion-exchanger for cesium ions removal from seawater
Viltres et al. Functional metal-organic frameworks for metal removal from aqueous solutions
CN103406092B (zh) 一种胺基功能化介孔γ-Al2O3吸附剂的制备方法
Dong et al. Enhanced fluoride removal from water by nanosized cerium oxides impregnated porous polystyrene anion exchanger
Lei et al. Hollow self-assembled hybrid framework based on phytic acid for U (VI) capture from highly acidic aqueous media
CN106186272B (zh) 活性炭-铁酸锌复合材料、其制备方法及光催化脱氮用途
KR20150109744A (ko) 금속 촉매 담지 음이온 교환수지 및 이를 이용한 독성 음이온의 제거방법
Afridi et al. Statistical optimization of Mg-doped UiO-66-NH2 synthesis for resource recovery from wastewater using response surface methodology
Clark et al. Ligand Exchange Adsorbents for Selective Phosphate and Total Ammonia Nitrogen Recovery from Wastewaters
Zhao et al. Rational design of the nanocomposite by in-situ sub-10 nm La (OH) 3 formation for selective phosphorus removal in waters
CN104418400A (zh) 铁基纳米合金及其在吸附铯中的应用
Wu et al. Removal of trace radioactive Cs+ by zirconium titanium phosphate: From bench-scale to pilot-scale
Kancharla et al. Selective extraction of precious metals from simulated automotive catalyst waste and their conversion to carbon supported PdPt nanoparticle catalyst
You et al. Enrichment and immobilization of heavy metal ions from wastewater by nanocellulose/carbon dots-derived composite
Duarte et al. Mechanisms of arsenic removal from simulated surface water based on As (III) retention on thiol chelating resins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170208

CF01 Termination of patent right due to non-payment of annual fee