CN104390587A - 基于刚性载体运行轨迹解析算法的线形检测方法及装置 - Google Patents

基于刚性载体运行轨迹解析算法的线形检测方法及装置 Download PDF

Info

Publication number
CN104390587A
CN104390587A CN201410652029.8A CN201410652029A CN104390587A CN 104390587 A CN104390587 A CN 104390587A CN 201410652029 A CN201410652029 A CN 201410652029A CN 104390587 A CN104390587 A CN 104390587A
Authority
CN
China
Prior art keywords
wheel
point
rigidity
engineering structure
inspection vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410652029.8A
Other languages
English (en)
Other versions
CN104390587B (zh
Inventor
甘维兵
张瑶
胡文彬
李盛
刘芳
杨燕
王立新
姜德生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201410652029.8A priority Critical patent/CN104390587B/zh
Publication of CN104390587A publication Critical patent/CN104390587A/zh
Application granted granted Critical
Publication of CN104390587B publication Critical patent/CN104390587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明提供一种基于刚性载体运行轨迹解析算法的线形检测方法,它包括以下步骤:S1、将一个刚性轮式检测车沿着待测工程结构表面运行,实时检测刚性轮式检测车的倾斜角度、前轮运行路程和后轮运行路程;S2、定义前轮和后轮与待测工程结构表面的接触点分别为B点和A点,视刚性轮式检测车的运动方向与B、A两点的连线成割线关系,得到B点和A点的运行轨迹;S3、视刚性轮式检测车与待测工程结构表面的接触点的运动轨迹无限逼近待测工程结构表面线形,即得到待测工程结构表面线形。本发明更好地把握了刚性轮式检测车与待测曲线的位置关系;更能准确地描述待测工程结构表面线形。

Description

基于刚性载体运行轨迹解析算法的线形检测方法及装置
技术领域
本发明涉及道路交通领域中各类公路、铁路、桥梁和隧道等工程结构表面线形检测方法,具体涉及一种基于刚性载体运行轨迹解析算法的线形检测方法及装置。
背景技术
公路、铁路路基的变形监测,桥梁和隧道的变形监测对于保证交通工程的结构安全至关重要。公路、铁路中软土地路基很容易发生沉降、错差等变形问题。普通的检测手段无法满足高精度的长距离引测。桥梁结构在外力作用下会产生变形,而各种病害如裂缝、预应力损失等最终也导致桥梁线形发生变化,线形位移是判断桥梁安全的最重要而且直观的参考指标。隧道在长期的运营及使用过程中,最关心的安全问题就是防止隧道坍塌,及时快速把握隧道沿线走向及围岩条件较差区域的环向变形是确保隧道运营安全的重要工作。
道路交通领域的变形监测对精度要求必须符合相应的国家评定标准。例如对于目前常见的斜拉索桥中,如果主跨分别为钢箱架加劲梁,预应力混凝土梁和钢桁架加劲梁,跨中挠度最大允许变形为跨径的1/400,1/500和1/800。如果跨径为500m,则上述桥梁跨中挠度最大允许值分别为1.25m,1m和0.625m。然而每年观测数据显示,对于有下挠变形趋势的大型桥梁主跨跨中下挠每年只有2-3毫米,中小型桥梁跨中下挠甚至只有1-2毫米。据此,对线形测量系统的精度要求在毫米量级。
公路、铁路、桥梁和隧道线形检测常规方法主要采用光学仪器通过建立水准控制网进行测量,长期监测主要采用连通管测试系统、激光测量系统、光电图像式测量系统以及GPS法等新型测试方法。
水准控制网的建立工程复杂,耗时长,受环境影响较大。连通管测试系统通过测量各测点与基准点的液面压力差来得到各测点的挠度值。不仅需要预铺水管,而且在使用过程中存在着响应时间慢,施工及维护成本高等缺点。激光测量系统和光电图像式测量系统主要是通过光学系统捕捉光斑或成像的位置变化得出光源的相对位置变化。这两种测量系统都必须在桥上安装固定设备作为参考点,当设备移动后无法获得最初的测量基准状态,无法满足长期测量要求,而且不同气候条件对测量有影响。
GPS技术接收导航卫星的载波相位差分数据实时测定站点的三维坐标,是一种新型的实时测量技术。GPS受外界大气影响小,可以在暴风雨中进行监测,可以实现三维坐标的自动监测。然而该技术存在着垂直高程精度较差、无法达到毫米精度的缺点,且成本高,无法大规模开展应用。此外进行多点精确测量方式时,要求每点静止测试时间较长,测试慢。上述技术除了存在各自不同的应用局限外,还由于通过为数不多的测点来拟合检测对象的挠度线形,因此均存在线形不连续的问题。
既有专利(公开号:CN201210116750.6)中,提出了采用光纤陀螺线形测量系统测量桥梁的线形和刚性曲线的方法,并且提到了多种减小误差的方法,但是该专利仅采用对数据的分析达到减小误差的目的。
既有专利(申请号:CN201210455343.8)中,提出了一种动态校正方法,该方法对测试系统中的光纤陀螺施加预先定义的角速度交变调制信号,通过将包含调制信号的角速度数据与预先定义的角速度调制信号数据进行对比,得到修正系数,并未考虑载体运动的方向与实际待测工程结构表面之间的关系。
既有专利(申请号:CN201210455270.2)中,提出了一种静态校正方法,该方法在被测路段放置静态标定桥,通过系统测得标定桥的桥高与实际桥高进行对比,得到纵坐标修正系数,利用该系数修正整体线形曲线,并未提到载体本身结构尺寸大小对待测工程结构表面曲线测量是有影响的,当载体不能视为质点时,此方法会带来较大误差。
发明内容
本发明要解决的技术问题是:提供一种基于刚性载体运行轨迹解析算法的线形检测方法及装置,能够提高整体线形检测精度。
本发明为解决上述技术问题所采取的技术方案为:一种基于刚性载体运行轨迹解析算法的线形检测方法,其特征在于:它包括以下步骤:
S1、将一个刚性轮式检测车沿着待测工程结构表面运行,实时检测刚性轮式检测车的倾斜角度θi、前轮运行路程Δsb和后轮运行路程Δsa
S2、定义前轮和后轮与待测工程结构表面的接触点分别为B点和A点,B点和A点之间的距离为l,视刚性轮式检测车的运动方向与B、A两点的连线成割线关系,定义γi为刚性轮式检测车的倾斜角度从开始到i-1时刻夹角的积分;
B点和A点的运行轨迹解析算法如下:
x a i + 1 = x a i + Δ s a · cos [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 2 ) ]        ①,
f + ( x a i + 1 ) = f ( x a i ) + Δ s a · sin [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 2 ) ]         ②,
x b i + 1 = x b i + Δ s b · cos [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 1 C 2 ) ]          ③,
f + ( x b i + 1 ) = f ( x b i ) + Δ s b · sin [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 1 C 2 ) ]       ④,
