CN104386673A - 一种石墨烯量子点(GQDs)及其制备方法 - Google Patents
一种石墨烯量子点(GQDs)及其制备方法 Download PDFInfo
- Publication number
- CN104386673A CN104386673A CN201410591905.0A CN201410591905A CN104386673A CN 104386673 A CN104386673 A CN 104386673A CN 201410591905 A CN201410591905 A CN 201410591905A CN 104386673 A CN104386673 A CN 104386673A
- Authority
- CN
- China
- Prior art keywords
- gqds
- preparation
- graphene quantum
- quantum dot
- graphene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明涉及一种石墨烯量子点(GQDs)及其制备方法,包括如下步骤:(1)在KMnO4中加入一定量氧化石墨烯(GO);(2)对步骤(1)的溶液超声数小时;(3)将步骤(2)得到的混合溶液一定转速下离心一段时间;(4)取步骤(3)中上层清夜一定转速下继续离心;(5)得到石墨烯量子点(GQDs)。与已有合成方法相比,具有重现性高,耗能低,制备时间短,易控制,合成步骤简单,量子产率高且同时环境友好等优点。
Description
技术领域
本发明涉及纳米材料技术领域,具体涉及一种石墨烯量子点(GQDs)及其制备方法。
背景技术
随着科学技术突飞猛进的发展及科学家对基于石墨烯纳米材料的研究日益热衷,因此关于GQDs的各种合成方法也渐渐走入人们的视野。然而,传统合成GQDs的方法仍然面临着诸多缺点,例如:耗时长、合成环境要求苛刻、需要各种特殊的合成仪器、有机及强酸溶剂的使用、和低的量子产率等等。这些缺点无一不限制着GQDs的更广泛应用。因此,发展一种耗时少、合成步骤简单、量子产率高且同时环境友好的合成方法十分有必要。
发明内容
针对现有合成GQDs方法的的不足(耗时长、低的量子产率等),本发明提供一种耗时少、合成步骤简单、无需添加任何强酸强碱、量子产率高且同时环境友好的制备方法。具体技术方案如下:
一种石墨烯量子点(GQDs)的制备方法,包括如下步骤:
(1)在KMnO4中加入1mg/mL(50mL)氧化石墨烯(GO);
(2)对步骤(1)的溶液超声4小时;
(3)将步骤(2)得到的混合溶液3000rpm下离心30分钟;
(4)取步骤(3)中上层清夜10000rpm转速下继续离心;
(5)得到石墨烯量子点(GQDs)。
进一步地,步骤(1)在室温下进行。
进一步地,步骤(1)中加入50ml 1M KMnO4。
进一步地,步骤(1)中氧化石墨烯(GO)为1mg/ml。
进一步地,步骤(5)中所述石墨烯量子点(GQDs)为荧光性石墨烯量子点。
一种石墨烯量子点(GQDs),采用上述制备方法制得。
进一步地,所述GQDs的粒子均匀且分散
进一步地,GQDs的粒子粒径约为3-5nm。
与目前现有技术相比,本发明制备GQDs方法与已有合成方法相比,具有重现性高,耗能低,制备时间短,易控制,合成步骤简单,量子产率高且同时环境友好等优点。
附图说明
图1为实施例1制备的荧光性GQDs的合成路线示意图;
图2(A)为实施例1制备的荧光性GQDs的透射电子显微镜照片(TEM);
图2(B)实施例1制备的荧光性GQDs动态光散射图(DLS);
图3实施例1制备的荧光性GQDs光谱表征图;
其中(a)荧光性GQDs的紫外吸收光谱;
(b)荧光性GQDs的激发光谱图;
(c)荧光性GQDs的发射光谱图;
图4为实施例1制备的荧光性GQDs的红外表征图;
其中:(a)荧光性GQDs的红外表征图;
(b)GO的红外表征图;
图5为实施例1制备的荧光性GQDs的原子力显微镜图(AFM)。
具体实施方式
下面根据附图对本发明进行详细描述,其为本发明多种实施方式中的一种优选实施例。
在一个优选实施例中,以氧化石墨烯(GO)为碳源,利用超声-氧化还原法制得了具有荧光性质的GQDs:
以氧化石墨烯(GO)为碳源,利用超声-氧化还原法制得了具有荧光性质的GQDs。此GQDs具有光稳定性佳,量子产率高,无细胞毒性等优点,因此将此纳米材料应用于生物检测具有很好的潜在应用价值。通过KMnO4的强氧化作用来打开GO中C-C单键,以及长时间的超声作用得到小尺寸的GQDs。
一种荧光性GQDs的制备方法,步骤包括:
(1)室温下,50ml 1M KMnO4中加入一定量1mg/ml氧化石墨烯(GO)超声数小时。
(2)将(1)中混合溶液一定转速下离心一段时间。
(3)取(2)中上层清夜一定转速下继续离心,得到具有荧光性的GQDs。
所制得的GQDs的形貌如图2(A)所示GQDs的粒子均匀且分散,粒径约为3-5nm。
取200μL GQDs溶液于石英比色皿中,检测波长段280nm-600nm间吸收峰,所得紫外吸 收光谱如图3中(a)所示。取200μLGQDs溶液于荧光比色皿中,发射波长475处检测其激发光谱,所得光谱如图3中(b)所示。取200μLGQDs溶液于荧光比色皿中,激发波长380处检测其发射光谱,所得光谱如图3中(c)所示。取少量乙醇溶的GQDs溶液做红外光谱图,所得结果如图4中(a)所示。从图4中可以看出,合成的GQDs相较GO有更多的含氧基团。将合成的GQDs做AFM表征,所得结果如图5所示。可以看出制得的GQDs平均高度小于1nm且分布较窄,多为单层结构。
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进直接应用于其它场合的,均在本发明的保护范围之内。
Claims (8)
1.一种石墨烯量子点(GQDs)的制备方法,其特征在于,包括如下步骤:
(1)在KMnO4中加入1mg/mL(50mL)氧化石墨烯(GO);
(2)对步骤(1)的溶液超声4小时;
(3)将步骤(2)得到的混合溶液3000rpm下离心30分钟;
(4)取步骤(3)中上层清夜10000rpm转速下继续离心;
(5)得到石墨烯量子点(GQDs)。
2.如权利要求1所述的石墨烯量子点(GQDs)的制备方法,其特征在于,步骤(1)在室温下进行。
3.如权利要求1或2所述的石墨烯量子点(GQDs)的制备方法,其特征在于,步骤(1)中加入50ml 1M KMnO4。
4.如权利要求1-3中任一项所述的石墨烯量子点(GQDs)的制备方法,其特征在于,步骤(1)中氧化石墨烯(GO)为1mg/ml。
5.如权利要求1-4中任一项所述的石墨烯量子点(GQDs)的制备方法,其特征在于,步骤(5)中所述石墨烯量子点(GQDs)为荧光性石墨烯量子点。
6.一种石墨烯量子点(GQDs),其特征在于,采用权利要求1-5所述制备方法制得。
7.如权利要求6所述的石墨烯量子点(GQDs),其特征在于,所述GQDs的粒子均匀且分散
8.如权利要求6或7所述的石墨烯量子点(GQDs),其特征在于,GQDs的粒子粒径约为3-5nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410591905.0A CN104386673B (zh) | 2014-10-29 | 2014-10-29 | 一种石墨烯量子点(GQDs)及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410591905.0A CN104386673B (zh) | 2014-10-29 | 2014-10-29 | 一种石墨烯量子点(GQDs)及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104386673A true CN104386673A (zh) | 2015-03-04 |
CN104386673B CN104386673B (zh) | 2016-03-30 |
Family
ID=52604655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410591905.0A Active CN104386673B (zh) | 2014-10-29 | 2014-10-29 | 一种石墨烯量子点(GQDs)及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104386673B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107758643A (zh) * | 2016-08-16 | 2018-03-06 | 中国科学院宁波材料技术与工程研究所 | 石墨烯量子点、其制备方法与应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102633257A (zh) * | 2012-05-04 | 2012-08-15 | 东南大学 | 小于10nm单层石墨烯量子点生物成像剂的合成方法 |
CN103553026A (zh) * | 2013-10-14 | 2014-02-05 | 南京大学 | 一种制备紫色荧光还原氧化石墨烯量子点的方法 |
CN103738941A (zh) * | 2013-11-14 | 2014-04-23 | 盐城增材科技有限公司 | 一种石墨烯量子点的制备方法 |
-
2014
- 2014-10-29 CN CN201410591905.0A patent/CN104386673B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102633257A (zh) * | 2012-05-04 | 2012-08-15 | 东南大学 | 小于10nm单层石墨烯量子点生物成像剂的合成方法 |
CN103553026A (zh) * | 2013-10-14 | 2014-02-05 | 南京大学 | 一种制备紫色荧光还原氧化石墨烯量子点的方法 |
CN103738941A (zh) * | 2013-11-14 | 2014-04-23 | 盐城增材科技有限公司 | 一种石墨烯量子点的制备方法 |
Non-Patent Citations (2)
Title |
---|
LING-LING LI ET AL.: "A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots", 《ADV. FUNCT. MATER.》, vol. 22, 18 April 2012 (2012-04-18) * |
SHUJUAN ZHUO ET AL.: "Upconversion and Downconversion Fluorescent Graphene Quantum Dots:Ultrasonic Preparation and Photocatalysis", 《ACS NANO》, vol. 6, no. 2, 5 January 2012 (2012-01-05) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107758643A (zh) * | 2016-08-16 | 2018-03-06 | 中国科学院宁波材料技术与工程研究所 | 石墨烯量子点、其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN104386673B (zh) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction | |
Tang et al. | Influence of group modification at the edges of carbon quantum dots on fluorescent emission | |
Liu et al. | High-efficient excitation-independent blue luminescent carbon dots | |
Wen et al. | Green and facile synthesis of nitrogen-doped carbon nanodots for multicolor cellular imaging and Co2+ sensing in living cells | |
Walavalkar et al. | Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars | |
Wang et al. | One-step synthesis of highly luminescent carbon dots in noncoordinating solvents | |
Mandani et al. | Natural occurrence of fluorescent carbon dots in honey | |
Tang et al. | Size‐dependent structural and optical characteristics of glucose‐derived graphene quantum dots | |
Xu et al. | One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method | |
Wang et al. | Common origin of green luminescence in carbon nanodots and graphene quantum dots | |
Zhang et al. | Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties | |
Habiba et al. | Luminescent graphene quantum dots fabricated by pulsed laser synthesis | |
Wang et al. | Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence | |
Stich et al. | Triplet–triplet exciton dynamics in single-walled carbon nanotubes | |
Wang et al. | Luminescent properties of milk carbon dots and their sulphur and nitrogen doped analogues | |
Gao et al. | Bright hydrophilic and organophilic fluorescence carbon dots: One-pot fabrication and multi-functional applications at visualized Au3+ detection in cell and white light-emitting devices | |
Xu et al. | Selective supramolecular interaction of ethylenediamine functionalized graphene quantum dots: Ultra-sensitive photoluminescence detection for nickel ion in vitro | |
Lin et al. | Eco-friendly synthesis of shrimp egg-derived carbon dots for fluorescent bioimaging | |
Sutanto et al. | High green-emission carbon dots and its optical properties: Microwave power effect | |
Li et al. | Efficient and visual monitoring of cerium (III) ions by green-fluorescent carbon dots and paper-based sensing | |
KyungáJung | Sweet nanodot for biomedical imaging: carbon dot derived from xylitol | |
Liu et al. | Strong infrared laser ablation produces white-light-emitting materials via the formation of silicon and carbon dots in silica nanoparticles | |
Vlaskin et al. | Dopant− carrier magnetic exchange coupling in colloidal inverted core/shell semiconductor nanocrystals | |
Beke et al. | Identification of luminescence centers in molecular-sized silicon carbide nanocrystals | |
Choi et al. | Photoassisted tuning of silicon nanocrystal photoluminescence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200918 Address after: Room 303-317, room 303-326 and room 304-318, No. 183 Baogang Avenue, Haizhu District, Guangzhou, Guangdong Province, 510000 (office only) Patentee after: Guangzhou shunyao Energy Technology Co., Ltd Address before: 241000 Wuhu Road, Yijiang District, Anhui, Patentee before: ANHUI NORMAL University |