CN104377344A - 一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及应用 - Google Patents

一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及应用 Download PDF

Info

Publication number
CN104377344A
CN104377344A CN201410522387.7A CN201410522387A CN104377344A CN 104377344 A CN104377344 A CN 104377344A CN 201410522387 A CN201410522387 A CN 201410522387A CN 104377344 A CN104377344 A CN 104377344A
Authority
CN
China
Prior art keywords
composite material
liti
graphene composite
preparation
lithium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410522387.7A
Other languages
English (en)
Other versions
CN104377344B (zh
Inventor
李宏斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Li Hongbin
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410522387.7A priority Critical patent/CN104377344B/zh
Publication of CN104377344A publication Critical patent/CN104377344A/zh
Application granted granted Critical
Publication of CN104377344B publication Critical patent/CN104377344B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及应用,所述钛酸锂LiTi2O4和石墨烯复合材料的制备方法为:首先采用溶胶凝胶法制备钛酸锂LiTi2O4和石墨烯复合材料前驱体,再在保护气体氛围中煅烧,还原制备得到钛酸锂LiTi2O4和石墨烯复合材料。本发明的制备方法简单,设备和反应条件要求低,产率和纯度高,制备得到的钛酸锂LiTi2O4和石墨烯复合材料粒径小,分布均匀,具有高克容量,适合在锂离子二次电池上的应用。

Description

一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及其在锂离子二次电池中的应用。
背景技术
新能源动力和储能对锂离子二次电池性能提出了更高的要求。具有尖晶石结构钛酸锂(Li4Ti5O12)具有长寿命、高倍率、耐低温高安全性等特点在快速充电公交系统和储能上受到越来越多的应用。但是钛酸锂(Li4Ti5O12)的导电率低,只有10-13S/cm,属于绝缘体,作为锂电池负极材料时,需要加入导电剂增加导电性能。
钛酸锂(LiTi2O4)是钛酸锂(Li4Ti5O12)的同系化合物,具有和钛酸锂(Li4Ti5O12)相似的晶体结构和物理化学性能。
LiTi2O4具有两个同属面心立方晶系的同质异相体,即尖晶石结构(spinel)和斜方锰矿结构(ramsdellite),两种结构都具有开放性间隙通道,适合锂离子嵌入嵌出。LiTi2O4的结构形态由制备温度决定。当温度低875℃时,LiTi2O4呈尖晶石结构,空间群为Fd3m。当温度高于925℃时,LiTi2O4呈斜方锰矿结构,空间群为Pbnm。
相比Li4Ti5O12,LiTi2O4具有很高的电子导电率。常温下LiTi2O4粉末压片的电阻率约1.8mΩ·cm。LiTi2O4在临界温度[超过10K(Tc=13.8K)]时具有超导性。其晶体呈深蓝色,常温下为半导体。
因此,LiTi2O4作为锂离子二次电池负极材料时不需加更多导电剂,比Li4Ti5O12具有更高应用价值。
目前为止,合成LiTi2O4的报道不多。主要有固相合成法(Preparation andcharacterization of LiTi2O4anode material synthesized by one-step solid-statereaction,Jianwen Yang,Jiang Zhao,Yongzhen Chen,Yanwei Li,Ionics,2010,16,425–429)采用碳酸锂、二氧化钛和炭黑高温还原下得到;或者采用锂钛氧化合物(Li2TiO3)、二氧化钛和金属钛在高温下还原制备得到(Structural evolutionof ramsdellite-type LixTi2O4upon electrochemical lithium insertion–deinsertion(0≤x≤2),A.Kuhn,C.Baehtz,F.García-Alvarado,Journal of Power Sources,2007,174,421–427)。电解法(电解法制备纳米粉体,朱传高,周幸福,褚道葆,精细化工,20,4,244-246),采用金属钛和锂,在有机电解液中阳极氧化制得。电化学熔融盐法(Electrochemical Synthesis of LiTiO2and LiTi2O4inMolten LiCl Molten LiCl,Kai Jiang,Xiaohong Hu,Huijiao Sun,Dihua Wang,Xianbo Jin,Yaoyao Ren,and George Z.Chen,Chem.Mater.2004,16,4324-4329),采用二氧化钛在氯化钾700℃熔融盐体系中,正极氧化电解法制得。溶胶凝胶法(LiTi2O4用作锂离子电池负极的研究进展,杨建文,赵江,陈永珍,钟晖,化学通报),采用四氯化钛和维生素C在盐酸和氢氧化锂溶液中一步反应制备得到。
上述方法中,高温固相法反应在高温下进行,反应条件相对较高;电化学熔融盐法和电解法设备相对比较复杂,在电化学电解合成过程中,容易引进杂质;溶胶凝胶法制备较难得到纯度较高产物。
石墨烯具有很高的比表面积、导电率和反应活性。在溶液中,离子可以均匀的分散在石墨烯表面,在石墨烯表面高反应活性位点催化条件下,化学反应更易进行,可以制备得到成分粒径均一的纳米颗粒和石墨烯的复合材料。
本发明提出了一种采用溶胶凝胶法制备钛酸锂(LiTi2O4)前驱体和石墨烯复合材料,然后将钛酸锂(LiTi2O4)前驱体和石墨烯复合材料在真空或保护气氛中煅烧制备得到钛酸锂(LiTi2O4)和石墨烯复合材料的方法。
发明内容
为了解决现有的LiTi2O4合成方法存在反应条件复杂、产物纯度低的技术问题,本发明的目的在于提出了一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法。
本发明的另一目的在于提供制备的钛酸锂LiTi2O4和石墨烯复合材料在锂离子二次电池中的应用。
针对现有技术中的不足,本发明采用如下技术方案:
一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法,其特殊之处在于,包括以下步骤:
1)制备石墨烯;
2)将锂源、钛源和石墨烯均加入有机溶剂和水的混合溶液中,得到悬浊液;在悬浊液中加入碳源,混合均匀,制备得到凝胶溶液;
3)将凝胶溶液在真空或保护气体氛围中煅烧,制备得到钛酸锂LiTi2O4和石墨烯复合材料。
步骤2)中所述的锂源包括碳酸锂和醋酸锂中的一种或两种。
步骤2)中所述的钛源包括四氯化钛和钛酸四丁酯的一种或两种。
步骤2)中所述的有机溶剂包括乙醇、丙醇、异丙醇、丁醇、异丁醇、丙酮、二乙醇胺、三乙醇胺中的一种或多种。
步骤2)中所述的碳源包括天然石墨、人造石墨和碳黑导电剂的一种或多种。
步骤2)中所述的碳源中的碳元素和钛源中的钛元素的摩尔比M,满足0.5≤M<2。
步骤3)中所述的煅烧条件为:在真空或保护气体氛围中,以2~10℃/分钟的速度升温到350~950℃,并在此温度下保持2~30小时,反应结束后在真空或保护气体氛围中自然冷却至室温。
上述保护气体为氮气、氦气和氩气的一种或多种。