其中C1、C2为中间变量,
C 1 = Δ s b Δs a         ⑤,
C 2 = tan θ i · ( x b i - x a i ) ( 1 + tan γ i ) cos γ i Δ s a       ⑥,
γ i = Σ j = 1 i - 1 θ j         ⑦,
式中为i时刻A、B两点坐标;为i+1时刻A、B两点坐标;θi为i时刻的AB连线和i+1时刻的AB连线之间的夹角;
S3、视刚性轮式检测车与待测工程结构表面的接触点的运动轨迹无限逼近待测工程结构表面线形,即得到待测工程结构表面线形。
一种用于实现上述基于刚性载体运行轨迹解析算法的线形检测方法的检测装置,其特征在于:它包括一个刚性轮式检测车,刚性轮式检测车下方设置前轮和后轮,前轮与后轮之间的距离为定值,在刚性轮式检测车上设有角度传感器,前轮和后轮分别设有里程仪。
按上述装置,所述的里程仪为光电编码器。
按上述装置,所述的角度传感器为光纤陀螺。
本发明的有益效果为:以前轮和后轮与待测工程结构表面的接触点的运动来无限逼近待测工程结构表面线形,更好地把握了刚性轮式检测车与待测曲线的位置关系;客观采用了割线AB倾斜角的变化决定角度传感器的输出,无需考虑割线AB是否能近似为切线的问题,更能够真实的反映待测工程结构表面的二维曲线,尤其是在测量小尺寸的待测工程结构时,与待测工程结构尺寸相比,刚性轮式检测车前后轮的间距不可忽略,刚性轮式检测车不可被近似为质点,本发明方法更能准确地描述待测工程结构表面线形。
附图说明
图1是本发明一实施例的方法流程图;
图2是本发明涉及到的刚性轮式检测车的线形检测图;
图3是用于检验运动轨迹解析算法的一个梯形钢制模型线形曲线;
图4是采用通用算法所测得的结构表面线形曲线与基准线形的比较;
图5是采用本发明方法推演出的结构表面线形曲线与基准线形的比较;
图中:1-角度传感器,2-前、后轮里程仪,3-刚性轮式检测车,4-待测工程结构表面线形曲线。
具体实施方式
下面结合具体实例对本发明做进一步说明。
一种基于刚性载体运行轨迹解析算法的线形检测方法,如图1所示,包括以下步骤:
S1、将一个刚性轮式检测车沿着待测工程结构表面运行,实时检测刚性轮式检测车的倾斜角度θi、前轮运行路程Δsb和后轮运行路程Δsa
S2、定义前轮和后轮与待测工程结构表面的接触点分别为B点和A点,B点和A点之间的距离为l,视刚性轮式检测车的运动方向与B、A两点的连线分别成割线关系,定义γi为刚性轮式检测车的倾斜角度从开始到i-1时刻夹角的积分;
B点和A点的运行轨迹解析算法如下:
x a i + 1 = x a i + Δ s a · cos [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 2 ) ]           ①,
f + ( x a i + 1 ) = f ( x a i ) + Δ s a · sin [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 2 ) ]         ②,
x b i + 1 = x b i + Δ s b · cos [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 1 C 2 ) ]             ③,
f + ( x b i + 1 ) = f ( x b i ) + Δ s b · sin [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 1 C 2 ) ]         ④,
其中C1、C2为中间变量,
C 1 = Δ s b Δs a             ⑤,
C 2 = tan θ i · ( x b i - x a i ) ( 1 + tan γ i ) cos γ i Δ s a            ⑥,
γ i = Σ j = 1 i - 1 θ j          ⑦,
式中为i时刻A、B两点坐标;为i+1时刻A、B两点坐标;θi为i时刻的AB连线和i+1时刻的AB连线之间的夹角;
S3、视刚性轮式检测车与待测工程结构表面的接触点的运动轨迹无限逼近待测工程结构表面线形,即得到待测工程结构表面线形。
用于实现上述线形检测方法的检测装置,如图2所示,包括一个刚性轮式检测车3,刚性轮式检测车3下方设置前轮和后轮,前轮与后轮之间的距离为定值,在刚性轮式检测车上设有角度传感器1(本实施例中为光纤陀螺),前轮和后轮分别设有里程仪2(本实施例中为光电编码器)。
为了对比本发明的优点,选取一个梯形钢制模型,采用传统水准测量方法测得的线形曲线为f(x),如图3所示;将刚性轮式检测车近似为一个质点,采用通用算法测得的线形曲线与基准线形f(x)进行对比,如图4所示;采用本发明方法,视刚性轮式检测车运动方向与工程结构表面接触点间成割线关系,所推演的线形曲线与基准线形f(x)的比较如图5所示。综合比较图4和图5,可见本发明方法拥有更高的准确度。
以上实施例仅用于说明本发明的计算思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。所以,凡依据本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。

Claims (4)

1.一种基于刚性载体运行轨迹解析算法的线形检测方法,其特征在于:它包括以下步骤:
S1、将一个刚性轮式检测车沿着待测工程结构表面运行,实时检测刚性轮式检测车的倾斜角度θi、前轮运行路程Δsb和后轮运行路程Δsa
S2、定义前轮和后轮与待测工程结构表面的接触点分别为B点和A点,B点和A点之间的距离为l,视刚性轮式检测车的运动方向与B、A两点的连线成割线关系,定义γi为刚性轮式检测车的倾斜角度从开始到i-1时刻夹角的积分;
B点和A点的运行轨迹解析算法如下:
x a i + 1 = x a i + Δs a · cos [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 2 ) ]               ①,
f ( x a i + 1 ) = f ( x a i ) + Δ s a · sin [ γ i - arcsin ( 1 C 1 2 + C 2 2 2 C 2 ) ]           ②,
x b i + 1 = x b i + Δs b · cos [ γ i - arcsin ( 1 - C 1 2 + C 2 2 2 C 1 C 2 ) ]          ③,
f ( x b i + 1 ) = f ( x b i ) + Δ s b · sin [ γ i - arcsin ( 1 C 1 2 + C 2 2 2 C 1 C 2 ) ]            ④,
其中C1、C2为中间变量,
C 1 = Δs b Δ s a                       ⑤,
C 2 = tan θ i · ( x b i - x a i ) ( 1 + tan γ i ) cos γ i Δ s a             ⑥,
γ i = Σ j = 1 i 1 θ j                    ⑦,
式中为i时刻A、B两点坐标;为i+1时刻A、B两点坐标;θi为i时刻的AB连线和i+1时刻的AB连线之间的夹角;
S3、视刚性轮式检测车与待测工程结构表面的接触点的运动轨迹无限逼近待测工程结构表面线形,即得到待测工程结构表面线形。
2.一种用于实现权利要求1所述的基于刚性载体运行轨迹解析算法的线形检测方法的检测装置,其特征在于:它包括一个刚性轮式检测车,刚性轮式检测车下方设置前轮和后轮,前轮与后轮之间的距离为定值,在刚性轮式检测车上设有角度传感器,前轮和后轮分别设有里程仪。
3.根据权利要求2所述的检测装置,其特征在于:所述的里程仪为光电编码器。
4.根据权利要求2所述的检测装置,其特征在于:所述的角度传感器为光纤陀螺。
CN201410652029.8A 2014-11-17 2014-11-17 基于刚性载体运行轨迹解析算法的线形检测方法及装置 Active CN104390587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410652029.8A CN104390587B (zh) 2014-11-17 2014-11-17 基于刚性载体运行轨迹解析算法的线形检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410652029.8A CN104390587B (zh) 2014-11-17 2014-11-17 基于刚性载体运行轨迹解析算法的线形检测方法及装置

Publications (2)

Publication Number Publication Date
CN104390587A true CN104390587A (zh) 2015-03-04
CN104390587B CN104390587B (zh) 2017-03-08

Family

ID=52608522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410652029.8A Active CN104390587B (zh) 2014-11-17 2014-11-17 基于刚性载体运行轨迹解析算法的线形检测方法及装置

Country Status (1)

Country Link
CN (1) CN104390587B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121082A (zh) * 2017-06-09 2017-09-01 武汉理工大学 基于光纤惯性技术的煤矿巷道连续线形检测装置及方法
CN116026414A (zh) * 2023-02-14 2023-04-28 中交第三航务工程局有限公司 一体化架桥机监测系统及监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977010A2 (en) * 1998-07-29 2000-02-02 Bridgestone Corporation Vehicle wheel alignment adjustment method
CN1412521A (zh) * 2002-12-03 2003-04-23 武汉理工大学 基于光纤陀螺技术检测水下工程结构形变的方法及装置
CN101475018A (zh) * 2008-10-22 2009-07-08 国营红峰机械厂 基于双轴光纤陀螺的二维空间运行轨迹测试仪
CN102661716A (zh) * 2012-04-20 2012-09-12 武汉理工大学 基于光纤陀螺技术的桥梁和隧道线形及刚度检测方法与系统
CN103528536A (zh) * 2013-10-16 2014-01-22 哈尔滨工程大学 一种基于光纤陀螺惯导系统的船体变形测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977010A2 (en) * 1998-07-29 2000-02-02 Bridgestone Corporation Vehicle wheel alignment adjustment method
CN1412521A (zh) * 2002-12-03 2003-04-23 武汉理工大学 基于光纤陀螺技术检测水下工程结构形变的方法及装置
CN101475018A (zh) * 2008-10-22 2009-07-08 国营红峰机械厂 基于双轴光纤陀螺的二维空间运行轨迹测试仪
CN102661716A (zh) * 2012-04-20 2012-09-12 武汉理工大学 基于光纤陀螺技术的桥梁和隧道线形及刚度检测方法与系统
CN103528536A (zh) * 2013-10-16 2014-01-22 哈尔滨工程大学 一种基于光纤陀螺惯导系统的船体变形测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王立新等: "光纤陀螺应用于轨迹测量的实验研究", 《武汉理工大学学报》 *
莫文琴等: "基于捷联式光纤陀螺的工程结构三维形变测量方法", 《光学与光电技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121082A (zh) * 2017-06-09 2017-09-01 武汉理工大学 基于光纤惯性技术的煤矿巷道连续线形检测装置及方法
CN116026414A (zh) * 2023-02-14 2023-04-28 中交第三航务工程局有限公司 一体化架桥机监测系统及监测方法
CN116026414B (zh) * 2023-02-14 2023-12-19 中交第三航务工程局有限公司 一体化架桥机监测系统及监测方法

Also Published As

Publication number Publication date
CN104390587B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
CN102162217B (zh) 激光动态弯沉测量车
CN101929125B (zh) 一种路面车辙检测方法
CN102252633B (zh) 一种基于描点的轨道方向不平顺测量方法
CN101619968B (zh) 一种路面平整度检测方法和装置
CN101694084A (zh) 地面车载移动检测系统
CN105320596A (zh) 一种基于倾角仪的桥梁挠度测试方法及其系统
CN2938028Y (zh) 路面平整度测量装置
CN102261033A (zh) 一种基于惯性测量单元的车载路面检测系统的运补算法
CN104047212B (zh) 一种基于角度量测的轨道沉降自动测量装置及方法
CN104359406A (zh) 一种准分布式结构位移光学测量方法
CN204023380U (zh) 基于多传感器的路面平整度检测装置
CN109649396A (zh) 一种营运车辆驾驶员安全性检测方法
CN104005324B (zh) 一种路面构造信息的检测系统
Sekiya et al. Visualization system for bridge deformations under live load based on multipoint simultaneous measurements of displacement and rotational response using MEMS sensors
CN111623719B (zh) 用于监测建筑物形变和沉降的激光网监测系统及监测方法
CN201530980U (zh) 一种路面平整度检测装置
CN110132161A (zh) 一种基于桥梁跨中应变测量跨中挠度的方法
CN106092137A (zh) 一种车载三维激光路面检测系统的室外校准设备与方法
CN104390587B (zh) 基于刚性载体运行轨迹解析算法的线形检测方法及装置
CN111455787B (zh) 一种基于路面三维数字化的路面检测系统
CN104101322A (zh) 基于逐次二角法的路面平整度测量系统及测量方法
Gan et al. Bridge continuous deformation measurement technology based on fiber optic gyro
CN102927926B (zh) 一种基于光纤陀螺的线形测量系统动态校正方法
Li et al. Efficient calibration of a laser dynamic deflectometer
Simonin et al. Assessment of the Danish high speed deflectograph in France

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant