CN104360384A - Microseism event positioning method and device based on automatic scanning of longitudinal and transverse wave energy - Google Patents

Microseism event positioning method and device based on automatic scanning of longitudinal and transverse wave energy Download PDF

Info

Publication number
CN104360384A
CN104360384A CN201410641292.7A CN201410641292A CN104360384A CN 104360384 A CN104360384 A CN 104360384A CN 201410641292 A CN201410641292 A CN 201410641292A CN 104360384 A CN104360384 A CN 104360384A
Authority
CN
China
Prior art keywords
mrow
msub
azimuth
munderover
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410641292.7A
Other languages
Chinese (zh)
Other versions
CN104360384B (en
Inventor
容娇君
李彦鹏
徐刚
储仿东
刘博�
衡峰
刘腾蛟
张固澜
张彦斌
吴俊军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp
BGP Inc
Original Assignee
China National Petroleum Corp
BGP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Petroleum Corp, BGP Inc filed Critical China National Petroleum Corp
Priority to CN201410641292.7A priority Critical patent/CN104360384B/en
Publication of CN104360384A publication Critical patent/CN104360384A/en
Application granted granted Critical
Publication of CN104360384B publication Critical patent/CN104360384B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention relates to a microseism event positioning method and device based on automatic scanning of longitudinal and transverse wave energy. The method includes the steps that microseism event recognition is carried out on underground monitoring data; a microseism event travel-time table of a searched area is built; sliding scanning is carried out on a recognized microseism event according to the microseism event travel-time table, and accordingly diffraction stacked energy is obtained; sliding scanning is carried out on the polarization direction of the recognized microseism event according to the microseism event travel-time table, so information of the polarization direction is obtained; an objective function of microseism event direction consistence and scanned and stacked energy maximization is solved according to the diffraction stacked energy and the information of the polarization direction, and accordingly an optimal solution of the objective function is obtained. The optimal solution represents the position where direction stability and consistence are best and longitudinal and transverse wave scanned energy is strongest in the direction and the position is where the microseism event happens.