上述方法所制备的钛酸锂LiTi2O4和石墨烯复合材料在锂离子二次电池中的应用。
本发明的有益效果是:
1、本发明采用溶胶凝胶法把锂离子和四价钛离子吸附在石墨烯层状表面,然后加入还原碳,再在真空或保护气体氛围下煅烧还原钛元素制备钛酸锂LiTi2O4和石墨烯复合材料,四价钛离子在石墨烯表面和还原碳反应更易进行,生成的钛酸锂LiTi2O4和石墨烯结合紧密,工艺实现简单。
2、本发明制备得到的产物钛酸锂LiTi2O4和石墨烯复合材料,粒径小,分布均匀。
附图说明
图1是实施例1生成的钛酸锂LiTi2O4和石墨烯复合材料的XRD谱图;
图2是实施例1步骤2)生成的钛酸锂LiTi2O4和石墨烯复合材料前驱体粉末的SEM图像;
图3是实施例1步骤2)生成的钛酸锂LiTi2O4和石墨烯复合材料前驱体粉末的X射线能量散射EDS光谱;
图4是实施例1步骤2)生成的钛酸锂LiTi2O4和石墨烯复合材料前驱体粉末元素面分布图;
图5是实施例1步骤3)生成的钛酸锂LiTi2O4和石墨烯复合材料粉末的SEM图像;
图6是实施例1步骤3)生成的钛酸锂LiTi2O4和石墨烯粉末的X射线能量散射EDS光谱;
图7是实施例1步骤3)生成的钛酸锂LiTi2O4和石墨烯复合材料的粉末元素面分布图;
图8是实施例1生成的钛酸锂LiTi2O4和石墨烯复合材料的电化学循环伏安图;
图9是实施例1生成的钛酸锂LiTi2O4和石墨烯复合材料的0.1C充放电循环曲线。
具体实施方式
下面结合具体的实施例对本发明作进一步的说明,但并不局限于此。
所有药品均为分析纯,含量≥99.9%。
实施例1
步骤1)采用改进Hummers方法制备石墨烯。
步骤2)称0.65克碳酸锂,加入20毫升水和20毫升无水乙醇的混合液中,混合搅拌均匀,得到溶液1;将0.1克石墨烯在搅拌情况下加入溶液1,制成悬浊液;称10.2克钛酸四丁酯,溶于100毫升无水乙醇中,得淡黄色溶液2;在搅拌情况下缓慢将溶液2加入溶液1中,混合后溶液呈黑色浑浊,再加入0.3克炭黑导电剂SP,超声波处理4小时,得到黑色凝胶;将黑色凝胶放入烘箱中于70℃干燥1天,得到黑色粉末。
步骤3)将黑色粉末置于上海久工电器有限公司JQF1400-30高温气氛电炉,抽真空,通99.9%氩气保护气,然后以5℃/分钟的速度升温到700℃,并在此温度下保持15小时,自然冷却后,得到蓝灰色粉末产物。
实施例2
步骤1)采用改进Hummers方法制备石墨烯。
步骤2)称6.80克钛酸四丁酯,溶于20毫升无水乙醇中,搅拌均匀;加入1.1克二水醋酸锂,搅拌溶解后,再加0.1克石墨烯、1.70克三乙醇胺和2.0克纯水。混合溶液搅拌3小时,加入0.132克炭黑导电剂SP,再搅拌4小时,得到黑色凝胶。
将黑色凝胶放入烘箱中50℃密封陈化10小时,再在70℃下干燥6小时,得黑色固体。
步骤3)将黑色固体置于上海久工电器有限公司JQF1400-30高温气氛电炉,抽真空,通99.9%氩气保护气,然后以5℃/分钟的速度升温到900℃,并在此温度下保持15小时,自然冷却后,得到黑色粉末。
材料性能表征
1)晶体结构测试在日本理学公司D/max 2500VL/PC型XRD衍射仪上进行,采用铜靶,测试精度±0.02°,扫描范围从5~90°。
实施例1生成的钛酸锂LiTi2O4和石墨烯粉末的XRD谱图见图1。
2)材料表面形貌在德国蔡司公司EV018型扫描电子显微镜SEM上进行,X射线能量散射EDS光谱和元素面分布图在牛津X-MAX20型能谱仪上进行。
实施例1步骤2)生成的钛酸锂LiTi2O4和石墨烯复合材料前驱体粉末的SEM图像见图2。
实施例1步骤2)生成的钛酸锂LiTi2O4和石墨烯复合材料前驱体粉末的X射线能量散射EDS光谱见图3。
实施例1步骤2)生成的钛酸锂LiTi2O4和石墨烯复合材料前驱体粉末的元素面分布图见图4。
实施例1步骤3)生成的钛酸锂LiTi2O4和石墨烯复合材料粉末的SEM图像见图5。
实施例1步骤3)生成的钛酸锂LiTi2O4和石墨烯复合材料粉末的X射线能量散射EDS光谱见图6。
实施例1步骤3)生成的钛酸锂LiTi2O4和石墨烯复合材料粉末的元素面分布图见图7。
电化学性能测试
按质量比85:10:5称取钛酸锂LiTi2O4和石墨烯复合材料、导电剂Super P和粘结剂PVDF(HSV900),加入适量N-甲基吡咯烷酮作为溶剂,在自制手套箱中氩气保护下,用磁力搅拌器搅拌10小时,制备得到扣电所需浆料。涂布机为深圳科晶智达科技有限公司MSK-AFA-Ⅲ自动涂膜烘干机,涂布间隙25微米,速度5厘米/分钟,浆料均匀涂覆在梅县金象铜箔有限公司生产的9微米厚,纯度99.8%光面铜箔上,120℃下真空干燥12小时,然后在深圳科晶MSK-T06纽扣电池冲片机冲压成直径约为16毫米左右的电极薄片。CR2032扣式电池组装在德国布劳恩(Mbraun,Unilab)手套箱中进行,充满99.9%高纯氩气。采用深圳科晶MSK-110小型液压纽扣电池封装机。负极是纯度99.99%直径15.8毫米的高纯锂片,隔膜为厚度16微米美国ENTEKLP16型PE隔膜,电解液为EC:DMC:EMC(30:30:40,质量百分比),加入电解液EC、DMC和EMC质量总量1%VC,1.3MLiPF6。扣式电池电化学循环伏安测试在上海晨华仪器有限公司CHI604E型恒电位上进行,电压扫速是0.1mV/s,扫描范围0~2V,对电极和参比电极是锂片。扣式电池循环和倍率测试在武汉蓝电电子有限公司的CT2001A测试仪上进行。
实施例1生成的钛酸锂LiTi2O4和石墨烯复合材料的电化学循环伏安图见图8。
实施例1成的钛酸锂LiTi2O4和石墨烯复合材料的0.1C充放电循环曲线见图9。首次放电容量可以达到168.7mAh/g,具有较高克容量。

Claims (9)

1.一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法,其特征在于,包括以下步骤:
1)制备石墨烯;
2)将锂源、钛源和石墨烯均加入有机溶剂和水的混合溶液中,得到悬浊液;在悬浊液中加入碳源,混合均匀,制备得到凝胶溶液;
3)将凝胶溶液在真空或保护气体氛围中煅烧,制备得到钛酸锂LiTi2O4和石墨烯复合材料。
2.根据权利要求1所述的一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法,其特征在于:步骤2)中所述的锂源包括碳酸锂和醋酸锂中的一种或两种。
3.根据权利要求1所述的一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法,其特征在于:步骤2)中所述的钛源包括四氯化钛和钛酸四丁酯的一种或两种。
4.根据权利要求1所述的一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法,其特征在于:步骤2)中所述的有机溶剂包括乙醇、丙醇、异丙醇、丁醇、异丁醇、丙酮、二乙醇胺、三乙醇胺中的一种或多种。
5.根据权利要求1所述的一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法,其特征在于:步骤2)中所述的碳源包括天然石墨、人造石墨和碳黑导电剂SP的一种或多种。
6.根据权利要求1-5之任一所述的一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法,其特征在于:步骤2)中所述的碳源中的碳元素和钛源中的钛元素的摩尔比M,满足0.5≤M<2。
7.根据权利要求6所述的一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法,其特征在于:步骤3)中所述的煅烧条件为:在真空或保护气体氛围中,以2~10℃/分钟的速度升温到350~950℃,并在此温度下保持2~30小时,反应结束后在真空或保护气体氛围中自然冷却至室温。
8.根据权利要求7所述的一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法,其特征在于:所述保护气体为氮气、氦气和氩气的一种或多种。
9.权利要求1-8之任一项所制备的钛酸锂LiTi2O4和石墨烯复合材料在锂离子二次电池中的应用。
CN201410522387.7A 2014-09-30 2014-09-30 一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及应用 Active CN104377344B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410522387.7A CN104377344B (zh) 2014-09-30 2014-09-30 一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410522387.7A CN104377344B (zh) 2014-09-30 2014-09-30 一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN104377344A true CN104377344A (zh) 2015-02-25
CN104377344B CN104377344B (zh) 2017-02-15

Family

ID=52556106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410522387.7A Active CN104377344B (zh) 2014-09-30 2014-09-30 一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN104377344B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852033A (zh) * 2015-04-01 2015-08-19 北京交通大学 一种三维复合钛酸锂负极材料的制备方法
KR101631231B1 (ko) * 2015-05-27 2016-06-17 (주) 퓨리켐 LTO/Graphene 음극 제조방법과, 이로부터 제조된 LTO/Graphene 음극을 이용한 하이브리드 커패시터
CN106159219A (zh) * 2015-04-17 2016-11-23 中信国安盟固利动力科技有限公司 一种表面包覆LiTi2O4的钛酸锂材料及其制备方法
CN107706362A (zh) * 2017-08-17 2018-02-16 中国第汽车股份有限公司 一种石墨烯复合电极材料的制备方法
RU2705568C1 (ru) * 2015-12-18 2019-11-08 Сафт Применение электрохимических элементов, содержащих отрицательный активный материал на основе литированного оксида титана или титаната, для назначений на низкой околоземной орбите

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554517A1 (en) * 2010-03-31 2013-02-06 Nippon Chemi-Con Corporation Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor
CN103022460A (zh) * 2012-11-28 2013-04-03 上海锦众信息科技有限公司 一种钛酸锂碳复合材料的制备方法
CN103151505A (zh) * 2013-03-01 2013-06-12 中国科学院过程工程研究所 一种钛酸锂系复合负极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554517A1 (en) * 2010-03-31 2013-02-06 Nippon Chemi-Con Corporation Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor
CN103022460A (zh) * 2012-11-28 2013-04-03 上海锦众信息科技有限公司 一种钛酸锂碳复合材料的制备方法
CN103151505A (zh) * 2013-03-01 2013-06-12 中国科学院过程工程研究所 一种钛酸锂系复合负极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李丹: "锂离子电池负极材料Li1+xTi2O4的制备及电化学性能研究", 《万方数据》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852033A (zh) * 2015-04-01 2015-08-19 北京交通大学 一种三维复合钛酸锂负极材料的制备方法
CN104852033B (zh) * 2015-04-01 2017-06-23 北京交通大学 一种三维复合钛酸锂负极材料的制备方法
CN106159219A (zh) * 2015-04-17 2016-11-23 中信国安盟固利动力科技有限公司 一种表面包覆LiTi2O4的钛酸锂材料及其制备方法
CN106159219B (zh) * 2015-04-17 2018-10-16 中信国安盟固利动力科技有限公司 一种表面包覆LiTi2O4的钛酸锂材料及其制备方法
KR101631231B1 (ko) * 2015-05-27 2016-06-17 (주) 퓨리켐 LTO/Graphene 음극 제조방법과, 이로부터 제조된 LTO/Graphene 음극을 이용한 하이브리드 커패시터
RU2705568C1 (ru) * 2015-12-18 2019-11-08 Сафт Применение электрохимических элементов, содержащих отрицательный активный материал на основе литированного оксида титана или титаната, для назначений на низкой околоземной орбите
CN107706362A (zh) * 2017-08-17 2018-02-16 中国第汽车股份有限公司 一种石墨烯复合电极材料的制备方法

Also Published As

Publication number Publication date
CN104377344B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
Zhang et al. Enhanced electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 with lithium-reactive Li3VO4 coating
Xu et al. The preparation and role of Li2ZrO3 surface coating LiNi0. 5Co0. 2Mn0. 3O2 as cathode for lithium-ion batteries
CN104124467B (zh) 一种利用锂镧锆氧前驱体包覆粉体制备固体电解质的方法
Liu et al. A novel surface-heterostructured Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2@ Ce 0.8 Sn 0.2 O 2− σ cathode material for Li-ion batteries with improved initial irreversible capacity loss
Yang et al. High rate capability core–shell lithium titanate@ ceria nanosphere anode material synthesized by one-pot co-precipitation for lithium-ion batteries
Wang et al. Improving the cycling stability of LiCoO2 at 4.5 V through co-modification by Mg doping and zirconium oxyfluoride coating
CN103972497B (zh) 锂离子电池Co2SnO4/C纳米复合负极材料及其制备与应用
CN105140492A (zh) 一种表面包覆锆酸锂的镍钴锰酸锂复合正极材料及制备方法
Wang et al. Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminum
CN104377344B (zh) 一种钛酸锂LiTi2O4和石墨烯复合材料的制备方法及应用
Kumar et al. Electrochemical properties of MgO-coated 0.5 Li2MnO3-0.5 LiNi0. 5Mn0. 5O2 composite cathode material for lithium ion battery
CN103594683B (zh) 一种制备高温锂离子电池锰酸锂正极材料的包覆改性方法
CN106571452A (zh) 一种锂离子电池正极材料及其制备方法
Yang et al. Structure and electrochemical properties of Sc3+-doped Li4Ti5O12 as anode materials for lithium-ion battery
Zhao et al. Slower capacity/voltage degradation of surface engineered LiNi0. 92Co0. 05Mn0. 03O2 cathode for lithium-ion batteries
Yang et al. Suppressed voltage decay and improved electrochemical performance by coating LiAl5O8 on the surface of Li1. 2Mn0. 54Ni0. 13Co0. 13O2
CN104409715A (zh) 一种高性能氮掺杂碳包覆的钛酸锂复合锂离子电池负极材料的制备方法
CN103441267A (zh) 一种二氧化钛包覆钴酸锂正极材料的制备方法
Wu et al. Effect of Cu substitution on structures and electrochemical properties of Li [NiCo 1− x Cu x Mn] 1/3 O 2 as cathode materials for lithium ion batteries
Liu et al. Boosting cycle stability of NCM811 cathode material via 2D Mg-Al-LDO nanosheet coating for lithium-ion battery
Wu et al. Preparation and characterization of spinel Li4Ti5O12 anode material from industrial titanyl sulfate solution
Yuan et al. Synthesis and electrochemical performance of Na0. 7Fe0. 7Mn0. 3O2 as a cathode material for Na-ion battery
CN104617285B (zh) 锂离子电池负极材料Li2ZnTi3O8的制备方法
Li et al. Improving the electrical conductivity and electrochemical performance of LiMn2O4 by Sm gaseous penetration technology
CN109698339A (zh) 一种钛酸锂复合材料及其制备方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200909

Address after: No. 136, he street, Nan'an District, Chongqing

Patentee after: Wang Wenlin

Address before: 710119 new energy research center, Xi'an Institute of Optics and fine mechanics, Chinese Academy of Sciences, No. 60, West Avenue, new industrial park, hi tech Zone, Shaanxi, Xi'an

Patentee before: Li Hongbin

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201010

Address after: 710304 Building 2, zone 1, science and technology enterprise accelerator, No.2, West Qinling Avenue, Caotang science and technology industrial base, high tech Zone, Xi'an City, Shaanxi Province

Patentee after: Xi'an magnesium Power New Energy Technology Co., Ltd

Address before: No. 136, he street, Nan'an District, Chongqing

Patentee before: Wang Wenlin

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210705

Address after: New energy research center of Xi'an Institute of Optics and precision machinery, Chinese Academy of Sciences

Patentee after: Li Hongbin

Address before: 710304 Building 2, zone 1, science and technology enterprise accelerator, west 2, Qinling Avenue, Caotang science and technology industrial base, high tech Zone, Xi'an City, Shaanxi Province

Patentee before: Xi'an magnesium Power New Energy Technology Co., Ltd

TR01 Transfer of patent right