CN104388387A - 一种hiv-1大量感染复制的单核巨噬细胞模型的构建方法 - Google Patents

一种hiv-1大量感染复制的单核巨噬细胞模型的构建方法 Download PDF

Info

Publication number
CN104388387A
CN104388387A CN201410653443.0A CN201410653443A CN104388387A CN 104388387 A CN104388387 A CN 104388387A CN 201410653443 A CN201410653443 A CN 201410653443A CN 104388387 A CN104388387 A CN 104388387A
Authority
CN
China
Prior art keywords
hiv
leu
val
cell
samhd1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410653443.0A
Other languages
English (en)
Other versions
CN104388387B (zh
Inventor
靳昌忠
吴南屏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410653443.0A priority Critical patent/CN104388387B/zh
Publication of CN104388387A publication Critical patent/CN104388387A/zh
Application granted granted Critical
Publication of CN104388387B publication Critical patent/CN104388387B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种HIV-1大量感染复制的单核巨噬细胞模型的构建方法,首先针对SAMHD1基因CDS1设计1对识别序列,构建一对TALEN质粒对;然后将TALEN质粒对转染到单核巨噬细胞系THP-1细胞内;并在含有浓度为100ug/ml的G418的1640培养基中培养10-14天以筛选出转染成功的活细胞;将活细胞进行有限稀释后,通过基因测序筛选出SAMHD1基因靶位点移码突变的克隆,得到HIV-1大量感染复制的单核巨噬细胞。所述方法构建的THP-1细胞模型能够允许HIV-1大量感染和复制,为HIV-1感染单核巨噬细胞研究提供理想的细胞模型。

Description

一种HIV-1大量感染复制的单核巨噬细胞模型的构建方法
技术领域
本发明属于分子生物学技术领域,涉及一种HIV-1大量感染复制的单核巨噬细胞模型的构建方法,可用于HIV-1感染单核巨噬细胞的体外研究。
背景技术
HIV-1感染的靶细胞包括活化的CD4+T细胞、DC、单核细胞、巨噬细胞等。其中,DC、单核细胞、巨噬细胞等髓系细胞虽然可以被感染,但是感染的比例很低,仅有不到3%的DC被HIV-1感染,且难以形成有效的复制性感染,因此这些髓系细胞被称为非允许性细胞,而CD4+T细胞则被称为允许性细胞。与CD4+T细胞一样,这些非允许性细胞也表达HIV-1感染所必需的CD4分子和辅助受体CCR5、CXCR4等,但为何HIV-1在非允许性细胞中难以形成复制性感染?这些非允许性的髓系细胞是否存在着某些限制HIV-1感染的机制?
一个偶然的发现揭开了其中的谜底。Goujon等在对DC进行基因转染时发现,用SIVsm来源的慢病毒载体比HIV-1来源的载体更容易转染成功,这引起了研究者的注意。他们进一步发现,HIV-2和SIVsm来源的Vpx蛋白能够大大促进HIV-1感染DC的数量,并能够检测到大量的全长HIV-1 DNA。这些现象提示,HIV-2和SIVsm来源的Vpx蛋白可以克服DC对HIV-1的感染限制性。那么,Vpx蛋白又是通过什么机制来克服DC的HIV-1感染限制性? Laguette等在PMA分化的THP-1细胞中发现了一种能够与Vpx蛋白相互作用的蛋白,这种蛋白可以被Vpx降解,并且其胞内含量与HIV-1易感性成负相关。进一步研究发现,这种蛋白是一种被称为SAMHD1的酶。将SAMHD1的基因沉默后,能够使DC和THP-1解除对HIV-1感染的限制, HIV-1易感性增强12倍;对允许性细胞过表达SAMHD1,能够限制HIV-1感染,使HIV-1的感染率降低16倍。SAMHD1限制HIV-1感染的机制是通过水解胞内的dNTPs,使之低于HIV-1逆转录所需要的浓度,从而限制HIV-1的逆转录水平。
单核巨噬细胞在HIV-1感染中有不可替代的重要作用,与树突状细胞一样,是HIV-1感染过程中所接触的第一批免疫细胞,是重要的抗原递呈和免疫应答细胞,同时,其表面分子DC-SIGN还能够携带HIV-1颗粒进入细胞,逃避免疫监视,形成最初的有效感染和远端传播,是HIV-1感染的关键性细胞。但是,HIV-1在体外却难以感染单核巨噬细胞系THP-1细胞,为HIV-1感染的体外机制研究带来了困难。如上所述,SAMHD1在单核巨噬细胞系THP-1细胞的表达显著高于T细胞系SupT1和Jurkat细胞,是HIV-1难以感染THP-1细胞的主要限制因子。本发明利用从基因组中完全敲除SAMHD1基因的TALEN技术完全敲除THP-1细胞中的SAMHD1分子,构建了一种能够允许HIV-1大量感染复制的THP-1细胞模型。
发明内容
本发明的目的是针对目前缺乏可供HIV-1大量感染复制的单核巨噬细胞体外研究模型,提供一种以THP-1细胞系为基础的HIV-1大量感染复制的单核巨噬细胞模型的构建方法,该方法可用于与HIV-1体外感染单核巨噬细胞有关的研究实验。
本发明的目的通过以下技术方案实现:一种HIV-1大量感染复制的单核巨噬细胞模型的构建方法,包括以下步骤:
(1)针对SAMHD1基因的CDS1选取作用靶点,并设计1对识别序列L/R,L的序列如SEQ ID NO.11所示,R的序列如SEQ ID NO.12所示。
L:gccatgcagcgagccgat,R:tcatcgcaacggggacgc;
(2)将靶点识别单元模块的基因片段分别按照L/R序列进行串联,串联成功后克隆入pCAG-T7-TALEN(Sangamo)- Destination质粒,共构建一对TALEN表达质粒对;其中,靶点识别单元模块的基因片段按照L序列进行串联后对应的氨基酸序列如SEQ ID NO.9所示;按照R序列进行串联后对应的氨基酸序列如SEQ ID NO.10所示;
(3)通过电转染法将步骤2得到的TALEN质粒对转染到对数生长期的单核巨噬细胞系THP-1细胞内;
(4)转染48小时后,将THP-1细胞在浓度为100ug/ml的新霉素中培养10-14天;筛选出活细胞,用有限稀释法对每个活细胞进行克隆化培养,得到单细胞克隆的细胞群;
(5)对上述细胞群进行基因测序,挑选出SAMHD1基因靶位点移码突变的细胞,即为HIV-1大量感染复制的单核巨噬细胞。
本发明中,利用我们已发明的一种从基因组中敲除SAMHD1基因的方法,采用SAMHD1基因敲除效率最高的一对TALEN质粒对,以单核巨噬细胞系THP-1细胞为模型进行SAMHD1基因敲除。对SAMHD1基因敲除后的THP-1细胞进行有限稀释、克隆扩增,并用基因测序的方法筛选目的克隆。对筛选出的目的克隆进一步用Western Blotting检测来确认。通过有限稀释和克隆筛选建立起的SAMHD1基因表达缺失的THP-1细胞系,由于SAMHD1稳定缺失,其对HIV-1感染复制的限制作用解除,HIV-1感染后可以大量复制,转变为HIV-1的允许性靶细胞。
附图说明
图1. 野生型和SAMHD1缺失型THP-1细胞系SAMHD1蛋白表达检测结果。WT表示野生型THP-1细胞系,SAMHD1(-/-)表示SAMHD1缺失型THP-1细胞系。
图2. HIV-1感染野生型和SAMHD1缺失型THP-1细胞系后不同时间点细胞内p24蛋白的表达量。WT表示野生型THP-1细胞系,SAMHD1(-/-)表示SAMHD1缺失型THP-1细胞系。*表示与WT相比P<0.05。
图3. HIV-1-GFP感染的野生型和SAMHD1缺失型THP-1细胞系。WT表示野生型THP-1细胞系,SAMHD1(-/-)表示SAMHD1缺失型THP-1细胞系。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优先实施方案进行描述,但是应该理解,这些描述只是为进一步说明本发明的特征和优点,而不是本发明权利要求的限制。
实施例1
本实施例构建HIV-1大量感染复制的单核巨噬细胞模型,包括以下步骤:
(1)针对SAMHD1基因设计1对识别序列L/R,L:gccatgcagcgagccgat(SEQ ID NO.11),R:tcatcgcaacggggacgc(SEQ ID NO.12);
(2)将靶点识别单元模块的基因片段分别按照L/R序列进行串联,串联成功后克隆入pCAG-T7-TALEN(Sangamo)- Destination质粒,共构建一对TALEN表达质粒对;所述质粒pCAG-T7-TALEN(Sangamo)- Destination的图谱如图1所示,购于美国Addgene公司;
所述靶点识别单元模块包括NI、NG、HD和NN;单元模块NI识别碱基A,其氨基酸序列如SEQ ID NO.1所示,核苷酸序列如SEQ ID NO.2所示;单元模块NG识别碱基T,其氨基酸序列如SEQ ID NO.3所示,核苷酸序列如SEQ ID NO.4所示;单元模块HD识别碱基C,其氨基酸序列如SEQ ID NO.5所示,核苷酸序列如SEQ ID NO.6所示;单元模块NN识别碱基G,其氨基酸序列如SEQ ID NO.7所示,核苷酸序列如SEQ ID NO.8所示;
靶点识别单元模块的基因片段按照L序列进行串联后对应的氨基酸序列如SEQ ID NO.9所示;按照R序列进行串联后对应的氨基酸序列如SEQ ID NO.10所示; 
(3)通过电转染法将步骤2得到的TALEN质粒对转染到对数生长期的单核巨噬细胞系THP-1细胞内;
(4)转染48小时后,将THP-1细胞在含有浓度为100ug/ml的新霉素的1640培养基中培养10-14天(每隔3天换液一次),筛选出活细胞;
(5)用有限稀释法对每个活细胞进行克隆化培养,得到单细胞克隆的细胞群;用Qiagen全基因组DNA提取试剂盒分别提取每个细胞群的基因组DNA。通过PCR反应扩增SAMHD1靶位点两端片段,进行基因测序,挑选出在SAMHD1基因靶位点形成移码突变的细胞。
实施例2
本实施例对实施例1挑选出的细胞进行蛋白水平验证。
本发明的关键是筛选出SAMHD1稳定敲除的THP-1细胞克隆,为了验证筛选出的THP-1细胞克隆SAMHD1表达的缺失,最有力的证据来自于蛋白水平的验证。我们利用Western Blotting法检测SAMHD1蛋白的表达,以鉴定目的克隆SAMHD1蛋白表达的缺失。其步骤为:将筛选出的THP-1细胞克隆大量扩增,收集细胞后用裂解液裂解细胞,提取细胞总蛋白,进行Western Blotting试验,用SAMHD1单克隆抗体检测蛋白的表达水平,并用GAPDH蛋白作为内参。
Western Blotting检测结果显示,TALEN质粒对能够敲除THP-1的SAMHD1基因表达,所筛选出的目的克隆存在SAMHD1蛋白表达的缺失(图1),表明SAMHD1表达缺失的THP-1细胞系构建成功。
实施例3
本实施例用HIV-1毒株感染实施例1筛选出的细胞,并对HIV-1病毒复制结果进行检测。
我们用HIV-1病毒株检测了构建的单核巨噬细胞模型。将含有HIV-1毒株的H9细胞冻融后,高速离心收集含有HIV-1病毒的上清液,用于感染THP-1细胞。用HIV-1毒株分别感染THP-1细胞系和SAMHD1表达缺失的THP-1(SAMHD1-/-)细胞系,于感染后不同时间点用ELISA法检测细胞内HIV-1 p24蛋白的表达量。
HIV-1感染SAMHD1缺失型THP-1细胞系后的p24蛋白表达量显著高于野生型THP-1细胞系(图2),表明我们构建的SAMHD1缺失型THP-1细胞系是一种HIV-1可大量感染复制的单核巨噬细胞模型。
实施例4 
本实施例用HIV-1-GFP毒株感染实施例1筛选出的细胞,并对HIV-1-GFP病毒复制结果进行检测。
我们进一步用含有GFP的HIV-1假病毒(HIV-1-GFP)验证了构建的单核巨噬细胞模型是否成功。HIV-1-GFP分别感染THP-1细胞系和SAMHD1表达缺失的THP-1(SAMHD1-/-)细胞系,观察HIV-1感染的细胞比例。
如图3所示,HIV-1-GFP感染野生型和SAMHD1缺失型THP-1细胞系后48小时用荧光显微镜观察,SAMHD1缺失型THP-1细胞系的感染率大约为40%-70%,显著高于野生型(<5%),表明我们构建的SAMHD1缺失型THP-1细胞系是一种HIV-1可大量感染复制的单核巨噬细胞模型。
总之,通过TALEN法敲除THP-1细胞系的SAMHD1基因,我们成功构建了一种可以被HIV-1大量感染并且复制病毒的单核巨噬细胞系。该方法为HIV-1感染单核巨噬细胞的体外研究提供了理想的细胞模型,有助于HIV-1发病机制、疫苗以及药物等的研究与开发。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。
     SEQUENCE LISTING
<110>  浙江大学
 
<120>  一种HIV-1大量感染复制的单核巨噬细胞模型的构建方法
<160>  12   
<170>  PatentIn version 3.3
<210>  1
<211>  34
<212>  PRT
<213>  人工合成
<400>  1
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys
1               5                   10                  15     
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
            20                  25                  30         
His Gly
   
<210>  2
<211>  102
<212>  DNA
<213>  人工合成
<400>  2
ctgaccccag agcaggtcgt ggcaatcgcc tccaacattg gcgggaaaca ggcactcgag     60
actgtccagc gcctgcttcc cgtgctgtgc caagcgcacg ga                        102
<210>  3
<211>  34
<212>  PRT
<213>  人工合成
<400>  3
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Gly Gly Gly Lys
1               5                   10                  15     
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
            20                  25                  30         
His Gly
   
<210>  4
<211>  102
<212>  DNA
<213>  人工合成
<400>  4
ctgaccccag agcaggtcgt ggccattgcc tcgaatggag ggggcaaaca ggcgttggaa     60
accgtacaac gattgctgcc ggtgctgtgc caagcgcacg ga                        102
<210>  5
<211>  34
<212>  PRT
<213>  人工合成
<400>  5
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser His Asp Gly Gly Lys
1               5                   10                  15     
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
            20                  25                  30         
His Gly
   
<210>  6
<211>  102
<212>  DNA
<213>  人工合成
<400>  6
ttgaccccag agcaggtcgt ggcgatcgca agccacgacg gaggaaagca agccttggaa     60
acagtacaga ggctgttgcc tgtgctgtgc caagcgcacg ga                        102
<210>  7
<211>  34
<212>  PRT
<213>  人工合成
<400>  7
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Asn Gly Gly Lys
1               5                   10                  15     
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
            20                  25                  30         
His Gly
   
<210>  8
<211>  102
<212>  DNA
<213>  人工合成
<400>  8
ctgaccccag agcaggtcgt ggcaatcgcc tccaacaagg cgggaaacag gcactcgaga     60
ctgtccagcg cctgcttccc gtgctgtgcc aagcgcacgg ga                        102
<210>  9
<211>  612
<212>  PRT
<213>  人工合成
<400>  9
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Asn Gly Gly Lys
1               5                   10                  15     
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
            20                  25                  30         
His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser His Asp Gly
        35                  40                  45             
Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys
    50                  55                  60                 
Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser His
65                  70                  75                  80 
Asp Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val
                85                  90                  95     
Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala
            100                 105                 110        
Ser Asn Ile Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu
        115                 120                 125            
Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala
    130                 135                 140                
Ile Ala Ser Asn Gly Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg
145                 150                 155                 160
Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val
                165                 170                 175    
Val Ala Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val
            180                 185                 190        
Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu
        195                 200                 205            
Gln Val Val Ala Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu
    210                 215                 220                
Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr
225                 230                 235                 240
Pro Glu Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys Gln Ala
                245                 250                 255    
Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly
            260                 265                 270        
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Asn Gly Gly Lys
        275                 280                 285            
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
    290                 295                 300                
His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser His Asp Gly
305                 310                 315                 320
Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys
                325                 330                 335    
Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn
            340                 345                 350        
Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val
        355                 360                 365            
Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala
    370                 375                 380                
Ser Asn Ile Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu
385                 390                 395                 400
Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala
                405                 410                 415     
Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg
            420                 425                 430        
Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val
        435                 440                 445             
Val Ala Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu Thr Val
    450                 455                 460                
Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu
465                 470                 475                 480
Gln Val Val Ala Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu
                485                 490                 495    
Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr
            500                 505                 510        
Pro Glu Gln Val Val Ala Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala
        515                 520                 525            
Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly
    530                 535                 540                
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys
545                 550                 555                 560
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
                565                 570                 575    
His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Gly Gly
            580                 585                 590        
Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys
        595                 600                 605            
Gln Ala His Gly
    610    
<210>  10
<211>  612
<212>  PRT
<213>  人工合成
<400>  10
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Gly Gly Gly Lys
1               5                   10                  15     
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
            20                  25                  30         
His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser His Asp Gly
        35                  40                  45             
Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys
    50                  55                  60                 
Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn
65                  70                  75                  80 
Ile Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val
                85                  90                  95     
Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala
            100                 105                 110        
Ser Asn Gly Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu
        115                 120                 125            
Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala
    130                 135                 140                
Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg
145                 150                 155                 160
Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val
                165                 170                 175    
Val Ala Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val
            180                 185                 190        
Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu
        195                 200                 205            
Gln Val Val Ala Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu
    210                 215                 220                
Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr
225                 230                 235                 240
Pro Glu Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys Gln Ala
                245                 250                 255    
Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly
            260                 265                 270        
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys
        275                 280                 285            
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
    290                 295                 300                
His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser His Asp Gly
305                 310                 315                 320
Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys
                325                 330                 335    
Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn
            340                 345                 350        
Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val
        355                 360                 365            
Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala
    370                 375                 380                
Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu
385                 390                 395                 400
Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala
                405                 410                 415    
Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg
            420                 425                 430        
Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val
        435                 440                 445            
Val Ala Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val
    450                 455                 460                
Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu
465                 470                 475                 480
Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys Gln Ala Leu Glu
                485                 490                 495    
Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr
            500                 505                 510        
Pro Glu Gln Val Val Ala Ile Ala Ser His Asp Gly Gly Lys Gln Ala
        515                 520                 525            
Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly
    530                 535                 540                
Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Asn Gly Gly Lys
545                 550                 555                 560
Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala
                565                 570                 575    
His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser His Asp Gly
            580                 585                 590        
Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys
        595                 600                 605            
Gln Ala His Gly
    610    
<210>  11
<211>  18
<212>  DNA
<213>  人工合成
<400>  11
gccatgcagc gagccgat                                                   18
<210>  12
<211>  18
<212>  DNA
<213>  人工合成
<400>  12
tcatcgcaac ggggacgc                                                   18
 

Claims (1)

1.种HIV-1大量感染复制的单核巨噬细胞模型的构建方法,其特征在于,包括以下步骤:
(1)针对SAMHD1基因的CDS1选取作用靶点,并设计1对识别序列L/R,L的序列如SEQ ID NO.11所示,R的序列如SEQ ID NO.12所示;
(2)将靶点识别单元模块的基因片段分别按照L/R序列进行串联,串联成功后克隆入pCAG-T7-TALEN(Sangamo)- Destination质粒,共构建一对TALEN表达质粒对;其中,靶点识别单元模块的基因片段按照L序列进行串联后对应的氨基酸序列如SEQ ID NO.9所示;按照R序列进行串联后对应的氨基酸序列如SEQ ID NO.10所示;
(3)通过电转染法将步骤2得到的TALEN质粒对转染到对数生长期的单核巨噬细胞系THP-1细胞内;
(4)转染48小时后,将THP-1细胞在含有浓度为100ug/ml新霉素的1640培养基中培养10-14天;筛选出活细胞,用有限稀释法对每个活细胞进行克隆化培养,得到单细胞克隆的细胞群;
(5)对上述细胞群进行基因测序,挑选出SAMHD1基因靶位点移码突变的细胞,即为HIV-1大量感染复制的单核巨噬细胞。
CN201410653443.0A 2014-11-18 2014-11-18 一种hiv‑1大量感染复制的单核巨噬细胞模型的构建方法 Expired - Fee Related CN104388387B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410653443.0A CN104388387B (zh) 2014-11-18 2014-11-18 一种hiv‑1大量感染复制的单核巨噬细胞模型的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410653443.0A CN104388387B (zh) 2014-11-18 2014-11-18 一种hiv‑1大量感染复制的单核巨噬细胞模型的构建方法

Publications (2)

Publication Number Publication Date
CN104388387A true CN104388387A (zh) 2015-03-04
CN104388387B CN104388387B (zh) 2017-02-22

Family

ID=52606348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410653443.0A Expired - Fee Related CN104388387B (zh) 2014-11-18 2014-11-18 一种hiv‑1大量感染复制的单核巨噬细胞模型的构建方法

Country Status (1)

Country Link
CN (1) CN104388387B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677694A (zh) * 2019-04-09 2021-11-19 国立研究开发法人科学技术振兴机构 核酸结合蛋白
CN115287298A (zh) * 2021-12-13 2022-11-04 郑州大学第一附属医院 用于精准研究铁代谢相关巨噬细胞的小鼠模型、构建方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149167A1 (en) * 2012-03-30 2013-10-03 Immune Design Corp. Lentiviral vector particles having improved transduction efficiency for cells expressing dc- sign

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149167A1 (en) * 2012-03-30 2013-10-03 Immune Design Corp. Lentiviral vector particles having improved transduction efficiency for cells expressing dc- sign

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHANGZHONG JIN等: "MicroRNA-181 expression regulates specific post-transcriptional level of SAMHD1 expression in vitro", 《BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS》 *
HENNING HOFMANN等: "The Vpx Lentiviral Accessory Protein Targets SAMHD1 for Degradation in the Nucleus", 《JOURNAL OF VIROLOGY》 *
NADINE LAGUETTE等: "SAMHD1 is the dendritic– and myeloid–cell–specific HIV–1 restriction factor counteracted by Vpx", 《NATURE》 *
彭晓荣 等: "SAMHD1:一种新HIV-1抑制因子", 《国际流行病学传染病学杂志》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677694A (zh) * 2019-04-09 2021-11-19 国立研究开发法人科学技术振兴机构 核酸结合蛋白
CN115287298A (zh) * 2021-12-13 2022-11-04 郑州大学第一附属医院 用于精准研究铁代谢相关巨噬细胞的小鼠模型、构建方法及应用

Also Published As

Publication number Publication date
CN104388387B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
Wang et al. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection
Kimura et al. The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and immune resistance
Li et al. HIV-1 cores retain their integrity until minutes before uncoating in the nucleus
JP6017620B2 (ja) 単一細胞の細胞傷害性を査定するための組成物および方法
CN106191061B (zh) 一种特异靶向人ABCG2基因的sgRNA导向序列及其应用
Roark et al. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth
Bar et al. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape
Miyashita et al. Estimation of the size of genetic bottlenecks in cell-to-cell movement of soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection of variations in trans-acting genes or elements
Igarashi et al. Emergence of a highly pathogenic simian/human immunodeficiency virus in a rhesus macaque treated with anti-CD8 mAb during a primary infection with a nonpathogenic virus
RU2729385C2 (ru) Биопроизводство лентивирусных векторов
Breed et al. Loss of a tyrosine-dependent trafficking motif in the simian immunodeficiency virus envelope cytoplasmic tail spares mucosal CD4 cells but does not prevent disease progression
Mielke et al. Antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies constrain neutralizing antibody escape pathway
Breed et al. Elite control, gut CD4 T cell sparing, and enhanced mucosal T cell responses in Macaca nemestrina infected by a simian immunodeficiency virus lacking a gp41 trafficking motif
Rubio et al. A derivative of the D5 monoclonal antibody that targets the gp41 N-heptad repeat of HIV-1 with broad tier-2-neutralizing activity
Doepker et al. Diversity and function of maternal HIV-1-specific antibodies at the time of vertical transmission
Nie et al. Optimization and proficiency testing of a pseudovirus-based assay for detection of HIV-1 neutralizing antibody in China
CN104388387A (zh) 一种hiv-1大量感染复制的单核巨噬细胞模型的构建方法
Gaebler et al. Isolation of HIV-1-reactive antibodies using cell surface-expressed gp160ΔcBaL
Manoussaka et al. Conditionally-live attenuated SIV upregulates global T effector memory cell frequency under replication permissive conditions
Provine et al. The infectious molecular clone and pseudotyped virus models of human immunodeficiency virus type 1 exhibit significant differences in virion composition with only moderate differences in infectivity and inhibition sensitivity
US9421167B2 (en) Preparation of microvesicle-siRNA complexes and use thereof in AIDS treatment
Suphaphiphat et al. Broadly neutralizing antibodies potently inhibit cell-to-cell transmission of semen leukocyte-derived SHIV162P3
Wang et al. Characterization of a novel HIV-1 second-generation recombinant form in men who have sex with men in Beijing, China
Schutten et al. Modulation of primary human immunodeficiency virus type 1 envelope glycoprotein-mediated entry by human antibodies.
Burke et al. Viral evolution in macaques coinfected with CCR5-and CXCR4-tropic SHIVs in the presence or absence of vaccine-elicited anti-CCR5 SHIV neutralizing antibodies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170222

Termination date: 20181118