Description

Microseism event positioning method and device based on longitudinal and transverse wave energy automatic scanning
Technical Field
The invention relates to the technical field of fracturing microseism monitoring data, in particular to a microseism event positioning method and device based on longitudinal and transverse wave energy automatic scanning.
Background
The fracture micro-seismic monitoring signal is influenced by the rock fracture energy and background noise, the difference of the signal to noise ratio of the received signal is large, and the arrival time of the micro-seismic event is picked up and the data processing is greatly influenced in real time.
The fracturing microseism monitoring signals are long in duration and huge in data volume, the microseism events with high signal-to-noise ratio can be accurately picked up through an automatic picking algorithm, but the microseism events with medium and lower signal-to-noise ratios cannot achieve better precision through automatic picking, and the direction calculation and positioning results of the microseism events are greatly influenced. On-site real-time micro-seismic signal processing needs manual interactive correction on the micro-seismic which does not reach the standard in the first arrival pickup so as to reach an industrial processing standard, and the real-time performance of a micro-seismic signal processing result is delayed to a great extent, so that the timeliness of adjusting a fracturing construction scheme in real time through a micro-seismic monitoring result is influenced.
Disclosure of Invention
In order to solve the problems in the prior art, the invention provides a microseism event positioning method and device based on longitudinal and transverse wave energy automatic scanning.
In order to achieve the above object, the present invention provides a microseism event positioning method based on longitudinal and transverse wave energy automatic scanning, which comprises the following steps:
performing microseism event identification on underground monitoring data;
establishing a microseism event travel time table of a search area;
performing sliding scanning on the identified microseism event according to a microseism event travel time table to obtain diffraction superposition energy;
performing sliding scanning on the identified polarization orientation of the microseism event according to a microseism event travel time table to obtain polarization orientation information;
solving the microseism event azimuth consistency and the scanning and stacking energy maximization objective function according to the diffraction stacking energy and the polarization azimuth information to obtain the optimal solution of the objective function, wherein the optimal solution is expressed as: and the position with the most stable and consistent azimuth and the strongest energy of the longitudinal wave and the transverse wave scanning in the azimuth is the position of the microseism event.
Preferably, the expression of the microseismic event azimuth consistency and scan superposition energy maximization objective function is as follows:
f(Azimuth,E)=f1(Azimuth)→min&&f2(E)→max;
wherein, <math> <mrow> <mi>f</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>abs</mi> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> f2(E)=E(xi,yj,zkt); upper side xiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkA z-axis coordinate value representing a Cartesian coordinate system; x is the number ofi∈[xmin,xmax],yi∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxRepresenting the maximum value of the y coordinate axis in the search area; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; azimuth is an Azimuth function, E is an energy function, t is a longitudinal or transverse wave time, tpIs the longitudinal wave time; min represents the minimum value of the f1(Azimuth) function, max represents the maximum value of the f2(E) function, min&&f2(E) indicates that the minimum value of the function f1(Azimuth) and the maximum value of the function f2(E) need to be satisfied simultaneously; → is a mathematical symbol, representing infinite proximity.
Preferably, the step of performing a sliding sweep of the identified micro-seismic events according to the micro-seismic event travel time table comprises:
in the search area, each coordinate axis of the sliding three-dimensional space is subjected to diffraction energy superposition; wherein, the calculation formula of the diffraction energy superposition is as follows:
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
wherein x isiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkA z-axis coordinate value representing a Cartesian coordinate system; x is the number ofi∈[xmin,xmax],yj∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxRepresenting the maximum value of the y coordinate axis in the search area; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; a is the amplitude, t is a function of time, τ is a time window, and E is a function of energy;
superposing longitudinal and transverse wave energy on a signal time axis in a sliding mode according to a microseism event travel time table; wherein, the expression of the superimposed longitudinal wave energy is as follows: <math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> </mrow> <mi>p</mi> </msub> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <msub> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> </mrow> <mi>p</mi> </msub> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> the expression of the superimposed shear wave energy is: <math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> </mrow> <mi>s</mi> </msub> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <msub> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> </mrow> <mi>s</mi> </msub> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> n is the number of detectors, E is the energy function, A is the amplitude, tpIs the longitudinal wave time, tsIs the shear wave time, and t is a function of time.
Preferably, the step of sliding-scanning the polarization orientation of the identified micro-seismic event according to the micro-seismic event travel-time table comprises:
and according to the micro-seismic event travel time table, sliding and calculating the polarization angle of the corresponding micro-seismic event of each time point on the signal time axis.
