CN104362505A - Peak power intensifier and high peak power MOPA fiber laser - Google Patents

Peak power intensifier and high peak power MOPA fiber laser Download PDF

Info

Publication number
CN104362505A
CN104362505A CN201410663895.7A CN201410663895A CN104362505A CN 104362505 A CN104362505 A CN 104362505A CN 201410663895 A CN201410663895 A CN 201410663895A CN 104362505 A CN104362505 A CN 104362505A
Authority
CN
China
Prior art keywords
peak power
laser
collimating lens
pumping module
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410663895.7A
Other languages
Chinese (zh)
Inventor
夏江帆
何健豪
刘汉斌
赵青春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING HUAERDA LASER Co Ltd
STARWAY LASER Inc
GUANGDONG SUPERFOCUS LASER CO Ltd
Original Assignee
NANJING HUAERDA LASER Co Ltd
STARWAY LASER Inc
GUANGDONG SUPERFOCUS LASER CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING HUAERDA LASER Co Ltd, STARWAY LASER Inc, GUANGDONG SUPERFOCUS LASER CO Ltd filed Critical NANJING HUAERDA LASER Co Ltd
Priority to CN201410663895.7A priority Critical patent/CN104362505A/en
Publication of CN104362505A publication Critical patent/CN104362505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

The invention relates to a peak power intensifier and a high peak power MOPA fiber laser. The peak power intensifier comprises a master oscillator assembly and a power amplification assembly. The master oscillator assembly comprises a seed resource laser and a forward isolator. The power amplification assembly comprises a plurality of diode-pumped lasers, a beam combiner and a peak power intensifier. The peak power intensifier comprises a diode-pumped module, a first collimating lens, a second collimating lens, an input tail fiber and an expanded beam lens. After a laser signal is output from the beam combiner, the laser signal sequentially passes through the first collimating lens, the diode-pumped module, the second collimating lens and the expanded beam lens, and then a high peak power laser signal is output. The peak power intensifier directly replaces a main amplification light path in an optical fiber MOPA structure, and the high-power isolator serves as the main amplification light path in the MOPA laser to directly output light, as a result, the light path optical fiber length can be reduced greatly, the nonlinear effect of a light path amplification system is effectively restrained, and the peak power output by the laser is increased.

Description

A kind of peak power booster and high-peak power MOPA fiber laser
Technical field
The present invention relates to a kind of high power MOPA fiber laser.
Background technology
Optical fiber MOPA laser owing to having compact conformation, the many merits such as light velocity quality is good, efficiency is high, line width, pulse width peak power are high, the fields such as mark, punching, micromachined, military affairs, laser medicine can be widely used in.
The structure of existing fiber laser as shown in Figure 1, it generally includes master oscillator part 10 and power amplifying part 20, master oscillator Main Function produces high-quality seed light, power output is changeable, thus exports light and to be comparatively easy to do the good beam quality of required time domain, frequency domain characteristic and maintenance; Power amplifying part Main Function is then amplify seed light, and it is made up of one-level or what fiber amplifier, achieves again high power, high-energy exports while ensure that the high light beam quality exporting light.Wherein, master oscillator part forms primarily of seed source laser 101 and isolator 102, Fiber connection between seed source laser and isolator; Power amplifying part is primarily of compositions such as multiple pump light source 201, bundling device 202, Active Optical Fiber 203, isolators 204, pump light source mostly is semiconductor pump laser, pump light source and seed light source are coupled to bundling device, amplify through Active Optical Fiber and export through isolator, multistage amplification refers to and arranges multiple Active Optical Fiber in the optical path, between connected by isolator, thus realize multistage amplification.
And on industrial micro Process field, the MOPA laser with high-peak power utilizes the characteristics such as its high-peak power high-energy that metal material can be evaporated at transient evaporation, thus in mark technique, accomplish that edge is indefectible, efficiency is high, quality is good, greatly reduce the advantages such as production time, thus raising MOPA peak laser power becomes the development trend on micro Process field.
In order to realize the peak power that optical fiber MOPA laser exports, conventional method adopts multi-stage fiber structure for amplifying in MOPA structure, as shown in Figure 2, the optical fiber MOPA laser of light channel structure is amplified for three grades, in the ideal case, according to theory calculate, it is seed pre-amplification light path that the first order amplifies light path, if export 8ns, 100khz, 15mw, peak power 18.75W, after then amplifying light path by the second level, export as 8ns, 100khz, 1W, peak power 1.25kw, 8ns is exported again by third level light path, 100khz, 20W, peak power 25kW.
The drawback of this method is that seed source power output is little, because multistage amplification reaches required power, and every grade amplify before need the residue optical fiber etc. that has more in the Active Optical Fiber of fibre optic isolater, certain length and each components and parts, easily produce nonlinear effect at inside of optical fibre, namely above-mentioned whole fiber laser peak power is suppressed in 25KW, limit the further lifting of its power output, thus inhibit the enhancing of peak power.If peak power is higher than 25KW, then can not ensure the stability of laser optical system.
Summary of the invention
The present invention seeks to a kind of peak power booster that directly can replace main amplifying circuit structure in optical fiber MOPA structure, export the laser signal of high-peak power proposed to overcome the deficiencies in the prior art.
For achieving the above object, the technical solution used in the present invention is: a kind of peak power booster, it comprises semiconductor pumping module, be arranged on the first collimating lens of described semiconductor pumping module input side, be arranged on the second collimating lens of described semiconductor pumping module outlet side, the input tail optical fiber connected with the first described collimating lens, the extender lens connected with the second described collimating lens, described input tail optical fiber and the first collimating lens form input optical fibre collimater, the second described collimating lens and described extender lens form light path and amplify output, laser signal enters from described input tail optical fiber, pass through the first described collimating lens successively, semiconductor pumping module, second collimating lens, the laser of high-peak power is exported after extender lens.
Optimally, described semiconductor pumping module is semiconductor pumped Nd:YAG crystal, Nd:Glass, Nd:YVO4, Yb:Glass, Yb:YAG crystal or other laser medium that MOPA fiber laser seed can be provided to amplify of specific wavelength.。
Optimally, the power output of described semiconductor pumping module can the corresponding selection according to the peak power intensity difference that need strengthen.
Optimally, armor protective layer is covered with outside described input tail optical fiber.
The present invention also provides a kind of high-peak power MOPA fiber laser, it comprises master oscillator assembly, power amplifier assembly, described master oscillator assembly comprises seed source laser, with the forward direction isolator of described seed source laser output phase fused fiber splice, described power amplifier assembly comprises multiple semiconductor pump laser, the bundling device for seed light source and pump light source are coupled with described forward direction isolator output and each semiconductor pump laser output phase fused fiber splice, it is characterized in that: it also comprises the peak power booster with described bundling device output phase fused fiber splice, described peak power booster comprises semiconductor pumping module, be arranged on the first collimating lens of described semiconductor pumping module input side, be arranged on the second collimating lens of described semiconductor pumping module outlet side, the input tail optical fiber connected with the first described collimating lens, the extender lens connected with the second described collimating lens, described input tail optical fiber and the first collimating lens form input optical fibre collimater, the second described collimating lens and described extender lens form light path and amplify output, laser signal passes through the first collimating lens successively through described input tail optical fiber after described bundling device exports, semiconductor pumping module, second collimating lens, the laser signal of high-peak power is exported after extender lens.
Optimally, the described each building block of peak power booster is assembled into a global facility.
Optimally, described semiconductor pumping module is semiconductor pumped Nd:YAG crystal, Nd:Glass, Nd:YVO4, Yb:Glass, Yb:YAG crystal or other laser medium that MOPA fiber laser seed can be provided to amplify of specific wavelength.。
Optimally, the power output of described semiconductor pumping module can the corresponding selection according to the peak power intensity difference that need strengthen.
Optimally, one-level or secondary fiber amplifier light path is also provided with between described bundling device and described peak power booster.
Because technique scheme is used, the present invention compared with prior art has following advantages: peak power booster of the present invention, main amplification light channel structure in direct replacement optical fiber MOPA structure, the main amplification light path using the form of a high power isolator as MOPA laser directly exports light.It is applied in fiber laser, can greatly reduce light path fiber lengths, effectively suppresses the nonlinear effect in light path amplification system, breaks through the restriction of nonlinear effect, thus strengthen the peak power of laser output.
 
Accompanying drawing explanation
Fig. 1 is traditional fiber laser light path composition schematic diagram;
Fig. 2 is amplification circuits principle schematic in Fig. 1;
Fig. 3 is peak power booster structural principle schematic diagram of the present invention;
Fig. 4 is peak power booster amplification principle schematic diagram of the present invention;
Fig. 5 is fiber laser embodiment one structural representation of the present invention;
Fig. 6 is fiber laser embodiment two structural representation of the present invention.
Wherein: 10, master oscillator assembly; 101, seed source laser; 102, isolator; 20, amplifier block; 201, semiconductor pump laser; 202, bundling device; 203, Active Optical Fiber; 204, isolator.
Embodiment
Below in conjunction with accompanying drawing, the preferred embodiment of the invention is described in detail:
Embodiment one:
Fiber laser as shown in Figure 5, it comprises master oscillator assembly 1, power amplifier assembly 2.Wherein, master oscillator assembly 1 comprises seed source laser 11, forward direction isolator 12, seed source laser 11 output and forward direction isolator 12 input phase fused fiber splice.Power amplifier assembly 2 comprises multiple semiconductor pump laser 21, bundling device 22, peak power booster 23.Wherein, each semiconductor pump laser 21 is coupled respectively to bundling device 22 with the output of forward direction isolator 12, the output of bundling device 22 directly with peak power booster 23 phase fused fiber splice.Below the structure composition of peak power booster 23 is described further:
Peak power booster 23 as shown in Figure 3, it comprises input tail optical fiber 231, collimating lens, semiconductor pumping module (DPL module) 233 and the extender lens 234 with the protection of armor layer; Collimating lens comprises the first collimating lens 232 being positioned at semiconductor pumped 233 module input sides, the second collimating lens 232 ' being positioned at semiconductor pumping module 233 outlet side.Wherein, first collimating lens 232, second collimating lens 232 ' is assembled together with DPL module 233, input tail optical fiber 231 and the first collimating lens 232 form input optical fibre collimater, second collimating lens 232 ' forms light path with extender lens 234 and amplifies output, and input optical fibre collimater, output become overall together with PDL module assembly.
In the present embodiment, semiconductor pumping module 233 is preferably the semiconductor pumped Nd:YAG crystal of specific wavelength, Nd:Glass, Nd:YVO4, Yb:Glass, Yb:YAG crystal or other laser mediums that MOPA fiber laser seed can be provided to amplify, and the PDL module of different output power can be selected to regulate need strengthen peak power intensity.
The above-mentioned composition of the structure to peak power booster of the present invention is described, during its work, light path principle as shown in Figure 4, after laser signal exports from bundling device, through input tail optical fiber successively by exporting the laser signal of high-peak power after the first collimating lens, semiconductor pumping module, the second collimating lens, extender lens.Peak power enhancing occurs in semiconductor pumping module, pass through pattern matching, the flashlight spacing shaping that optical fiber exports by collimating lens is the distribution matched that distributes with semiconductor pumping module gain space, to obtain maximum power extraction, inhibit signal light spatial distribution is unaffected simultaneously.Laser beam expanding after peak power strengthens by optical system is subsequently final output.
By above-mentioned analysis, we can find out, directly access peak power booster of the present invention the laser peak power exported can be made to obtain larger enhancing at the amplifier section of fiber laser.
Embodiment two:
As shown in Figure 6, the difference of the present embodiment fiber laser and embodiment one is, also has access to two-stage and amplify light path 24 between the master oscillator assembly and peak power booster of laser, and this two-stage amplifies light path primarily of Active Optical Fiber and isolator composition.For the optical fiber MOPA laser in background technology, it is seed pre-amplification light path that the first order amplifies light path, if export 8ns, 100khz, 15mw, peak power 18.75W, then, after amplifying light path by the second level, export as 8ns, 100khz, 1W, peak power 1.25kw.The direct welding of light path output peak power booster of the present invention is amplified in the second level, because semiconductor pumping module itself has light amplification effect, the present embodiment selects multiplication factor to be 40 times, if booster is regarded as the third level amplify, then same three grades are amplified in light path, the peak power exported can strengthen as 50KW, obtains three grades of stable light path systems amplified simultaneously.
Solid state laser is applied in fiber laser by the present invention, owing to being modular construction, entirety is still optical fiber laser structure, small and exquisite, compact, but importantly, this structure greatly reduces the fiber lengths of light path, effectively suppress the nonlinear effect in light path amplification system, break through the restriction of nonlinear effect, thus enhance the peak power of fiber laser output.
Above-described embodiment, only for technical conceive of the present invention and feature are described, its object is to person skilled in the art can be understood content of the present invention and implement according to this, can not limit the scope of the invention with this.All equivalences done according to Spirit Essence of the present invention change or modify, and all should be encompassed within protection scope of the present invention.

Claims (9)

1. a peak power booster, it is characterized in that: it comprises semiconductor pumping module, be arranged on the first collimating lens of described semiconductor pumping module input side, be arranged on the second collimating lens of described semiconductor pumping module outlet side, the input tail optical fiber connected with the first described collimating lens, the extender lens connected with the second described collimating lens, described input tail optical fiber and the first collimating lens form input optical fibre collimater, the second described collimating lens and described extender lens form light path and amplify output, laser signal enters from described input tail optical fiber, pass through the first described collimating lens successively, semiconductor pumping module, second collimating lens, the laser of high-peak power is exported after extender lens.
2. peak power booster according to claim 1, is characterized in that: described semiconductor pumping module is semiconductor pumped Nd:YAG crystal, Nd:Glass, Nd:YVO4, Yb:Glass, Yb:YAG crystal or other laser medium that MOPA fiber laser seed can be provided to amplify of specific wavelength.
3. peak power booster according to claim 1 and 2, is characterized in that: the power output of described semiconductor pumping module can the corresponding selection according to the peak power intensity difference that need strengthen.
4. peak power booster according to claim 1, is characterized in that: be covered with armor protective layer outside described input tail optical fiber.
5. a high-peak power MOPA fiber laser, it comprises master oscillator assembly, power amplifier assembly, described master oscillator assembly comprises seed source laser, with the forward direction isolator of described seed source laser output phase fused fiber splice, described power amplifier assembly comprises multiple semiconductor pump laser, the bundling device for seed light source and pump light source are coupled with described forward direction isolator output and each semiconductor pump laser output phase fused fiber splice, it is characterized in that: it also comprises the peak power booster with described bundling device output phase fused fiber splice, described peak power booster comprises semiconductor pumping module, be arranged on the first collimating lens of described semiconductor pumping module input side, be arranged on the second collimating lens of described semiconductor pumping module outlet side, the input tail optical fiber connected with the first described collimating lens, the extender lens connected with the second described collimating lens, described input tail optical fiber and the first collimating lens form input optical fibre collimater, the second described collimating lens and described extender lens form light path and amplify output, laser signal passes through the first collimating lens successively through described input tail optical fiber after described bundling device exports, semiconductor pumping module, second collimating lens, the laser signal of high-peak power is exported after extender lens.
6. high-peak power MOPA fiber laser according to claim 5, is characterized in that: the described each building block of peak power booster is assembled into a global facility.
7. high-peak power MOPA fiber laser according to claim 5, is characterized in that: described semiconductor pumping module is semiconductor pumped Nd:YAG crystal, Nd:Glass, Nd:YVO4, Yb:Glass, Yb:YAG crystal or other laser medium that MOPA fiber laser seed can be provided to amplify of specific wavelength.
8. high-peak power MOPA fiber laser according to claim 5, is characterized in that: the power output of described semiconductor pumping module can the corresponding selection according to the peak power intensity difference that need strengthen.
9., according to described high-peak power MOPA fiber laser arbitrary in claim 5 ~ 8, it is characterized in that: between described bundling device and described peak power booster, be also provided with one-level or secondary fiber amplifier light path.
CN201410663895.7A 2014-11-19 2014-11-19 Peak power intensifier and high peak power MOPA fiber laser Pending CN104362505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410663895.7A CN104362505A (en) 2014-11-19 2014-11-19 Peak power intensifier and high peak power MOPA fiber laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410663895.7A CN104362505A (en) 2014-11-19 2014-11-19 Peak power intensifier and high peak power MOPA fiber laser

Publications (1)

Publication Number Publication Date
CN104362505A true CN104362505A (en) 2015-02-18

Family

ID=52529743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410663895.7A Pending CN104362505A (en) 2014-11-19 2014-11-19 Peak power intensifier and high peak power MOPA fiber laser

Country Status (1)

Country Link
CN (1) CN104362505A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159649A (en) * 2015-03-27 2016-11-23 深圳激扬光电有限公司 A kind of separation amplifying fiber Optical Maser System
CN108098148A (en) * 2017-12-28 2018-06-01 北京工业大学 A kind of laser cleaner
CN109787083A (en) * 2018-10-29 2019-05-21 山东大学 One kind being based on YVO4-SiO2The Ramar laser of optical fiber
CN110190493A (en) * 2019-05-29 2019-08-30 黄进土 A kind of tail optical fiber profile pump coupling device of ytterbium-doped double-cladded-layer semiconductor laser
CN112615246A (en) * 2020-12-15 2021-04-06 中国科学院长春光学精密机械与物理研究所 Main oscillation power amplifier based on graphene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280811A (en) * 2011-06-24 2011-12-14 王力 Pulsed solid state laser
CN102354902A (en) * 2011-11-07 2012-02-15 华南师范大学 Kilowatt-level high power pulse Nd:YAG (neodymium-neodymium aluminum garnet) laser with one-level resonance and two-level amplification
CN102623884A (en) * 2012-03-29 2012-08-01 北京工商大学 High-power all solid-state axisymmetric polarization laser for laser machining
JP2012254478A (en) * 2011-06-10 2012-12-27 Miyachi Technos Corp Laser machining device and mopa system fiber laser oscillator
CN103944056A (en) * 2014-04-02 2014-07-23 中国电子科技集团公司第二十六研究所 Acoustic-optical Q pulse modulation optical fiber laser device of MOPA structure
US20140211301A1 (en) * 2013-01-30 2014-07-31 Coherent, Inc. High-gain face-pumped slab-amplifier
CN204179481U (en) * 2014-11-19 2015-02-25 广东高聚激光有限公司 A kind of peak power booster and high-peak power MOPA fiber laser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254478A (en) * 2011-06-10 2012-12-27 Miyachi Technos Corp Laser machining device and mopa system fiber laser oscillator
CN102280811A (en) * 2011-06-24 2011-12-14 王力 Pulsed solid state laser
CN102354902A (en) * 2011-11-07 2012-02-15 华南师范大学 Kilowatt-level high power pulse Nd:YAG (neodymium-neodymium aluminum garnet) laser with one-level resonance and two-level amplification
CN102623884A (en) * 2012-03-29 2012-08-01 北京工商大学 High-power all solid-state axisymmetric polarization laser for laser machining
US20140211301A1 (en) * 2013-01-30 2014-07-31 Coherent, Inc. High-gain face-pumped slab-amplifier
CN103944056A (en) * 2014-04-02 2014-07-23 中国电子科技集团公司第二十六研究所 Acoustic-optical Q pulse modulation optical fiber laser device of MOPA structure
CN204179481U (en) * 2014-11-19 2015-02-25 广东高聚激光有限公司 A kind of peak power booster and high-peak power MOPA fiber laser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159649A (en) * 2015-03-27 2016-11-23 深圳激扬光电有限公司 A kind of separation amplifying fiber Optical Maser System
CN108098148A (en) * 2017-12-28 2018-06-01 北京工业大学 A kind of laser cleaner
CN109787083A (en) * 2018-10-29 2019-05-21 山东大学 One kind being based on YVO4-SiO2The Ramar laser of optical fiber
CN109787083B (en) * 2018-10-29 2020-10-30 山东大学 Based on YVO4-SiO2Raman laser of optical fiber
CN110190493A (en) * 2019-05-29 2019-08-30 黄进土 A kind of tail optical fiber profile pump coupling device of ytterbium-doped double-cladded-layer semiconductor laser
CN110190493B (en) * 2019-05-29 2020-11-06 淮安奥正网络科技有限公司 Tail fiber side pumping coupling device of ytterbium-doped double-cladding semiconductor laser
CN112615246A (en) * 2020-12-15 2021-04-06 中国科学院长春光学精密机械与物理研究所 Main oscillation power amplifier based on graphene
CN112615246B (en) * 2020-12-15 2021-09-03 中国科学院长春光学精密机械与物理研究所 Main oscillation power amplifier based on graphene

Similar Documents

Publication Publication Date Title
CN104362505A (en) Peak power intensifier and high peak power MOPA fiber laser
US7872794B1 (en) High-energy eye-safe pulsed fiber amplifiers and sources operating in erbium's L-band
CN111064069B (en) All-fiber femtosecond chirped pulse amplification system
CN104409954A (en) 1.5 micrometer nanosecond pulse double pass and double clad fiber amplifier
CN103050873A (en) High-power pulse type ytterbium-doped all-fiber laser system
CN110600978A (en) Ytterbium-doped nanosecond pulse line laser source based on all-fiber structure
CN102244361A (en) Self-Raman frequency conversion self-mode locking solid laser
CN102510001A (en) Frequency-doubling green light laser
CN102931572B (en) High-power fiber lasers of short wavelength interval pump
CN101667709A (en) Tunable high-power optical fiber picosecond laser system
CN104134924A (en) EDFA (Erbium-doped Optical Fiber Amplifier)
KR20150125296A (en) Optical fiber laser apparatus and method
CN107565361A (en) A kind of pulsed high-energy single-frequency 589nm lasers based on crystal Raman amplifiction technology
US20120307850A1 (en) Pulsed light generation method
CN102263358A (en) High-power broadband superfluorescence light source in all-fiber structure
CN103022862A (en) Random waveform nanosecond pulse high-fidelity amplifying device
CN203690697U (en) High-power optical fiber laser
CN203014155U (en) Arbitrary-waveform nanosecond pulse high fidelity amplifying device
CN204179481U (en) A kind of peak power booster and high-peak power MOPA fiber laser
CN102610986A (en) Mode locking fiber laser with built-in saturable absorber body element
CN110911959A (en) Fiber laser with switchable pulse continuous mode
CN111082292A (en) Quasi-continuous or continuous chirp pulse amplified fiber laser system
CN104362498A (en) High-power single-mode 915-nm all-fiber laser
CN112003116A (en) Ultrashort pulse Raman fiber amplifier
CN108923234B (en) Supercontinuum generating device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150218

RJ01 Rejection of invention patent application after publication