CN104380388A - 制造用于核反应堆的液体金属冷却剂的方法 - Google Patents

制造用于核反应堆的液体金属冷却剂的方法 Download PDF

Info

Publication number
CN104380388A
CN104380388A CN201380032522.3A CN201380032522A CN104380388A CN 104380388 A CN104380388 A CN 104380388A CN 201380032522 A CN201380032522 A CN 201380032522A CN 104380388 A CN104380388 A CN 104380388A
Authority
CN
China
Prior art keywords
cooling medium
liquid metals
nano particle
neutron
metals cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380032522.3A
Other languages
English (en)
Inventor
B.J.杜伊斯
E.P.勒文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Hitachi Nuclear Energy Americas LLC
Original Assignee
GE Hitachi Nuclear Energy Americas LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Hitachi Nuclear Energy Americas LLC filed Critical GE Hitachi Nuclear Energy Americas LLC
Publication of CN104380388A publication Critical patent/CN104380388A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/22Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of a fluid or fluent neutron-absorbing material, e.g. by adding neutron-absorbing material to the coolant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/28Selection of specific coolants ; Additions to the reactor coolants, e.g. against moderator corrosion
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • G21C17/025Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators for monitoring liquid metal coolants
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/24Selection of substances for use as neutron-absorbing material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measurement Of Radiation (AREA)
  • Particle Accelerators (AREA)

Abstract

本发明提供了一种制造液体金属冷却剂的方法,其包括将纳米粒子添加至液体金属冷却剂,以改变液体金属冷却剂的中子性质。所述纳米粒子具有与所述液体金属冷却剂的中子性质不同的中子性质。

Description

制造用于核反应堆的液体金属冷却剂的方法
技术领域
一些示例实施例通常涉及制造液体金属冷却剂的方法,更特别地涉及通过添加金属纳米粒子而改变液体金属冷却剂的中子性质的方法。
背景技术
核反应堆使用多种冷却剂,快堆利用由快中子维持的裂变链式反应。液体金属冷却剂(例如铅或钠)在快堆中使用,因为这些类型的冷却剂不显著影响或减速中子。然而,例如,钠冷却剂在暴露于空气时燃烧,并且为腐蚀性的,由此产生安全性问题。
发明内容
示例实施例提供了一种制造液体金属冷却剂的方法,其提高核反应堆的反应堆冷却剂性能、能量效率和/或燃料性能。所述方法包括将纳米粒子添加至液体金属冷却剂,以改变液体金属冷却剂的中子性质。所述纳米粒子具有与所述液体金属冷却剂的中子性质不同的中子性质。
附图说明
通过参照所附附图详细描述示例实施例,示例实施例的如上和其他特征和优点将变得更明显。附图旨在描述示例实施例,不应被解释为限制权利要求书的预期范围。除非明确指出,否则不认为附图按比例绘制。
图1为根据一个示例实施例的制造液体金属冷却剂的方法的流程图。
具体实施方式
本文公开了详细的示例实施例。然而,为了描述示例实施例的目的,本文公开的具体结构和功能细节仅为代表性的。然而,示例实施例可以以许多替代形式实施,不应被解释为仅局限于本文所述的实施例。
因此,尽管示例实施例能够有各种修改和替代形式,其实施例以示例的方式在附图中显示,并将在本文详细描述。然而应了解,不旨在将示例实施例局限于所公开的特定形式,相反,示例实施例涵盖落入示例实施例的范围内的所有修改形式、等同形式和替代形式。在附图的整个描述中,相同的数字指代相同的要素。
应了解,尽管术语第一、第二等可在本文用于描述各种要素,但这些要素不应受限于这些术语。这些术语仅用于区分一个要素与另一要素。例如,在不偏离示例实施例的范围的情况下,第一要素可称为第二要素,类似地,第二要素可称为第一要素。如本文所用,术语“和/或”包括相关的所列项目中的一个或多个的任意组合和所有组合。
应了解,当要素称为被“连接”或“联接”至另一要素时,其可直接连接或联接至另一要素,或者可能存在介于中间的要素。相比之下,当要素称为被“直接连接”或“直接联接”至另一要素时,则不存在介于中间的要素。用于描述要素之间的关系的其他词语应该以类似的方式解释(例如“在……之间”相比于“直接在……之间”,“与……相邻”相比于“直接与……相邻”等)。
本文所用的术语仅为了描述特定实施例的目的,不旨在限制示例实施例。如本文所用,单数形式“一种”和“所述”旨在同样包括复数形式,除非上下文明确相反指出。还应了解,当在本文中使用时,术语“包含”、“包括”指定所述特征、整数、步骤、操作、要素和/或部件的存在,但不排除一种或多种其他特征、整数、步骤、操作、要素、部件和/或其组合的存在或添加。
也应注意到,在替代实施中,所述功能/动作可不以图中所述的顺序进行。例如,连续显示的两个图可实际上基本上同时进行,或者可有时以相反的顺序进行,这取决于涉及的功能/动作。
图1为根据一个示例实施例的制造液体金属冷却剂的方法的示意图。容器3包括液体金属冷却剂2,纳米粒子1添加至所述液体金属冷却剂2。容器3可为反应堆或单独的管道或容器的常规一次冷却系统。将纳米粒子1添加至液体金属冷却剂2,以改变液体金属冷却剂2的中子性质。
纳米粒子1具有与液体金属冷却剂2的中子性质不同的中子性质(例如中子吸收、中子减速等)。中子性质(其将在下文更详细地描述)可包括如下中的一者:以10-24cm2的靶或单位测得的中子吸收横截面,通过在与减速剂原子碰撞时中子的平均对数能量损失增加所测得的中子减速特性,以及以靶测得的中子散射横截面。
纳米粒子1可在约350℃下分散至液体金属冷却剂2中。纳米粒子1的直径可为约10-50nm。所得溶液可保持在相同温度下达约24小时。示例实施例不限于此,前述条件可基于纳米粒子的金属而变化。
纳米粒子包括金属,所述金属具有与液体金属冷却剂的金属不同的中子横截面和原子量中的至少一者。例如,包括于纳米粒子中的金属可为如下中的一者:铪、硼、铁、镍、锰、铬和钆(例如铪)。液体金属冷却剂的金属为例如液体钠、铅-铋或钠-钾中的一者。
存在于液体金属冷却剂2中的纳米粒子1的浓度可通过数种方法中的一者测得,例如直接法或连续在线法。例如,可通过化学装置(例如使用质谱仪)进行液体金属冷却剂2的取样,直接测得纳米粒子1的浓度。
存在于液体金属冷却剂2中的纳米粒子1的浓度可通过例如基于纳米粒子1的活化产物测量冷却剂中的γ信号的强度而连续测得。例如,测量来自存在于纳米粒子1中的金属(例如Hf-181)的衰减的482keVγ信号的强度允许测量液体金属冷却剂2中的Hf含量。
在根据一个示例实施例的方法中,将具有比液体金属冷却剂2(例如液体钠冷却剂)的金属更高的中子吸收横截面的纳米粒子1(例如铪)添加至液体金属冷却剂2。所得分散体的有效中子吸收横截面为由存在于分散体中的每一个的原子数加权的液体钠吸收横截面和金属纳米粒子吸收横截面的组合。在一个示例实施例中,有效中子吸收横截面随着液体金属冷却剂2中的纳米粒子1的浓度而成比例地增加。
在一个示例实施例中,可将纳米粒子1逐渐添加至液体金属冷却剂2或从液体金属冷却剂2逐渐去除,以控制分散体的有效中子吸收横截面。
在一个示例实施例中,纳米粒子1不必溶解于液体金属冷却剂2中,但对液体金属冷却剂2的中子吸收特性的作用是相同的,从而与常规操作(例如控制棒插入和取出)分开提供对分散体反应性的控制。
在一个示例实施例中,纳米粒子1可以以相对高的浓度相对快速地添加至液体金属冷却剂2。纳米粒子1的所述添加可被主动驱动,或者可在达到反应堆的设计阈值时被动实现(例如如果冷却剂温度达到所需阈值以上,则纳米粒子自动添加)。
纳米粒子1的添加也可提供给分散体相对快速的大的负反应性,由此充分增加有效中子吸收横截面,以停止反应堆芯内的裂变链式反应。该效果类似于存在于沸水反应堆(BWR)中的备用液体控制系统,所述备用液体控制系统将硼酸添加至反应堆芯中的溶液中,以停止裂变链式反应。
在一个示例实施例中,纳米粒子1不必溶解于液体金属冷却剂2中,但对液体金属冷却剂2的中子吸收特性的作用是相同的,从而提供可关闭反应堆的分散体,但与常规操作(例如控制棒插入和取出)分开。
因此已描述了示例实施例,显而易见的是示例实施例可以以许多方式变化。这种变化不应看作是对示例实施例的预期精神和范围的偏离,且对于本领域技术人员而言显而易见的所有这种改变旨在包括于如下权利要求书的范围内。

Claims (8)

1.一种制造用于核反应堆的液体金属冷却剂的方法,所述方法包括:
将纳米粒子添加至液体金属冷却剂,以改变所述液体金属冷却剂的中子性质,
所述纳米粒子具有与所述液体金属冷却剂的中子性质不同的中子性质。
2.根据权利要求1所述的方法,其特征在于,所述添加纳米粒子包括将金属添加至所述液体金属冷却剂,所述金属具有与所述液体金属冷却剂的金属不同的中子横截面和原子量中的至少一者。
3.根据权利要求2所述的方法,其特征在于,将金属添加至所述液体金属冷却剂包括添加铪、硼、铁、镍、锰、铬和钆中的一者。
4.根据权利要求2所述的方法,其特征在于,将金属添加至所述液体金属冷却剂包括将所述金属添加至液体钠、铅-铋和钠-钾中的一者。
5.根据权利要求1所述的方法,其特征在于,所述添加纳米粒子包括改变中子吸收横截面、中子减速特性和中子散射横截面中的一者。
6.根据权利要求1所述的方法,其特征在于,所述添加纳米粒子包括通过直接法和连续在线法中的一者测量所述纳米粒子的浓度。
7.根据权利要求6所述的方法,其特征在于,测量所述纳米粒子的浓度包括使用质谱仪进行所述液体金属冷却剂的取样。
8.根据权利要求6所述的方法,其特征在于,测量所述纳米粒子的浓度包括基于所述纳米粒子的活化产物而测量所述液体金属冷却剂中的γ信号的强度。
CN201380032522.3A 2012-06-22 2013-05-31 制造用于核反应堆的液体金属冷却剂的方法 Pending CN104380388A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/530,356 US9384862B2 (en) 2012-06-22 2012-06-22 Method of fabricating liquid-metal coolants for nuclear reactors
US13/530356 2012-06-22
PCT/US2013/043622 WO2013191869A1 (en) 2012-06-22 2013-05-31 Method of fabricating liquid-metal coolants for nuclear reactors

Publications (1)

Publication Number Publication Date
CN104380388A true CN104380388A (zh) 2015-02-25

Family

ID=48607378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380032522.3A Pending CN104380388A (zh) 2012-06-22 2013-05-31 制造用于核反应堆的液体金属冷却剂的方法

Country Status (6)

Country Link
US (1) US9384862B2 (zh)
EP (1) EP2864988B1 (zh)
JP (1) JP6325533B2 (zh)
KR (1) KR102120504B1 (zh)
CN (1) CN104380388A (zh)
WO (1) WO2013191869A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404296B (zh) * 2014-11-24 2016-08-24 安徽科技学院 一种核反应堆用铅铋合金的制备方法
CN111344806A (zh) * 2017-11-20 2020-06-26 泰拉能源公司 钠-锡冷却剂和钠-锡-铅冷却剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715270A (en) * 1968-01-30 1973-02-06 Ikaea Nuclear reactors
US20100239062A1 (en) * 2009-03-19 2010-09-23 Korea Atomic Energy Research Institute Coolant with dispersed neutron poison micro-particles, used in scwr emergency core cooling system
CN101853707A (zh) * 2009-03-31 2010-10-06 西屋电气有限责任公司 一种向压水反应堆中的水冷却剂中添加有机化合物的方法
JP2011220731A (ja) * 2010-04-06 2011-11-04 Hidetsugu Ikegami 融合連鎖反応による核融合反応装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989945A (en) * 1974-06-14 1976-11-02 Westinghouse Electric Corporation Method for determining the concentration of fission products in a reactor coolant
US7147823B2 (en) * 2002-04-15 2006-12-12 Battelle Energy Alliance, Llc High temperature cooling system and method
DE10227779A1 (de) 2002-06-21 2004-01-08 Studiengesellschaft Kohle Mbh Monodisperse, magnetische Nanokolloide einstellbarer Größe und Verfahren zu deren Herstellung
JP3935870B2 (ja) 2003-04-21 2007-06-27 独立行政法人 日本原子力研究開発機構 金属等のナノサイズ超微粒子を分散させた液体アルカリ金属
US6724854B1 (en) * 2003-06-16 2004-04-20 General Electric Company Process to mitigate stress corrosion cracking of structural materials in high temperature water
JP3930495B2 (ja) * 2004-06-16 2007-06-13 三菱重工業株式会社 ニッケル超微粒子分散液体ナトリウムの製造方法、装置、液体ナトリウムの漏洩検出方法
WO2008005590A2 (en) * 2006-02-22 2008-01-10 University Of Florida Research Foundation, Inc. Nuclear reactor having efficient and highly stable thermal transfer fluid
JP5364948B2 (ja) * 2010-02-26 2013-12-11 独立行政法人日本原子力研究開発機構 ナノ粒子分散アルカリ液体金属の製造方法
JP2011179070A (ja) * 2010-03-01 2011-09-15 Japan Atomic Energy Agency ナノ粒子分散液体アルカリ金属およびその製造方法
KR101322441B1 (ko) * 2012-04-10 2013-10-28 국립대학법인 울산과학기술대학교 산학협력단 산화토륨 나노유체 원자로 냉각재 및 이를 이용한 원자로

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715270A (en) * 1968-01-30 1973-02-06 Ikaea Nuclear reactors
US20100239062A1 (en) * 2009-03-19 2010-09-23 Korea Atomic Energy Research Institute Coolant with dispersed neutron poison micro-particles, used in scwr emergency core cooling system
CN101853707A (zh) * 2009-03-31 2010-10-06 西屋电气有限责任公司 一种向压水反应堆中的水冷却剂中添加有机化合物的方法
JP2011220731A (ja) * 2010-04-06 2011-11-04 Hidetsugu Ikegami 融合連鎖反応による核融合反応装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K. HADAD ET AL.: "Neutronic study of nanofluids application to VVER-1000", 《ANNALS OF NUCLEAR ENERGY》 *
K. HADAD ET AL.: "Neutronic study of nanofluids application to VVER-1000", 《ANNALS OF NUCLEAR ENERGY》, vol. 37, 24 July 2010 (2010-07-24), pages 1447 - 1455 *
S.W. LEE ET AL.: "Feasibility study on molten gallium with suspended nanoparticles for nuclear coolant applications", 《NUCLEAR ENGINEERING AND DESIGN》 *

Also Published As

Publication number Publication date
EP2864988B1 (en) 2017-07-12
EP2864988A1 (en) 2015-04-29
KR102120504B1 (ko) 2020-06-08
US9384862B2 (en) 2016-07-05
WO2013191869A1 (en) 2013-12-27
KR20150048701A (ko) 2015-05-07
JP2015525356A (ja) 2015-09-03
JP6325533B2 (ja) 2018-05-16
US20130341555A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
Hadad et al. Neutronic study of nanofluids application to VVER-1000
Acir et al. THERMAL ANALYSIS OF THE VVER-1000 REACTOR WITH THORIUM FUEL AND COOLANT CONTAINING Al 2 O 3, CuO, AND TiO 2 NANOPARTICLES
Alhattawi et al. Sensitivity neutronic analysis of accident tolerant fuel concepts in APR1400
Mohsen et al. Ensuring the possibility of using thorium as a fuel in a pressurized water reactor (PWR)
Yu et al. Accident tolerant fuel thermal hydraulic behaviors evaluation during loss of coolant accident in CPR1000
Yamamoto et al. Steady state analysis of small molten salt reactor (effect of fuel salt flow on reactor characteristics)
Mohsen et al. Searching for the viability of using thorium-based accident-tolerant fuel for VVER-1200
CN104380388A (zh) 制造用于核反应堆的液体金属冷却剂的方法
Galahom et al. Investigation of the possibility of using a uranium–zirconium metal alloy as a fuel for nuclear power plant AP-1000
Powers Fully Ceramic Microencapsulated (FCM) Fuel in FHRs: A Preliminary Reactor Physics Assessment
Sun et al. Research on the application of burnable poison ZrB2 and Gd2O3 in a small modular lead-based thermal reactor
Tran et al. An optimal loading principle of burnable poisons for an OTTO refueling scheme in pebble bed HTGR cores
Pergreffi et al. Neutronics characterization of an erbia fully poisoned PWR assembly by means of the APOLLO2 code
Kim et al. Preliminary neutronic studies for the liquid-salt-cooled very hightemperature reactor (LS-VHTR).
Sen et al. Assessment of possible cycle lengths for fully-ceramic micro-encapsulated fuel-based light water reactor concepts
Peng et al. The feasibility research of thorium breeding using fluoride salt as a fast reactor coolant
He et al. Analysis of UO2-BeO Fuel Performance During Normal Conditions and RIA
Aziz et al. Accident Tolerant Fuel Cladding Materials for Light Water Reactors: Analysis of Neutronic Characteristics.
Marmier et al. Revisiting the concept of HTR wallpaper fuel
Bess et al. Neutronic Consideration of TREAT Facility Fuel SiC Recladding
Chen et al. CFD Analysis of Circumferential Temperature Distribution on Fuel Cladding Surface of China Lead Alloy Cooled Research Reactor (CLEAR-I)
Yang et al. Analysis of lead–bismuth eutectic-cooled solid reactor under flow blockage accident by 3D neutronics thermal-hydraulics coupling method
Topan et al. Study on fuel multipass effect on core performance of small pebble bed reactor
Kim et al. Carbide and nitride fuels for advanced burner reactor
Alamri et al. Neutronic analysis for accident tolerant cladding candidates in PWR

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150225

RJ01 Rejection of invention patent application after publication