Preferably, the micro-seismic event travel time table is built based on a corrected velocity model.
In order to achieve the above object, the present invention further provides a microseismic event positioning device based on longitudinal and transverse wave energy automatic scanning, which comprises:
the identification unit is used for carrying out microseism event identification on the underground monitoring data;
the travel time table establishing unit is used for establishing a micro-seismic event travel time table of the search area;
the first sliding scanning unit is used for performing sliding scanning on the identified microseism event according to a microseism event travel time table to obtain diffraction superposition energy;
the second sliding scanning unit is used for performing sliding scanning on the identified polarization orientation of the microseism event according to the microseism event travel time table to obtain polarization orientation information;
and the positioning unit is used for solving the microseism event azimuth consistency and the scanning and stacking energy maximization objective function according to the diffraction stacking energy and the polarization azimuth information to obtain the optimal solution of the objective function, wherein the optimal solution is expressed as: and the position with the most stable and consistent azimuth and the strongest energy of the longitudinal wave and the transverse wave scanning in the azimuth is the position of the microseism event.
Preferably, the microseismic event azimuth consistency and the scan-stack energy maximization objective function used by the positioning unit have the expression:
f(Azimuth,E)=f1(Azimuth)→min&&f2(E)→max;
wherein, <math> <mrow> <mi>f</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>abs</mi> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> f2(E)=E(xi,yj,zkt); upper side xiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkA z-axis coordinate value representing a Cartesian coordinate system; x is the number ofi∈[xmin,xmax],yi∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxIndicating the y coordinate within the search areaMaximum value of the axis; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; azimuth is an Azimuth function, E is an energy function, t is a longitudinal or transverse wave time, tpIs the longitudinal wave time; min represents the minimum value of the f1(Azimuth) function, max represents the maximum value of the f2(E) function, min&&f2(E) indicates that the minimum value of the function f1(Azimuth) and the maximum value of the function f2(E) need to be satisfied simultaneously; → is a mathematical symbol, representing infinite proximity.
Preferably, the first sliding scanning unit includes:
the three-dimensional coordinate sliding scanning module is used for performing diffraction energy superposition on each coordinate axis of a sliding three-dimensional space in a search area; wherein, the calculation formula of the diffraction energy superposition is as follows:
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
wherein x isiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkA z-axis coordinate value representing a Cartesian coordinate system; x is the number ofi∈[xmin,xmax],yj∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxRepresenting the maximum value of the y coordinate axis in the search area; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; a is the amplitude, t is a function of time, τ is a time window, and E is a function of energy;
the signal time axis sliding scanning module is used for sliding and superposing longitudinal wave energy and transverse wave energy on a signal time axis according to a microseism event travel time table, wherein the expression of superposed longitudinal wave energy is as follows: <math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> </mrow> <mi>p</mi> </msub> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <msub> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> </mrow> <mi>p</mi> </msub> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> the expression of the superimposed shear wave energy is: <math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> </mrow> <mi>s</mi> </msub> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <msub> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> </mrow> <mi>s</mi> </msub> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> n is the number of detectors, E is the energy function, A is the amplitude, tpIs the longitudinal wave time, tsIs the shear wave time, and t is a function of time.
Preferably, the second sliding scanning unit is specifically configured to:
and according to the micro-seismic event travel time table, sliding and calculating the polarization angle of the corresponding micro-seismic event of each time point on the signal time axis.
Preferably, the travel time table creation unit creates a micro-seismic event travel time table based on a corrected velocity model.
The technical scheme has the following beneficial effects: the technical scheme is that in the process of processing and positioning fracturing microseism monitoring data, the azimuth and the position of a microseism event are inverted and positioned in a longitudinal and transverse wave scanning mode. The embodiment proves that the technical scheme can automatically scan the occurrence direction and diffraction energy of the identified micro-seismic signal, and finally determines the spatial position of the micro-seismic event through the direction consistency and the energy maximization objective function, so that the process does not need manual adjustment, and the processing timeliness is obviously improved.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
FIG. 1 is a flow chart of a microseismic event positioning method based on automatic scanning of longitudinal and transverse wave energy according to the present invention;
FIG. 2 is a block diagram of a microseismic event positioning device based on automatic scanning of longitudinal and transverse wave energy according to the present invention;
FIG. 3 is a schematic diagram of longitudinal and transverse wave signals of microseismic signals in this embodiment;
FIG. 4 is a root mean square amplitude plot of microseismic events according to this embodiment;
FIG. 5 is a schematic diagram of the amplitude ratio of the microseismic event of the present embodiment;
FIG. 6 is a diagram illustrating the scanning result of the diffracted energy of longitudinal and transverse waves in this embodiment;
FIG. 7 is a diagram illustrating the polarization scanning result of the present embodiment;
FIG. 8 is a schematic diagram of the determined spatial location of the microseismic event according to the present embodiment.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
The working principle of the technical scheme of the invention is as follows: in the positioning processing of the fracturing microseism monitoring data, the azimuth and the position of a microseism event are inversely positioned by utilizing a longitudinal and transverse wave scanning mode. Firstly, event recognition is carried out on an original record, a microseism event travel time table of a search area is established, scanning is carried out according to the polarization direction during longitudinal wave travel, diffraction superposition energy scanning is carried out according to longitudinal wave travel and transverse wave travel, and finally the space position of the microseism event is determined together according to stable scanning direction consistency and an energy maximization objective function.
Based on the working principle, the invention provides a microseism event positioning method based on automatic scanning of longitudinal and transverse wave energy, which is shown in figure 1. The method comprises the following steps:
step 101): performing microseism event identification on underground monitoring data;
step 102): establishing a microseism event travel time table of a search area;
step 103): performing sliding scanning on the identified microseism event according to a microseism event travel time table to obtain diffraction superposition energy;
step 103) the sliding scan is divided into two stages: firstly, performing diffraction energy superposition on each coordinate axis of a sliding three-dimensional space in a search area; further, the longitudinal and transverse wave energy is superimposed by sliding on the signal time axis (t direction) based on the longitudinal and transverse wave travel time table.
Step 104): performing sliding scanning on the identified polarization orientation of the microseism event according to a microseism event travel time table to obtain polarization orientation information;
the sliding scanning of the step 104) is to slide and calculate the polarization angle of each time point on the signal time axis (t direction) on the basis of the micro-seismic event travel time table;
step 105): solving the microseism event azimuth consistency and the scanning and stacking energy maximization objective function according to the diffraction stacking energy and the polarization azimuth information to obtain the optimal solution of the objective function, wherein the optimal solution is expressed as: and the position with the most stable and consistent azimuth and the strongest longitudinal and transverse wave scanning energy in the azimuth is the position of the microseism event, so that the positioning of the microseism event is completed.
The optimal solution in the step 105) refers to the position with the maximum diffraction superposition energy on the azimuth determined by the azimuth consistency of the detector, namely the space position of the microseism event (the X coordinate, the Y coordinate and the Z coordinate of the microseism event are determined).
Fig. 2 is a block diagram of a microseismic event positioning device based on automatic scanning of longitudinal and transverse wave energy according to the present invention. The device includes:
the identification unit 201 is used for carrying out microseism event identification on the underground monitoring data;
a travel time table establishing unit 202, configured to establish a micro-seismic event travel time table of the search area;
the first sliding scanning unit 203 is used for performing sliding scanning on the identified microseism event according to a microseism event travel time table to obtain diffraction superposition energy;
the second sliding scanning unit 204 is configured to perform sliding scanning on the identified polarization orientation of the microseism event according to the microseism event travel time table to obtain polarization orientation information;
the positioning unit 205 is configured to solve the objective function maximizing the microseism event azimuth consistency and the scanning and stacking energy according to the diffraction stacking energy and the polarization azimuth information to obtain an optimal solution of the objective function, where the optimal solution is represented as: and the position with the most stable and consistent azimuth and the strongest energy of the longitudinal wave and the transverse wave scanning in the azimuth is the position of the microseism event.
Preferably, the microseismic event azimuth consistency and the sweep stacking energy maximization objective function used by the positioning unit 205 are expressed as:
the expression of the microseism event azimuth consistency and the scanning and stacking energy maximization objective function is as follows:
f(Azimuth,E)=f1(Azimuth)→min&&f2(E)→max;
wherein, <math> <mrow> <mi>f</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>abs</mi> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> f2(E)=E(xi,yj,zkt); upper side xiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkA z-axis coordinate value representing a Cartesian coordinate system; x is the number ofi∈[xmin,xmax],yi∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxRepresenting the maximum value of the y coordinate axis in the search area; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; azimuth is an Azimuth function, E is an energy function, and t is a longitudinal or transverse wave time,tpIs the longitudinal wave time; min represents the minimum value of the f1(Azimuth) function, max represents the maximum value of the f2(E) function, min&&f2(E) indicates that the minimum value of the function f1(Azimuth) and the maximum value of the function f2(E) need to be satisfied simultaneously; → is a mathematical symbol, representing infinite proximity.
Preferably, the first sliding scanning unit 203 includes:
the three-dimensional coordinate sliding scanning module is used for performing diffraction energy superposition on each coordinate axis of a sliding three-dimensional space in a search area; wherein, the calculation formula of the diffraction energy superposition is as follows:
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
wherein x isiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkA z-axis coordinate value representing a Cartesian coordinate system; x is the number ofi∈[xmin,xmax],yj∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxRepresenting the maximum value of the y coordinate axis in the search area; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; a is the amplitude, t is a function of time, τ is a time window, and E is a function of energy;
the signal time axis sliding scanning module is used for sliding and superposing longitudinal and transverse wave energy on the signal time axis according to the microseism event travel time table; wherein, the expression of the superimposed longitudinal wave energy is as follows:the expression of the superimposed shear wave energy is:n is the number of detectors, E is the energy function, A is the amplitude, tpIs the longitudinal wave time, tsIs the shear wave time, and t is a function of time.
Preferably, the second sliding scanning unit 204 is specifically configured to:
and according to the micro-seismic event travel time table, sliding and calculating the polarization angle of the corresponding micro-seismic event of each time point on the signal time axis. The method adopts a characteristic value-characteristic vector method for calculation, the method has public data query and does not relate to a new calculation formula, and the step adopts the algorithm for calculation repeatedly in the sliding process.
Preferably, the travel time table creation unit 202 creates a micro-seismic event travel time table based on the corrected velocity model.
The technical scheme is explained in detail by the following embodiments in combination with the attached drawings, and the specific steps of the embodiments are as follows:
1) the microseism signal acquisition is continuously carried out, the microseism signal identification is carried out in the monitoring data of the massive wells, and the microseism event is extracted, as shown in fig. 3, which is a schematic diagram of longitudinal and transverse wave signals of the microseism signals in the embodiment. And a microseism event signal section in the mass microseism monitoring data is extracted, and longitudinal and transverse wave signals of the microseism signals are clear. As can be seen from FIG. 3, the P-wave velocity is faster than the S-wave velocity, the P-wave reaches the detector before the S-wave, and the S-wave has a slightly lower frequency than the P-wave.
2) Finely correcting the velocity model of the target area through the check signal, and establishing a microseism event longitudinal and transverse wave travel time table of the scanning area based on the corrected velocity model;
3) calculating the root mean square amplitude of the signal according to the microseismic amplitude, as shown in fig. 4, which is a root mean square amplitude diagram of the microseismic event of the embodiment; performing three-component (XYZ component) scalar synthesis on the microseismic signals to highlight amplitude sensitivity so as to highlight amplitude information of the microseismic signals; the amplitude energy ratio is calculated on the basis of root mean square, and as shown in fig. 5, is a schematic diagram of the amplitude ratio of the microseismic event of the present embodiment. And the amplitude ratio of each channel is calculated on the basis of the root-mean-square amplitude, so that the energy of the arrival time of the microseism event is highlighted. Scanning microseism event diffraction and superposition energy in an amplitude energy ratio according to a microseism event longitudinal and transverse wave travel time table in a sliding mode; FIG. 6 is a schematic diagram showing the scanning result of the diffracted energy of longitudinal and transverse waves in this embodiment. The longitudinal and transverse wave diffraction energy of the three-dimensional search area is converged and superposed according to the longitudinal and transverse wave travel time table of the microseismic event, and fig. 6 is a plurality of continuous side views in the depth direction.
4) Sliding and scanning the polarization orientation of the microseism event according to a microseism event longitudinal and transverse wave travel time table; fig. 7 is a schematic diagram showing the polarization scanning result of the present embodiment.
5) In the scanning area, according to the diffraction stacking energy obtained in the step 3) and the polarization orientation information obtained in the step 4), solving the orientation consistency of the microseism event and the maximum objective function of the scanning stacking energy, wherein the optimal solution represents the position where the orientation is most stable and consistent and the longitudinal and transverse wave scanning energy is strongest in the direction, and therefore the space positioning of the microseism event is completed. As shown in fig. 8, a schematic diagram of the determined spatial location of the microseismic event for this embodiment is shown. The micro-seismic positioning space position coordinates are as follows: (595.2,5.3,3465.1).
The embodiment can find that: the technical scheme can automatically scan and position the azimuth and the position of the microseism event, save manual adjustment time and achieve better field real-time performance.
The above-mentioned embodiments are intended to illustrate the objects, technical solutions and advantages of the present invention in further detail, and it should be understood that the above-mentioned embodiments are merely exemplary embodiments of the present invention, and are not intended to limit the scope of the present invention, and any modifications, equivalent substitutions, improvements and the like made within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (10)

1. A microseism event positioning method based on longitudinal and transverse wave energy automatic scanning is characterized by comprising the following steps:
performing microseism event identification on underground monitoring data;
establishing a microseism event travel time table of a search area;
performing sliding scanning on the identified microseism event according to a microseism event travel time table to obtain diffraction superposition energy;
performing sliding scanning on the identified polarization orientation of the microseism event according to a microseism event travel time table to obtain polarization orientation information;
solving the microseism event azimuth consistency and the scanning and stacking energy maximization objective function according to the diffraction stacking energy and the polarization azimuth information to obtain the optimal solution of the objective function, wherein the optimal solution is expressed as: and the position with the most stable and consistent azimuth and the strongest energy of the longitudinal wave and the transverse wave scanning in the azimuth is the position of the microseism event.
2. The method of claim 1, wherein the microseismic event azimuth consistency and sweep stacking energy maximization objective function is expressed as:
f(Azimuth,E)=f1(Azimuth)→min&&f2(E)→max;
wherein, <math> <mrow> <mi>f</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>abs</mi> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> f2(E)=E(xi,yj,zkt); upper side xiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkA z-axis coordinate value representing a Cartesian coordinate system; x is the number ofi∈[xmin,xmax],yi∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxRepresenting the maximum value of the y coordinate axis in the search area; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; azimuth is an Azimuth function, E is an energy function, t is a longitudinal or transverse wave time, tpIs the longitudinal wave time; min represents the minimum value of the f1(Azimuth) function, max represents the maximum value of the f2(E) function, min&&f2(E) indicates that the minimum value of the function f1(Azimuth) and the maximum value of the function f2(E) need to be satisfied simultaneously; → is a mathematical symbol, representing infinite proximity.
3. The method of claim 1 or 2, wherein the step of sliding-scanning the identified microseismic events according to a microseismic event travel time table comprises:
in the search area, each coordinate axis of the sliding three-dimensional space is subjected to diffraction energy superposition; wherein, the calculation formula of the diffraction energy superposition is as follows:
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
wherein x isiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkZ-axis coordinate representing a Cartesian coordinate systemA value; x is the number ofi∈[xmin,xmax],yj∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxRepresenting the maximum value of the y coordinate axis in the search area; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; a is the amplitude, t is a function of time, τ is a time window, and E is a function of energy;
superposing longitudinal and transverse wave energy on a signal time axis in a sliding mode according to a microseism event travel time table; wherein, the expression of the superimposed longitudinal wave energy is as follows: <math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> the expression of the superimposed shear wave energy is: <math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> n is the number of detectors, E is the energy function, A is the amplitude, tpIs the longitudinal wave time, tsIs the shear wave time, and t is a function of time.
4. The method of claim 1 or 2, wherein the step of sliding the polarization orientations of the identified microseismic events according to the microseismic event travel time table comprises:
and according to the micro-seismic event travel time table, sliding and calculating the polarization angle of the corresponding micro-seismic event of each time point on the signal time axis.
5. The method of claim 1 or 2, wherein the microseismic event travel time table is established based on a corrected velocity model.
6. A microseismic event location device based on automatic scanning of longitudinal and transverse wave energy, the device comprising:
the identification unit is used for carrying out microseism event identification on the underground monitoring data;
the travel time table establishing unit is used for establishing a micro-seismic event travel time table of the search area;
the first sliding scanning unit is used for performing sliding scanning on the identified microseism event according to a microseism event travel time table to obtain diffraction superposition energy;
the second sliding scanning unit is used for performing sliding scanning on the identified polarization orientation of the microseism event according to the microseism event travel time table to obtain polarization orientation information;
and the positioning unit is used for solving the microseism event azimuth consistency and the scanning and stacking energy maximization objective function according to the diffraction stacking energy and the polarization azimuth information to obtain the optimal solution of the objective function, wherein the optimal solution is expressed as: and the position with the most stable and consistent azimuth and the strongest energy of the longitudinal wave and the transverse wave scanning in the azimuth is the position of the microseism event.
7. The apparatus of claim 6, wherein the positioning unit uses the expression of the microseismic event azimuth consistency and sweep stacking energy maximization objective function as:
f(Azimuth,E)=f1(Azimuth)→min&&f2(E)→max;
wherein, <math> <mrow> <mi>f</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>abs</mi> <mrow> <mo>(</mo> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <mi>Azimuth</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> f2(E)=E(xi,yj,zkt); upper side xiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkA z-axis coordinate value representing a Cartesian coordinate system; x is the number ofi∈[xmin,xmax],yi∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxRepresenting the maximum value of the y coordinate axis in the search area; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; azimuth is an Azimuth function, E is an energy function, t is a longitudinal or transverse wave time, tpIs the longitudinal wave time; min represents the minimum value of the f1(Azimuth) function, max represents the maximum value of the f2(E) function, min&&f2(E) indicates that the minimum value of the function f1(Azimuth) and the maximum value of the function f2(E) need to be satisfied simultaneously; → is a mathematical symbol, representing infinite proximity.
8. The apparatus of claim 6 or 7, wherein the first sliding scanning unit comprises:
the three-dimensional coordinate sliding scanning module is used for performing diffraction energy superposition on each coordinate axis of a sliding three-dimensional space in a search area; wherein, the calculation formula of the diffraction energy superposition is as follows:
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
wherein x isiX-axis coordinate value, y, representing a Cartesian coordinate systemjY-axis coordinate value, z, representing a Cartesian coordinate systemkA z-axis coordinate value representing a Cartesian coordinate system; x is the number ofi∈[xmin,xmax],yj∈[ymin,ymax],zk∈[zmin,zmax]N is the number of detectors, xminRepresenting the minimum value of the x coordinate axis, x, within the search areamaxRepresenting the maximum value of the x coordinate axis in the search area; y isminDenotes the minimum value of the y coordinate axis in the search area, ymaxRepresenting the maximum value of the y coordinate axis in the search area; z is a radical ofminDenotes the minimum value of the z coordinate axis, z, in the search areamaxRepresenting the maximum value of the z coordinate axis in the search area; a is the amplitude, t is a function of time, τ is a time window, and E is a function of energy;
the signal time axis sliding scanning module is used for sliding and superposing longitudinal wave energy and transverse wave energy on a signal time axis according to a microseism event travel time table, wherein the expression of superposed longitudinal wave energy is as follows: <math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> the expression of the superimposed shear wave energy is: <math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> <mo>-</mo> <mi>&tau;</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>&tau;</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mrow> </munderover> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> n is the number of detectors, E is the energy function, A is the amplitude, tpIs the longitudinal wave time, tsIs the shear wave time, and t is a function of time.
9. The apparatus of claim 6 or 7, wherein the second sliding scanning unit is specifically configured to:
and according to the micro-seismic event travel time table, sliding and calculating the polarization angle of the corresponding micro-seismic event of each time point on the signal time axis.
10. The apparatus of claim 6 or 7, wherein the travel time table building unit builds a microseismic event travel time table based on a corrected velocity model.
CN201410641292.7A 2014-11-13 2014-11-13 Micro-seismic event localization method based on wave energy automatically scanning in length and breadth and device Active CN104360384B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410641292.7A CN104360384B (en) 2014-11-13 2014-11-13 Micro-seismic event localization method based on wave energy automatically scanning in length and breadth and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410641292.7A CN104360384B (en) 2014-11-13 2014-11-13 Micro-seismic event localization method based on wave energy automatically scanning in length and breadth and device

Publications (2)

Publication Number Publication Date
CN104360384A true CN104360384A (en) 2015-02-18
CN104360384B CN104360384B (en) 2017-03-08

Family

ID=52527664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410641292.7A Active CN104360384B (en) 2014-11-13 2014-11-13 Micro-seismic event localization method based on wave energy automatically scanning in length and breadth and device

Country Status (1)

Country Link
CN (1) CN104360384B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249295A (en) * 2015-06-15 2016-12-21 中国石油化工股份有限公司 A kind of borehole microseismic P, S ripple associating method for rapidly positioning and system
CN106353792A (en) * 2015-07-17 2017-01-25 中国石油化工股份有限公司 Method suitable for positioning hydraulic fracturing micro-seismic source
CN108896397A (en) * 2018-07-17 2018-11-27 西南大学 Roof greening charge of surety evaluation method based on On Microseismic Monitoring Technique
CN109782356A (en) * 2019-02-25 2019-05-21 西南大学 Underground microseismic monitoring sensor optimal location method based on energy grid search
CN110967739A (en) * 2018-09-30 2020-04-07 中国石油化工股份有限公司 Microseism recognition quality analysis method and system based on error normal distribution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841373A (en) * 2012-08-23 2012-12-26 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Microseism positioning method based on azimuth angle constraint
US20130003499A1 (en) * 2011-06-28 2013-01-03 King Abdulaziz City For Science And Technology Interferometric method of enhancing passive seismic events
CN103105624A (en) * 2011-11-11 2013-05-15 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Longitudinal and transversal wave time difference positioning method based on base data technology
WO2014080320A1 (en) * 2012-11-21 2014-05-30 Geco Technology B.V. Processing microseismic data
CN103869363A (en) * 2014-03-20 2014-06-18 中国石油天然气集团公司 Micro-earthquake positioning method and device
CN104133246A (en) * 2014-07-31 2014-11-05 中国石油天然气集团公司 Microseism event scanning positioning method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130003499A1 (en) * 2011-06-28 2013-01-03 King Abdulaziz City For Science And Technology Interferometric method of enhancing passive seismic events
CN103105624A (en) * 2011-11-11 2013-05-15 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Longitudinal and transversal wave time difference positioning method based on base data technology
CN102841373A (en) * 2012-08-23 2012-12-26 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Microseism positioning method based on azimuth angle constraint
WO2014080320A1 (en) * 2012-11-21 2014-05-30 Geco Technology B.V. Processing microseismic data
CN103869363A (en) * 2014-03-20 2014-06-18 中国石油天然气集团公司 Micro-earthquake positioning method and device
CN104133246A (en) * 2014-07-31 2014-11-05 中国石油天然气集团公司 Microseism event scanning positioning method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋维琪 等: "微地震有效事件自动识别与定位方法", 《石油地球物理勘探》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249295A (en) * 2015-06-15 2016-12-21 中国石油化工股份有限公司 A kind of borehole microseismic P, S ripple associating method for rapidly positioning and system
CN106353792A (en) * 2015-07-17 2017-01-25 中国石油化工股份有限公司 Method suitable for positioning hydraulic fracturing micro-seismic source
CN108896397A (en) * 2018-07-17 2018-11-27 西南大学 Roof greening charge of surety evaluation method based on On Microseismic Monitoring Technique
CN108896397B (en) * 2018-07-17 2021-04-27 西南大学 Roof greening safety load evaluation method based on microseismic monitoring technology
CN110967739A (en) * 2018-09-30 2020-04-07 中国石油化工股份有限公司 Microseism recognition quality analysis method and system based on error normal distribution
CN110967739B (en) * 2018-09-30 2021-11-05 中国石油化工股份有限公司 Microseism recognition quality analysis method and system based on error normal distribution
CN109782356A (en) * 2019-02-25 2019-05-21 西南大学 Underground microseismic monitoring sensor optimal location method based on energy grid search

Also Published As

Publication number Publication date
CN104360384B (en) 2017-03-08

Similar Documents

Publication Publication Date Title
CN106353792B (en) Method suitable for positioning micro-seismic source of hydraulic fracturing
CN104360384B (en) Micro-seismic event localization method based on wave energy automatically scanning in length and breadth and device
CN102928873B (en) Method for positioning ground micro-seismic based on four-dimensional energy focusing
CN104730579B (en) A kind of joint static correcting method of ripple in length and breadth based on calculation of near surface shear velocity inverting
CN102073064B (en) Method for improving velocity spectrum resolution by using phase information
CN112883564B (en) Water body temperature prediction method and prediction system based on random forest
CN103091709B (en) Method and device for acquiring longitudinal wave and converted wave seismic data time matching relation
CN102841373A (en) Microseism positioning method based on azimuth angle constraint
CN102879817B (en) Control method for acquiring underground crack information on basis of ground earthquake data
CN104570110A (en) Multi-component data joint speed analysis method based on longitudinal and horizontal wave matching
CN103675897A (en) Seismic diffracted wave separating and imaging method
CN104166161A (en) Method and device for predicating fractures based on elliptical velocity inversion of anisotropism
CN107561589A (en) A kind of near surface S-wave interval velocity method for establishing model
CN102692648A (en) Refraction wave residual static correction method based on cannon first arrival
CN104570076A (en) Automatic seismic wave first-arrival picking method based on dichotomy
CN104280772A (en) Recognition method for microseism phase in well
CN107290722A (en) The localization method and device of microquake sources
CN105093319A (en) Ground micro-seismic static correction method based on three-dimensional seismic data
CN106970417B (en) Ellipse expansion converted-wave velocity analysis method and system
CN102338885B (en) Three-component VSP data first arrival time automatic pick method
CN102736108B (en) True three-dimensional earthquake data noise suppressing method based on spline fitting
CN107991707A (en) A kind of borehole microseismic first break picking method based on kurtosis characteristic in shear let domains
CN104570087A (en) Method for performing seismic data first break and event pickup extraction through instantaneous attributes
CN106990434B (en) Ellipse expansion converted wave imaging method and system
CN102830424B (en) A kind of receiver pattern calculation method of parameters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant