CN104412083B - 红外传感器设备和用于制造红外传感器设备的方法 - Google Patents

红外传感器设备和用于制造红外传感器设备的方法 Download PDF

Info

Publication number
CN104412083B
CN104412083B CN201380025594.5A CN201380025594A CN104412083B CN 104412083 B CN104412083 B CN 104412083B CN 201380025594 A CN201380025594 A CN 201380025594A CN 104412083 B CN104412083 B CN 104412083B
Authority
CN
China
Prior art keywords
sensor element
infrared sensor
sensor apparatus
sensor
suspension apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380025594.5A
Other languages
English (en)
Other versions
CN104412083A (zh
Inventor
I·赫尔曼
C·舍林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN104412083A publication Critical patent/CN104412083A/zh
Application granted granted Critical
Publication of CN104412083B publication Critical patent/CN104412083B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/023Particular leg structure or construction or shape; Nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提出一种红外传感器设备(100),具有至少一个在半导体衬底(5)中构造的传感器元件(2),其中在SOI晶片(1)中在传感器元件(2)下面和围绕传感器元件(2)构造缝隙(3,8);和悬吊装置(10),传感器元件借助于该悬吊装置(10)悬吊在SOI晶片(1)中。红外传感器设备(100)的特征在于,传感器元件(2)基本上布置在悬吊装置(10)下面。由此达到高的灵敏度、低的热容量、到衬底的小的热耦合以及由此高的图像重复频率。传感器元件(2)是二极管,其在单晶的、基本上呈U形的半导体衬底(5)的硅区域中构造。

Description

红外传感器设备和用于制造红外传感器设备的方法
技术领域
本发明涉及红外传感器设备和用于制造红外传感器设备的方法。
背景技术
在现有技术中已知以表面微机械技术制造的像素结构。例如,WO 9325877公开了在由SiO2或SixNx构成的钝化层中嵌入的细的金属线路与同样在钝化层中嵌入的辐射热测量器层电阻,所述金属线路在与反射层一起以适当的距离形成λ/4吸收器的装置中连接。
从WO 2007147663中已知热绝缘穴的大批微机械制造,在所述热绝缘穴上方于是通过Si或SOI膜的结构化产生悬吊在尽可能长和细的臂上的传感器元件。
另外,已知一种基于具有周围钝化的SOI像素技术的IR传感器阵列。在该IR传感器阵列情况下,悬吊小臂布置在像素和列或行布线之间。pn结延伸直到表面。
发明内容
本发明的任务是,提供一种改善了的红外传感器设备,其允许在同一面上安置多个像素。
该任务利用一种红外传感器设备解决,其具有:
-上侧和下侧
-至少一个在半导体衬底中构造的传感器元件,其中在SOI晶片中围绕传感器元件和在传感器元件下面构造热绝缘层;和
-悬吊装置,传感器元件借助于该悬吊装置悬吊在晶片中;其特征在于,该传感器元件基本上布置在悬吊装置下面。
按照另一个方面,本发明提供了一种具有多个按照本发明的红外传感器设备的红外传感器场。
按照另一个方面,利用本发明提供一种用于制造红外传感器设备的方法,该方法具有下列步骤:
-提供(SOI)晶片;
-在(SOI)晶片中构造缝隙以定义半导体衬底岛;
-用氧化物材料填充缝隙;
-对半导体衬底岛进行掺杂;
-在牺牲区域上和在半导体衬底岛之间产生牺牲层腐蚀孔穿过SOI晶片的整个层构造直至载体衬底;
-对半导体衬底岛和牺牲区域进行牺牲层腐蚀以释放(Freistellung)传感器元件。
本发明的优点
通过把传感器元件布置在悬吊装置下面,有利地提供了一种具有较高面填充系数的像素的红外传感器设备。在本申请的范围内,表述“在悬吊装置下面”意味着相对于该悬吊装置,朝向红外传感器设备的下侧的那侧。由此在将红外传感器设备用在热成像照相机中时可以提高像素密度。
优选的扩展方案是各从属权利要求的主题。
该红外传感器设备的一个优选的实施方式的特征在于,传感器元件是二极管。由此有利地提供了一种具有其值取决于温度改变的特性的传感器元件。对于本发明因此充分利用红外线引起的温度变化,以便对在该二极管处的取决于温度而改变的电压降进行分析。
按照本发明的红外传感器设备的一个优选实施方式的特征在于,传感器元件的半导体衬底具有单晶的、基本上呈U形的硅区域,其中硅区域的掺杂区域基本上垂直布置。通过掺杂区域的垂直布置,传感器元件的温度敏感区域移向深处,由此在该二极管的pn结的空间电荷区中形成较小的缺陷密度。由此有利地有较小的表面漏电流流动。此外由此可以有利地减小传感器元件的面积规模,由此导致传感器元件的紧凑的结构类型。
按照本发明的红外传感器设备的一个优选实施方式的特征在于,掺杂区域通过氧化物材料侧向彼此分开。由此有利地为待探测的红外辐射提供了附加的吸收体积。
该红外传感器设备的一个有利的改进方案规定,传感器元件借助于悬吊装 置在两个区域中与其余(SOI)晶片连接。由此在传感器阵列的应用中一方面在各个传感器元件彼此之间以及通向衬底地产生小的热耦合。
按照本发明的红外传感器设备的一个优选实施方式的特征在于,悬吊装置在垂直方向上对称地构造,其中电导体线路在该悬吊装置中基本上居中地布置在两个厚度基本上相等的氧化物材料层之间。由此有利地得出悬吊结构的一种应力对称的构造,这在悬吊装置被腐蚀释放之后支持减少的基本偏转并且支持偏转随温度的运行。
按照本发明的红外传感器设备的一个优选实施方式的特征在于,导体线路基本上设置在传感器元件的中心和传感器元件上面,也就是说相对于传感器元件设置在朝向红外传感器设备的上侧的那侧上,基本上以螺旋形构造。通过这种方式可以无交叉地实现非常长的悬吊小臂。由此有利地产生小的散热,这有利地引起传感器元件到衬底的小的热耦合。
按照本发明的红外传感器设备的一个优选实施方式规定,电导体线路的材料是来自如下组:Ti、TiN、Ta、TaN的至少一种或这些材料的组合。用这些材料或由其构成的组合达到了导电性和导热性之间的有利折衷,由此传感器元件有利地仅仅微小地与衬底耦合。
按照本发明的红外传感器设备的一个优选实施方式的特征在于,布置在传感器元件上的氧化物材料层的光学厚度基本上对应于待探测波长的1/4的奇数倍。这有利地确定用于吸收待探测的波长的氧化物层的尺寸。
按照本发明的红外传感器设备的一个优选实施方式的特征在于,在传感器元件上面的氧化物材料层的厚度大于悬吊装置范围中的厚度。在本申请的范围中,表述“在传感器元件上面”意味着相对于该传感器元件,朝向红外传感器设备上侧的那面。由此,有利地仅仅在传感器元件的范围中、而不在悬吊结构的范围中提供提高的吸收层厚度。这可以有利地引起信噪比升高。
按照本发明的红外传感器设备的一个有利改进方案的特征在于,在传感器元件的表面上布置反射层。通过这种方式有利地增大待探测的辐射的吸收路径以及由此增大其吸收。
下面参照附图根据实施方式阐述本发明的其他特征和优点。在此,所有描述的或显示的特征本身或以任意组合构成本发明的主题,而与其在权利要求中的组合或其回引无关,以及与它们在说明书中或在附图中的表达或示出无关。 附图尤其是意图用来说明本发明的基本原理并且不一定是比例正确的。在附图中,相同的附图标记表示相同的或功能相同的元件。
附图说明
图1a示出本发明红外传感器设备的一个实施方式的截面视图;
图1b示出本发明红外传感器设备的一个实施方式的俯视图;并且
图2a至图2f示出用于制造本发明红外传感器设备的一个实施方式的方法的方法阶段与相应的中间产品。
具体实施方式
图1a示出本发明红外传感器设备100的一个实施方式在图1b的截平面A-A’中的原理截面视图。红外传感器设备100的基本材料包括SOI晶片1(英语:silicon-on-insulator,绝缘体上的硅),其包括载体衬底7(英语:handle wafer(操作晶片))、氧化物材料6和带有半导体衬底5的器件层。在布置于红外传感器设备100上侧11处的SOI晶片1的表面上,施加多层的氧化物材料6,它们是带有导体线路4用以对传感器元件2进行电供给的金属化平面。
传感器元件2构造为半导体二极管,其中作为二极管的基本材料优选使用单晶硅,其与多晶硅相比有利地具有明显改善的噪声特性(例如,通过消除晶界噪声)。传感器元件2在(SOI)晶片1内部,布置在红外传感器设备100的红外传感器设备12的下侧12处,通过环绕的缝隙3和穴8形式的热绝缘槽与其余衬底热绝缘。二极管的结构基本上垂直取向,其中二极管具有基本上U形构造的、经掺杂的半导体衬底区域。这通过pn结移向深处和在空间电荷区中的较小的缺陷密度而有利地导致表面漏电流减少。通过基本上U形的二极管基本结构,此外有利地提高了二极管的封装密度,这可以在传感器阵列的应用方面导致较高的像素密度。
传感器元件2的悬吊装置10通过周围被释放的氧化物材料6层形成,在其中布置有导体线路4。在垂直取向上,悬吊装置10基本上对称构建,其中在悬吊装置10区域中的氧化物材料6的厚度小于在其余传感器元件2的区域中。由此可以通过小的截面面积将悬吊装置10的导热性有利地保持得低。结果由此可以通过像素区域中的提高的吸收层厚度来实现红外传感器设备100的改善的 信噪比(SNR),该吸收层厚度在悬吊装置10的范围中不存在。由此可以有利地提供高灵敏的红外传感器设备100。
侧向地围绕二极管的掺杂区域同样布置有氧化物材料6,这有利地导致吸收层厚度增大,以及提供各二极管元件彼此的定义的边界。此外不必由此考虑二极管掺杂区域的侧向的向外扩散,这有利地允许传感器元件2有较高的集成密度。
传感器元件2上的氧化物层的光学厚度基本上对应于待探测波长λ的四分之一的奇数倍,这证实为对电磁辐射的吸收特别有利。此外通过悬吊装置10的对称构建,支持了悬吊装置10被腐蚀释放之后的减小的基本偏转以及偏转的小的温度依赖性。
导体线路4优选包括单层或多层的下列材料的组合:Ti,TiN,Ta,TaN。这些材料全部有利地在导电性和导热性之间具有有利的折衷,使得通过应用上述材料避免传感器元件2的不必要的温升。导体线路4优选具有小于约0.1μm2的截面。在制造红外传感器设备100时,多晶硅9可以有利地用于导体线路4和用作牺牲层材料。
可选地,在红外传感器设备100上侧11处的表面上布置反射层30,该反射层30提高待探测辐射的吸收并且由此有利地提高红外传感器设备100的效率。
图1b示出本发明红外传感器设备100的一个实施方式的原理俯视图。可以看出,完全围绕传感器元件2的缝隙3将传感器元件2与其余衬底热隔离。此外在红外传感器设备100的制造过程中,缝隙3用作牺牲层腐蚀孔。传感器元件2例如总共具有八个二极管,其中对于传感器元件2来说二极管的最小数目为1。二极管电串联和/或并联,其中在半导体衬底5的硅中分别这样集成一个二极管元件,使得掺杂区域侧向地受氧化物槽限制。另外可以看出,传感器元件2的二极管基本上布置在悬吊装置10下面。由此可以有利地提高传感器元件2的面填充系数,由此在确定的面上可以布置更大数目的传感器元件2。
导体线路4基本上设置在传感器元件2的中心,并且基本上呈螺旋状地构造在传感器元件2上面。在此,缝隙3只跨接在两个区域中,以便在红外传感器设备100的传感器元件2与行线路40或列线路50之间提供导电连接。具有导体线路4的悬吊装置10的小臂与传统的构造相比基本上完全在上面、也就是 说在传感器元件2的朝向上侧11的侧构造,并且不像在现有技术中那样例如在其旁边构造,这有利地导致节省面积并因此导致较高的面填充系数。具有导体线路4的悬吊装置10的锚固(未示出)在SOI晶片1上在适当的锚固结构的作用点处进行。这些结构的示例是在各传感器元件2之间的支持柱或壁(未示出),其中所述支持柱的结构由半导体衬底材料形成。
为了列线路40或行线路50的金属化,例如选择具有硅-铜掺杂的铝(Al-Si-Cu)。所述材料还可以用于传感器元件2内的金属化。在悬吊装置10的臂中的导体线路4与其截面相比构造得长和窄,这有利地导致传感器元件2和半导体衬底5之间的小的热耦合。各传感器元件2之间的和到衬底7的热桥由此有利地构造得尽可能小。
图2a示出用于制造本发明红外传感器设备的第一步骤的中间产品。在此提供(SOI)晶片1,其包括各层载体衬底7、氧化物材料6(优选构造为BOX,英语buried oxide(掩埋氧化物))和具有半导体衬底5的一层。半导体衬底5优选构造为单晶硅,由此有利地避免了半导体衬底5内的晶界噪声。出于停止沟腐蚀的目的施加两个带有停止氧化物6a的岛。另外,在SOI晶片1中从上面蚀刻槽,以便直至所掩埋的氧化物层的下侧地对(SOI)晶片1结构化。
图2b示出接下来的外延步骤的中间产品,其中半导体衬底5的材料在图2a的结构上生长。在此,不仅外延层、而且之前已经存在的材料都有利地已经掺杂。另外,蚀刻槽,以便提供本发明传感器设备100的基本的几何结构。可以看出,传感器元件2在半导体衬底5内的基本结构基本上以U形构造。
图2c示出接下来的步骤的另一中间产品,其中将氧化物材料6填充到现存的沟槽中。填充到沟槽中的氧化物材料6有利地充当待探测辐射的附加的吸收体积。另外,在该步骤中在半导体衬底5的部分区域中进行p-掺杂。
图2d在原理上示出在接下来的步骤中将多层的氧化物材料6施加到从图2c获得的结构上。在此,在这些层内淀积和结构化至少两个布线平面。通过这种方式获得导体线路4,所述导体线路4可以优选具有三种不同的材料。这包括来自以下材料中的一种或多种:Ti、TiN、Ta、TaN,或者这些材料的组合。另外(用黑色示出地),所述材料例如包括具有硅-铜-掺杂的铝,其中该材料尤其用于列线路40和行线路50。最后,所述材料可以包括多晶硅9。
图2e示出接下来步骤的的中间产品,其中将牺牲层腐蚀孔引入到图2d的 结构中。
图2f示出本发明红外传感器设备100的制造方法的最后步骤的结果。在此,进行牺牲层腐蚀,由此形成在空间上基本上得到释放的传感器元件2,该传感器元件2通过缝隙3和布置在传感器元件2下面的穴8与周围的衬底热绝缘。另外,进行氧化物材料6层的下腐蚀,以便由此形成或露出该传感器元件2的悬吊装置10。由此,在传感器元件2和周围的衬底之间有利地形成小的热耦合。
作为附加的最后步骤(未在图中示出),在制造带有图像像素的传感器阵列时,用适当的盘形晶片进行阵列晶片的晶片级掩盖以产生足够好的真空用于热绝缘和用于传感二极管元件的保护。
总而言之,利用本发明提供经改善的红外传感器设备,其适于应用在传感器阵列中,例如,用于在热成像照相机中采用。可以在所有如下应用中采用本发明,在所述应用中应当对热辐射进行空间上经分辨的探测并且其中作为高精度温度测量,单件成本起到较大作用。对此的示例是汽车夜视设备和热像术,例如用于建筑物隔离或过程监视。另外,利用本发明实现用于家庭用途(例如,用于绝缘泄露或热泄漏的定位)的热成像照相机。此外,本发明红外传感器设备可以在检测不同物品、装置或生物的热固有辐射的情况下作为单个像素用于温度监视。
用本发明红外传感器设备实现的图像像素元件通过悬吊装置的小的截面、通过悬吊装置的臂的大长度、通过缺少热桥以及通过厚的吸收层和/或反射层而有利地具有到衬底的小的热耦合。
由于围绕二极管在侧向延伸上存在氧化物材料层,因此不必考虑植入的侧向向外扩散,由此二极管的侧向尺寸有利地以光刻方式定义。这有利地允许在较小面上的较密设计。
另外,二极管的pn结与传感器元件的表面间隔开,这意味着将半导体衬底5的掺杂过程的植入损伤转移走到深处。空间电荷区中的由此引起的较小的缺陷密度有利地导致漏电流减小和信噪比(SNR)改善。
结果利用本发明提供一种红外传感器设备,其具有高灵敏的图像像素、小的热容量、到衬底的小的热耦合并且因此具有高的图像重复频率。与传统的红外传感器设备相比,本发明红外传感器设备在相同的信噪比情况下可以制造得更小并且因此成本更低廉。
尽管已经根据优选实施例对本发明进行了描述,但本发明不限于此。尤其是,所述材料和拓扑仅仅是示例性的并且不限于所解释的示例。因此,专业人员可以在不偏离本发明核心的情况下修改本发明的所述特征或将其彼此组合。

Claims (11)

1.红外传感器设备(100),具有:
SOI晶片衬底(1),其具有载体衬底(7)、氧化物材料(6)和器件层(5);
多个在器件层(5)中构造的二极管作为传感器元件(2),其中氧化物材料(6)布置在传感器元件(2)周围并且布置在传感器元件(2)的下侧处;
其中传感器元件(2)通过环绕的缝隙(3)形式的热绝缘槽和通过载体衬底(7)中的穴(8)与其余的SOI晶片衬底(1)热绝缘;
悬吊装置(10),借助该悬吊装置(10)将传感器元件(2)悬吊在SOI晶片衬底(1)中;
其中传感器元件(2)基本上布置在悬吊装置(10)下面;
其中所述二极管具有单晶的、基本上呈U形的硅区域;
其中硅区域的掺杂区域被布置为使得二极管基本上垂直取向;以及
其中所述掺杂区域通过氧化物材料(6)彼此分开并且与环绕的缝隙(3)分开。
2.根据权利要求1的红外传感器设备(100),其特征在于,借助于悬吊装置(10)传感器元件(2)在两个区域中与其余SOI晶片衬底(1)连接,以便提供用于传感器元件(2)的电连接。
3.根据权利要求1或2的红外传感器设备(100),其特征在于,悬吊装置(10)在垂直方向上对称地构造,其中悬吊装置(10)中的电导体线路(4)基本上居中地布置在两个厚度基本上相等的氧化物材料(6)层之间,并且其中电导体线路(4)本身比悬吊装置(10)窄。
4.按照权利要求3的红外传感器设备(100),其特征在于,导体线路(4)基本上设置在传感器元件(2)中心并且在传感器元件(2)上面基本上以螺旋形构造。
5.按照权利要求3的红外传感器设备(100),其特征在于,电导体线路(4)的材料是来自如下组中的至少一种:Ti、TiN、Ta、TaN,或者这些材料的组合。
6.按照权利要求1或2的红外传感器设备(100),其特征在于,布置在传感器元件(2)上的氧化物材料(6)层的光学厚度基本上对应于待探测波长的四分之一的奇数倍。
7.按照权利要求6的红外传感器设备(100),其特征在于,在传感器元件(2)上面的氧化物材料(6)层的厚度大于在悬吊装置(10)区域中的厚度。
8.按照权利要求1或2的红外传感器设备(100),其特征在于,在传感器元件(2)的表面上布置反射层(30)。
9.具有多个根据权利要求1至8之一的红外传感器设备(100)的红外传感器场。
10.按照权利要求9的红外传感器场,其特征在于,传感器场的至少行线路或列线路具有多晶硅(9)。
11.用于制造根据权利要求1的红外传感器设备(100)的方法,具有步骤:
提供SOI晶片衬底(1);
在器件层(5)中构造呈U形的硅区域,所述硅区域通过槽彼此分开;
用氧化物材料(6)填充槽;
对硅区域进行掺杂以构造传感器元件(2)的二极管;
在牺牲区域上产生牺牲层腐蚀孔;
对牺牲区域进行牺牲层腐蚀以释放传感器元件(2),所述传感器元件通过环绕的缝隙(3)形式的热绝缘槽和通过载体衬底(7)中的穴(8)与其余的SOI晶片衬底(1)热绝缘。
CN201380025594.5A 2012-05-16 2013-04-12 红外传感器设备和用于制造红外传感器设备的方法 Expired - Fee Related CN104412083B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201210208192 DE102012208192A1 (de) 2012-05-16 2012-05-16 Infrarot-Sensorvorrichtung und Verfahren zur Herstellung einer Infrarot-Sensorvorrichtung
DE102012208192.5 2012-05-16
PCT/EP2013/057693 WO2013171010A2 (de) 2012-05-16 2013-04-12 Infrarot-sensorvorrichtung und verfahren zur herstellung einer infrarot-sensorvorrichtung

Publications (2)

Publication Number Publication Date
CN104412083A CN104412083A (zh) 2015-03-11
CN104412083B true CN104412083B (zh) 2017-12-26

Family

ID=48141963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380025594.5A Expired - Fee Related CN104412083B (zh) 2012-05-16 2013-04-12 红外传感器设备和用于制造红外传感器设备的方法

Country Status (5)

Country Link
US (1) US9276146B2 (zh)
EP (1) EP2856095B1 (zh)
CN (1) CN104412083B (zh)
DE (1) DE102012208192A1 (zh)
WO (1) WO2013171010A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615985B (zh) * 2015-12-25 2018-02-21 財團法人工業技術研究院 光感測元件及其製造方法
CN108640079B (zh) * 2018-04-26 2020-06-23 上海烨映电子技术有限公司 一种真空封装结构及其封装方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2133081C (en) 1992-06-11 2001-12-25 R. Andrew Wood Use of abx in microbolometer sensors
JP3497797B2 (ja) * 2000-03-30 2004-02-16 株式会社東芝 赤外線センサの製造方法
JP4028441B2 (ja) * 2003-06-18 2007-12-26 株式会社東芝 赤外線固体撮像素子およびその製造方法
US20050224714A1 (en) * 2004-04-08 2005-10-13 Tayfun Akin Ultra low-cost uncooled infrared detector arrays in CMOS
EP1643754A1 (en) * 2004-09-29 2006-04-05 CSEM Centre Suisse d'Electronique et de Microtechnique SA Highly sensitive solid-state image sensor
CN1983602B (zh) * 2005-12-13 2012-01-04 松下电器产业株式会社 半导体存储装置、其制造方法及其驱动方法
DE102006028435A1 (de) 2006-06-21 2007-12-27 Robert Bosch Gmbh Sensor und Verfahren zu seiner Herstellung
DE102007008381A1 (de) 2007-02-21 2008-08-28 Robert Bosch Gmbh Strahlungssensorelement, Verfahren zur Herstellung eines Strahlungssensorelements und Sensorfeld
US9568367B2 (en) * 2010-05-30 2017-02-14 Technion Research And Development Foundation Ltd. Sensing device having a thermal antenna and a method for sensing electromagnetic radiation

Also Published As

Publication number Publication date
WO2013171010A3 (de) 2014-10-23
DE102012208192A1 (de) 2013-11-21
CN104412083A (zh) 2015-03-11
US9276146B2 (en) 2016-03-01
WO2013171010A2 (de) 2013-11-21
EP2856095B1 (de) 2018-08-08
EP2856095A2 (de) 2015-04-08
US20150102443A1 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US9070637B2 (en) Device-mounted substrate, infrared light sensor and through electrode forming method
JP5751544B2 (ja) 非冷却マイクロボロメータを製造する際に使用するシリコン・オン・インシュレーター(soi)相補型金属酸化物半導体(cmos)ウェーハ
US8115272B2 (en) Silicon dioxide cantilever support and method for silicon etched structures
TWI613425B (zh) 蜿蜒紅外線感測器
EP2822892B1 (en) Atomic layer deposition strengthening members and method of manufacture
CN107063470A (zh) 具有高吸收效率和信噪比的悬置测辐射热膜的检测装置
US9698281B2 (en) CMOS bolometer
US20080265164A1 (en) Thermal detector for electromagnetic radiation and infrared detection device using such detectors
US7754517B2 (en) Method for manufacturing infrared detecting device
JP2008039684A (ja) 固体撮像素子及びその製造方法並びに撮像装置
US20150115160A1 (en) Thermally Shorted Bolometer
CN104412386B (zh) 红外线传感器装置和用于制造红外线传感器装置的方法
CN104412083B (zh) 红外传感器设备和用于制造红外传感器设备的方法
US11815400B2 (en) Sensitive pixel based detection system comprising a thermal detector and a compensation device
CN102963860B (zh) 微桥结构红外探测器的制造方法
JP5016527B2 (ja) 熱型赤外線撮像素子
EP2109880A2 (en) Post-supported microbolometer pixel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171226

Termination date: 20200412

CF01 Termination of patent right due to non-payment of annual fee