CN104409555B - 一种基于石墨烯的紫外感应器及其制备方法 - Google Patents

一种基于石墨烯的紫外感应器及其制备方法 Download PDF

Info

Publication number
CN104409555B
CN104409555B CN201410733664.9A CN201410733664A CN104409555B CN 104409555 B CN104409555 B CN 104409555B CN 201410733664 A CN201410733664 A CN 201410733664A CN 104409555 B CN104409555 B CN 104409555B
Authority
CN
China
Prior art keywords
graphene
ultraviolet
film
substrate
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410733664.9A
Other languages
English (en)
Other versions
CN104409555A (zh
Inventor
王振中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen G-CVD Material Technology Co., Ltd.
Original Assignee
Xiamen G-Cvd Graphene Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen G-Cvd Graphene Technology Co Ltd filed Critical Xiamen G-Cvd Graphene Technology Co Ltd
Priority to CN201410733664.9A priority Critical patent/CN104409555B/zh
Publication of CN104409555A publication Critical patent/CN104409555A/zh
Application granted granted Critical
Publication of CN104409555B publication Critical patent/CN104409555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开一种基于石墨烯的紫外感应器,所述紫外感应器包括衬底、感应薄膜和方块金属电极,所述方块金属电极设置在衬底两端,所述感应薄膜铺设在衬底上并覆盖连接方块金属电极,所述感应薄膜包括上下两层石墨烯薄膜和AuCl3纳米颗粒层,所述AuCl3纳米颗粒层位于上下两层石墨烯薄膜之间,形成“三明治”结构。本发明所述的紫外线感应器,石墨烯的电阻会随着紫外线照射发生变化,电阻的变化量与入射紫外线强度成正比。本发明的紫外感应器具有高的响应速度和探测灵敏度。

Description

一种基于石墨烯的紫外感应器及其制备方法
技术领域
本发明涉及到感应器制造的技术领域,特别涉及到一种基于石墨烯的紫外感应器及其制备方法。
背景技术
紫外线是电磁波谱中波长从10nm到400nm辐射的总称,在大自然中,主要紫外线光源是太阳,太阳光透过大气层时波长短于290nm米的紫外线被大气层中的臭氧层吸收,人工紫外线光源有多种气体电弧,如高压汞弧、高压氙弧等。白炽物体的辐射也包含紫外线,但要达到4000℃才有1~2%的辐射为紫外线。紫外线在医学和军事领域都有着极其重要的应用,在医学方面,紫外线常用于消毒和治疗,紫外线有杀菌作用,照射在人皮肤上,能使麦角甾醇变为维生素D,可用以治疗皮肤病和软骨病等;在军事方面,紫外线也有着极其重要的应用,包括紫外线制导、紫外线告警、紫外线通讯等。但是,过强的的紫外线会对人体健康产生极大的危害,如伤害眼睛,使皮肤产生红斑,甚至诱发皮肤癌,除此之外在军事应用时,过强的紫外线也会给军事设备带来一定的干扰,导致制导或者通讯信号的紊乱。所以,对紫外线强度进行探测是十分重要的。
紫外线探测技术有着极其广泛的应用前景,早在在20世纪80年代后期就已经开始了大量的研究和应用,1991年在海湾战争中投入使用的美海军C-130S直升机和P-3S运输机上就有世界上第一台紫外线告警器AAR-47。随着科技的不断发展,对紫外线探测技术的需求,以至于各国都在持续投入人力物力大力研发紫外线探测技术。目前广泛研究的紫外探测技术,主要是基于紫外线对半导体载流子浓度的影响而开发的。当紫外线照射半导体时,价带电子被激发到导带,使得载流子浓度上升,半导体电阻下降,从而测量到电流的变化,以此实现对紫外线探测的一种技术。但目前的紫外感应器普遍存在光响应速度慢以及探测响应和回复时间较长的问题。为解决这一问题,中国专利201010508591.5公开了一种用于紫外探测的半导体感应器及这种感应器的制备方法,该发明的半导体紫外探测感应器由基板、负载于基板上的电极和位于电极之间的并联集成的氧化锌纳米线,其中的电极为两个各呈梳齿状且相向布置的电极,其中一个电极的梳齿插入另一个电极的两个梳齿之间,形成齿插状,在相邻的两个梳齿上均并联集成着氧化锌纳米线。该发明的紫外线感应器光响应电流可达到毫安量级,使得紫外线的探测和其强度表征难度显著下降。
但是在军事应用方面,除了需要感应器具备极高的响应速度和探测灵敏度外,还需要具备很强的抗干扰性能,不受云、雾和太阳光等气象条件的限制,而专利201010508591.5公开的用于紫外探测的半导体感应器虽然具有高的响应速度,但是依然存在探测灵敏度底下,容易受到环境因素干扰等问题。
石墨烯是单层碳原子构成的二维晶体,具有优异的力学、热学、电学和光学特性,在电子器件和光电器件领域具有巨大应用潜力。悬浮的石墨烯载流子迁移率可达到106cm2/Vs,比常温下单晶硅的载流子迁移率高1到2个数量级。石墨烯能吸收约2.3%的入射光,虽然对单程材料来说已经是很高的吸收率了,但基于石墨烯的光吸收能力来制作紫外感应器,则这样水平的吸收率则远远不够。
发明内容
本发明的目的在于提供一种基于石墨烯的紫外感应器,具有高的响应速度和探测灵敏度。
为此,本发明采用以下技术方案:
一种基于石墨烯的紫外感应器,所述紫外感应器包括衬底、感应薄膜和方块金属电极,所述方块金属电极设置在衬底两端,所述感应薄膜铺设在衬底上并覆盖连接方块金属电极,所述感应薄膜包括上下两层石墨烯薄膜和AuCl3纳米颗粒层,所述AuCl3纳米颗粒层位于上下两层石墨烯薄膜之间,形成“三明治”结构。
优选的,所述感应薄膜为图形化的条纹状薄膜。
优选的,所述衬底为PET、PEN、SiO2/Si、蓝宝石、石英或者玻璃。
优选的,所述方块金属电极的材料为Au、Cu、Ag、Al、Mo、Ti或者Ni中的至少一种。
本发明还提供了一种基于石墨烯的紫外感应器的制备方法,包括如下步骤:
1)在衬底上制备出一组分立的方块金属电极;
2)在衬底上转移一层石墨烯薄膜,石墨烯薄膜覆盖至少两个方块金属电极;
3)在石墨烯薄膜表面涂覆AuCl3的硝基甲烷溶液,在石墨烯薄膜上形成AuCl3纳米颗粒层;
4)在AuCl3纳米颗粒层上面再转移一层石墨烯薄膜,形成“三明治”结构;
5)用紫外曝光与氧等离子体刻蚀的方法,图形化感应器,每个感应器的两端是方块金属电极,得到基于石墨烯的紫外感应器。
优选的,所述AuCl3的硝基甲烷溶液的浓度为1.5×10-3~2.5×10-3mol/L。
优选的,所述石墨烯薄膜为采用CVD法制备的单层石墨烯薄膜。
采用以上技术方案,感应薄膜采用在上下两层石墨烯薄膜层之间设有AuCl3纳米颗粒层,形成“三明治”结构。石墨烯的电阻随着紫外线照射发生变化,电阻的变化量与入射紫外线强度成正比,因此可以用于感应紫外线。
附图说明
图1为本发明基于石墨烯的紫外感应器的结构示意图。
图2为本发明基于石墨烯的紫外感应器的感应薄膜图形化后的结构示意图。
图3为本发明基于石墨烯的紫外感应器制备流程的结构示意图。
图4为本发明基于石墨烯的紫外感应器在不同偏压和不同紫外线强度下的光响应曲线。
图5为本发明基于石墨烯的紫外感应器响应紫外线开/关的电阻值变化周期。
具体实施方式
为了使本发明的目的、特征和优点更加的清晰,以下结合附图及实施例,对本发明的具体实施方式做出更为详细的说明,在下面的描述中,阐述了很多具体的细节以便于充分的理解本发明,但是本发明能够以很多不同于描述的其他方式来实施。因此,本发明不受以下公开的具体实施的限制。
一种基于石墨烯的紫外感应器,如图1所示,所述紫外感应器包括衬底1、感应薄膜2和方块金属电极3,所述方块金属电极3设置在衬底1两端,所述感应薄膜3铺设在衬底1上并覆盖连接方块金属电极3,所述感应薄膜2包括上下两层石墨烯薄膜21和AuCl3纳米颗粒层22,所述AuCl3纳米颗粒层22位于上下两层石墨烯薄膜21之间,形成“三明治”结构。
其中,如图2所示,所述感应薄膜2为图形化的条纹状薄膜;
其中,所述衬底1为PET、PEN、SiO2/Si、蓝宝石、石英或者玻璃;
其中,所述方块金属电极3的材料为Au、Cu、Ag、Al、Mo、Ti或者Ni中的至少一种。
本发明还提供了一种基于石墨烯的紫外感应器的制备方法,如图3所示,包括如下步骤:
1)在衬底1上制备出一组分立的方块金属电极3;
2)在衬底1上转移一层石墨烯薄膜211,石墨烯薄膜211覆盖至少两个方块金属电极3;
3)在石墨烯薄膜211表面涂覆AuCl3的硝基甲烷溶液,在石墨烯薄膜上形成AuCl3纳米颗粒层22;
4)在AuCl3纳米颗粒层22上面再转移一层石墨烯薄膜212,形成“三明治”结构;
5)用紫外曝光与氧等离子体刻蚀的方法,图形化感应器,每个感应器的两端是方块金属电极,得到基于石墨烯的紫外感应器。
其中,所述AuCl3的硝基甲烷溶液的浓度为1.5×10-3~2.5×10-3mol/L;所述石墨烯薄膜为采用CVD法制备的单层石墨烯薄膜。
本发明所述的紫外感应器的工作原理如下:
AuCl3常用于导电高聚合物的掺杂,如果将石墨烯看作是拥有共轭π电子的聚合物,那么其AuCl3掺杂机理将于上述导电高聚合物类似。利用硝基甲烷溶剂作为配位体,形成AuCl3纳米颗粒掺杂石墨烯将发生以下反应:
2Graphene+2AuCl3→2Graphene++2AuCl2 +2AuCl4 (1)
反应后石墨烯的空穴浓度增加,电阻率减小。利用四探针法测量掺杂前后石墨烯薄膜的方块电阻分别为500~600Ω/□和250~300Ω/□,说明AuCl3的掺杂可以有效降低石墨烯薄膜的方块电阻。
在紫外线照射下,AuCl2 进一步分解,发生如下反应:
Au的功函数为4.8eV,而石墨烯的功函数为4.6eV,Au颗粒与石墨烯接触后,由于功函数的差别,金颗粒会向石墨烯注入空穴,进一步提高石墨烯中空穴的浓度,从而降低石墨烯的电阻率,石墨烯薄膜的方块电阻可以达到100~150Ω/□。
停止紫外线照射后,发生如下逆反应:
不再有金颗粒向石墨烯注入空穴,石墨烯的电阻变大,达到250~300Ω/□。
石墨烯的电阻随着紫外线照射与否会发生变化,电阻变化量在一定范围内与紫外线的强度成正比。石墨烯特殊的能带结构,导致电阻率对载流子(电子和空穴)浓度的变化非常敏感。此外反应(2)和(3)的反应时间在皮秒的量级,而Au颗粒与石墨烯之间空穴转移的速度也很快,因此本发明的感应器具有高的响应速度和探测灵敏度。
用本发明所述的基于石墨烯的紫外感应器感应紫外线,设置紫外线强度分别为10nW/cm2、10μW/cm2和10mW/cm2,测试结果如图4所示,在相同的紫外线强度下,光响应电流ΔI随着偏压VDs增大而增大,而在相同的偏压下,光响应电流ΔI也会随着紫外线强度的增大而增大。如图4所示,当取偏压VDs为4V,本发明所述的紫外感应器在紫外线强度分别为10nW/cm2、10μW/cm2和10mW/cm2下得到的响应电流分别为0.8mA、2.4mA和4.8mA,由此可以说明本发明所述的紫外感应器具有高的紫外响应速度,使用低的电流测量即可实现对紫外线的探测。
对本发明所述的基于石墨烯的紫外感应器进行响应紫外线开/关的电阻值变化周期的测试,如图5所示,本发明所述的基于石墨烯的紫外感应器在约为1~2ns内对紫外线做出响应,由此可以看出,本发明所述的紫外感应器具有高的探测灵敏度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于石墨烯的紫外感应器,其特征在于:所述紫外感应器包括衬底、感应薄膜和方块金属电极,所述方块金属电极设置在衬底两端,所述感应薄膜铺设在衬底上并覆盖连接方块金属电极,所述感应薄膜包括上下两层石墨烯薄膜和AuCl3纳米颗粒层,所述AuCl3纳米颗粒层位于上下两层石墨烯薄膜之间,形成“三明治”结构。
2.根据权利要求1所述的一种基于石墨烯的紫外感应器,其特征在于:所述感应薄膜为图形化的条纹状薄膜。
3.根据权利要求1所述的一种基于石墨烯的紫外感应器,其特征在于:所述衬底为PET、PEN、SiO2/Si、蓝宝石、石英或者玻璃。
4.根据权利要求1所述的一种基于石墨烯的紫外感应器,其特征在于:所述方块金属电极的材料为Au、Cu、Ag、Al、Mo、Ti或者Ni中的至少一种。
5.一种基于石墨烯的紫外感应器的制备方法,其特征在于:包括如下步骤:
1)在衬底上制备出一组分立的方块金属电极;
2)在衬底上转移一层石墨烯薄膜,石墨烯薄膜覆盖至少两个方块金属电极;
3)在石墨烯薄膜表面涂覆AuCl3的硝基甲烷溶液,在石墨烯薄膜上形成AuCl3纳米颗粒层;
4)在AuCl3纳米颗粒层上面再转移一层石墨烯薄膜,形成“三明治”结构;
5)用紫外曝光与氧等离子体刻蚀的方法,图形化感应器,每个感应器的两端是方块金属电极,得到基于石墨烯的紫外感应器。
6.根据权利要求5所述的一种基于石墨烯的紫外感应器的制备方法,其特征在于:所述AuCl3的硝基甲烷溶液的浓度为1.5×10-3~2.5×10-3mol/L。
7.根据权利要求6所述的一种基于石墨烯的紫外感应器的制备方法,其特征在于:所述石墨烯薄膜为采用CVD法制备的单层石墨烯薄膜。
CN201410733664.9A 2014-12-05 2014-12-05 一种基于石墨烯的紫外感应器及其制备方法 Active CN104409555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410733664.9A CN104409555B (zh) 2014-12-05 2014-12-05 一种基于石墨烯的紫外感应器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410733664.9A CN104409555B (zh) 2014-12-05 2014-12-05 一种基于石墨烯的紫外感应器及其制备方法

Publications (2)

Publication Number Publication Date
CN104409555A CN104409555A (zh) 2015-03-11
CN104409555B true CN104409555B (zh) 2016-05-25

Family

ID=52647168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410733664.9A Active CN104409555B (zh) 2014-12-05 2014-12-05 一种基于石墨烯的紫外感应器及其制备方法

Country Status (1)

Country Link
CN (1) CN104409555B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617180B (zh) * 2015-01-16 2018-01-09 浙江大学 一种石墨烯/氮化硼/氧化锌紫外探测器及其制备方法
CN107104167B (zh) * 2016-02-22 2019-02-15 中国科学院理化技术研究所 一种超宽谱光探测器
CN111142146A (zh) * 2019-12-26 2020-05-12 兰州空间技术物理研究所 一种便携式辐射剂量计
CN114203326B (zh) * 2021-12-13 2024-04-30 中国核动力研究设计院 石墨烯封装超薄镍-63辐射源薄膜及其制备方法、应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN104021881A (zh) * 2014-06-03 2014-09-03 无锡格菲电子薄膜科技有限公司 一种降低石墨烯方阻的掺杂转移方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737405B2 (ja) * 2011-07-29 2015-06-17 富士通株式会社 グラフェンナノメッシュの製造方法及び半導体装置の製造方法
GB201300695D0 (en) * 2013-01-15 2013-02-27 Univ Exeter The Graphene deposition enquiry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN104021881A (zh) * 2014-06-03 2014-09-03 无锡格菲电子薄膜科技有限公司 一种降低石墨烯方阻的掺杂转移方法

Also Published As

Publication number Publication date
CN104409555A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
Tsai et al. High sensitivity of NO gas sensors based on novel Ag-doped ZnO nanoflowers enhanced with a UV light-emitting diode
An et al. Single‐step selective laser writing of flexible photodetectors for wearable optoelectronics
Meng et al. Self-powered photodetector for ultralow power density UV sensing
Boruah et al. Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection
Tak et al. Wearable gallium oxide solar-blind photodetectors on muscovite mica having ultrahigh photoresponsivity and detectivity with added high-temperature functionalities
Lee et al. Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators
Hossain et al. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications
Zhai et al. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors
Gao et al. High performance, self-powered UV-photodetector based on ultrathin, transparent, SnO2–TiO2 core–shell electrodes
Ye et al. High-performance single CdS nanobelt metal-semiconductor field-effect transistor-based photodetectors
Zhou et al. High performance flexible ultraviolet photodetectors based on TiO2/graphene hybrid for irradiation monitoring applications
Zhang et al. Development of solution-processed ZnO nanorod arrays based photodetectors and the improvement of UV photoresponse via AZO seed layers
Li et al. High-performance transparent ultraviolet photodetectors based on InGaZnO superlattice nanowire arrays
CN104409555B (zh) 一种基于石墨烯的紫外感应器及其制备方法
Wu et al. Enhanced photoresponse of inkjet-printed ZnO thin films capped with CdS nanoparticles
Gröttrup et al. UV detection properties of hybrid ZnO tetrapod 3-D networks
Makhlouf Preparation and optical characterization of β-MnO2 nano thin films for application in heterojunction photodiodes
Zhu et al. Boosting fiber-shaped photodetectors via “soft” interfaces
Singh et al. Determination of valence and conduction band offsets in Zn0. 98Fe0. 02O/ZnO hetero-junction thin films grown in oxygen environment by pulsed laser deposition technique: a study of efficient UV photodetectors
CN103441186A (zh) 一种紫外探测器件的制备方法
Zhang et al. A photoelectrochemical type self-powered ultraviolet photodetector based on GaN porous films
Kim et al. ITO nanowires-embedding transparent NiO/ZnO photodetector
Dasari et al. Nanostructured indium oxide thin films as a room temperature toluene sensor
Meng et al. Ultrasensitive fiber-based ZnO nanowire network ultraviolet photodetector enabled by the synergism between interface and surface gating effects
Cui et al. MOF-derived In2O3 microrods for high-performance photoelectrochemical ultraviolet photodetectors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: XIAMEN G-CVD MATERIAL TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: XIAMEN G-CVD TECHNOLOGY CO., LTD.

Effective date: 20150722

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150722

Address after: 361015 Fujian Province, Xiamen torch hi tech Zone Park Albert House South S301C

Applicant after: Xiamen G-CVD Material Technology Co., Ltd.

Address before: 361015, 406A building, North building, Weiye building, pioneer zone, torch hi tech Zone, Xiamen, Fujian, Xiamen

Applicant before: XIAMEN XICHENG TECHNOLOGY CO., LTD.

CB02 Change of applicant information

Address after: The torch hi tech Zone Park Albert house building S301c room 361015 Xiamen city of Fujian Province

Applicant after: Xiamen G-CVD Graphene Technology Co., Ltd.

Address before: 361015 Fujian Province, Xiamen torch hi tech Zone Park Albert House South S301C

Applicant before: Xiamen G-CVD Material Technology Co., Ltd.

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant