CN104349654A - 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备 - Google Patents

基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备 Download PDF

Info

Publication number
CN104349654A
CN104349654A CN201310318686.4A CN201310318686A CN104349654A CN 104349654 A CN104349654 A CN 104349654A CN 201310318686 A CN201310318686 A CN 201310318686A CN 104349654 A CN104349654 A CN 104349654A
Authority
CN
China
Prior art keywords
superconducting coil
coil
level
order
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310318686.4A
Other languages
English (en)
Other versions
CN104349654B (zh
Inventor
顾晨
瞿体明
陈思维
韩征和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201310318686.4A priority Critical patent/CN104349654B/zh
Priority to PCT/CN2013/086013 priority patent/WO2015010379A1/zh
Publication of CN104349654A publication Critical patent/CN104349654A/zh
Priority to US15/005,021 priority patent/US10015917B2/en
Application granted granted Critical
Publication of CN104349654B publication Critical patent/CN104349654B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供一种磁场屏蔽系统,包括两个第一级超导线圈及两个第二级超导线圈围绕一中心对称轴共轴设置,所述第一级超导线圈的尺寸不同于所述第二级超导线圈的尺寸,其中一第一级超导线圈与一第二级超导线圈构成一第一线圈组,另一个第一级超导线圈与另一第二级超导线圈构成一第二线圈组,所述第一线圈组与第二线圈组绝缘且镜像对称设置,每一线圈组中所述第一级超导线圈与所述第二级超导线圈串联形成一闭合回路。本发明进一步提供一种磁场屏蔽设备。本发明所述磁场屏蔽系统工艺实现路线简单,有利于工程实践。

Description

基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备
技术领域
本发明属于超导电工学领域,特别涉及一种基于闭合超导线圈组的被动抵消式磁场屏蔽系统及其应用。
背景技术
磁场屏蔽是许多精密科学的通用保障性技术,在一些极端测量环境:如高精密原子钟电子束成像装置,质谱仪,中微子探测中得到广泛引用。除了这些极端测量应用,最为贴近日常生活,并为人类健康带来福祉的测量技术是生物磁学测量。心磁,脑磁测量已经开始逐步从实验室走向临床。随着电磁环境的日益复杂,磁屏蔽技术在生物磁测量技术领域扮演了重要的角色。在生物磁测量中,待测信号多处于10pT(1×10-11)量级甚至更低。而环境噪音磁场要大3-6 个数量级。去除噪音信号成为这类测量必不可少的环节。除了利用滤波,信号处理等软件方式消除噪音磁场,硬件屏蔽是最直接的方式,基本上已经成为生物磁测量不可或缺的配套装置。
目前普遍采用的磁场屏蔽方式有两种:被动式屏蔽和主动抵消式。其中被动屏蔽式应用历史最为悠久,屏蔽系统采用高磁导率材料构建封闭腔体将被保护对象封闭其内,搭建屏蔽腔的材料的磁导率愈高,筒壁愈厚,屏蔽效果就愈显著。常用高磁导率材料如软铁、硅钢、坡莫合金等。例如,现有技术提供了一种基于闭合超导亥姆霍兹(Helmholtz)线圈组结构的屏蔽装置。其基本结构是由特定半径比和匝数比的亥姆霍兹超导线圈组电连接形成。该屏蔽系统工作特点类似有源补偿式,都是利用线圈产生磁场对外加磁场抵消实现的。
然而,该屏蔽装置必须要基于亥姆霍兹线圈组结构,需要四个线圈连接才能实现,并且可提供磁屏蔽的空间拓扑结构形式单一,仅仅是对需要近乎球形匀场区的保护。另外,获得该屏蔽装置中线圈半径比与匝数比的过程十分繁琐,并且四个线圈之间连接的工艺实现路线十分复杂,不利于工程实践。
发明内容
综上所述,确有必要提供一种能够提供不同空间拓扑结构形式的屏蔽、连接结构和组合方式、并且有利于工程实践的磁场屏蔽系统。
一种磁场屏蔽系统,包括两个第一级超导线圈及两个第二级超导线圈围绕一中心对称轴共轴设置,所述第一级超导线圈的尺寸不同于所述第二级超导线圈的尺寸,四个线圈分别位于不同且相互平行的平面,其中一第一级超导线圈与一第二级超导线圈构成一第一线圈组,另一个第一级超导线圈与另一第二级超导线圈构成一第二线圈组,所述第一线圈组与第二线圈组绝缘且镜像对称设置,每一线圈组中所述第一级超导线圈与所述第二级超导线圈通过连接线串联形成一闭合回路。
一种磁场屏蔽系统,包括多个第一级超导线圈及多个第二级超导线圈围绕一中心对称轴共轴设置,每个超导线圈分别位于不同且相互平行的平面,所述多个第一级超导线圈及多个第二级超导线圈构成一第一线圈组和一第二线圈组,所述第一线圈组与第二线圈组绝缘且镜像对称设置,每一线圈组中的多个超导线圈通过连接线串联形成一闭合回路。
一种磁场屏蔽设备,包括一杜瓦、一磁场屏蔽系统以及一微调模组,所述杜瓦包括一内壁与一外壁围绕同一对称轴构成,所述内壁环绕所述中心对称轴形成一通孔,所述磁场屏蔽系统包括两个第一级超导线圈与两个第二级超导线圈,所述第一级超导线圈及第二级超导线圈均设置于内壁与外壁之间且围绕所述中心对称轴共轴设置,所述第一级超导线圈的尺寸不同于所述第二级超导线圈的尺寸,四个线圈分别位于不同且相互平行的平面,其中一第一级超导线圈与一第二级超导线圈构成一第一线圈组,另一个第一级超导线圈与另一个第二级超导线圈构成一第二线圈组,所述第一线圈组与第二线圈组绝缘且呈镜像对称设置,每一线圈组中所述第一级超导线圈与所述第二级超导线圈通过连接线串联形成一闭合回路,所述微调模组对第一级超导线圈与第二级超导线圈之间的沿中心对称轴方向的相对位置进行微调。
一种磁场屏蔽系统,包括两个第一级超导线圈间隔且围绕一中心对称轴共轴设置,以及一第二级超导线圈设置于两个第一级超导线圈之间且共轴设置,所述第一级超导线圈与所述第二级超导线圈具有不同的尺寸,所述两个第一级超导线圈相对于所述第二级超导线圈对称分布,三个线圈分别位于不同且相互平行的平面,所述两个第一级超导线圈与所述第二级超导线圈串联设置形成一闭合回路。
一种磁场屏蔽系统,包括N个超导线圈,其中N为大于等于3的奇数,该N个超导线圈共轴设置且分别位于不同且相互平行的平面,该N个超导线圈串联设置形成一闭合回路,该N个超导线圈由不同尺寸的第一级超导线圈和第二级超导线圈组成,该N个超导线圈中有一个超导线圈位于中间位置,其它的N-1个超导线圈相对于该中间位置的超导线圈镜像对称分布。
相对于现有技术,本发明提供的磁场屏蔽系统通过将至少三个超导线圈共轴、串联设置,实现对外部磁场的屏蔽,结构更加简单,更容易设计线圈半径比与匝数比,并且能够实现不同的拓扑结构形式的屏蔽,有利于工程实践。
附图说明
图1为本发明第一实施例提供的磁场屏蔽系统的结构示意图。
图2为本发明第一实施例中满足屏蔽外加磁场90%条件下,(α, β)取值。
图3为第一实施例中磁场屏蔽系统对噪音磁场屏蔽效果图。
图4为本发明第二实施例提供的磁场屏蔽系统的结构示意图。
图5为本发明第三实施例提供的磁场屏蔽装置的结构示意图。
图6为本发明第四实施例提供的磁场屏蔽系统的结构示意图。
图7为本发明第五实施例提供的磁场屏蔽系统的结构示意图。
图8为本发明第六实施例提供的磁场屏蔽系统的结构示意图。
图9为本发明第七实施例提供的磁场屏蔽系统的结构示意图。
主要元件符号说明
第一级超导线圈 1
第二级超导线圈 2
第三级超导线圈 2’
连接线 3
第一连接杆 4
直线轴承 5
铁磁介质环 6
第二连接杆 7
超导闭合环 8
第三连接杆 9
杜瓦 10
室温腔 11
匀场区 12
中心点 13
磁场屏蔽系统 100,200,400,500
微调模组 20
磁场屏蔽设备 300
第一线圈组 101
第二线圈组 102
如下具体实施例将结合上述附图进一步说明本发明。
具体实施方式
下面根据说明书附图并结合具体实施例对本发明的技术方案进一步详细表述。
本发明提供一种磁场屏蔽系统,所述屏蔽系统包括至少两个第一级超导线圈及至少一第二级超导线圈围绕一中心对称轴共轴设置,所述第一级超导线圈的尺寸不同与所述第二级超导线圈的尺寸。所述至少两个第一级超导线圈与所述至少一第二级超导线圈分别位于不同的平面,且各平面相互平行。所述至少两个第一级超导线圈相对于所述至少一第二级超导线圈对称分布。所述至少两个第一级超导线圈分别与相邻的一第二级超导线圈串联形成闭合回路。
请参阅图1,图1为本发明第一实施例提供的磁场屏蔽系统100的结构示意图。所述磁场屏蔽系统100包括两个第一级超导线圈1,两个第二级超导线圈2围绕一中心对称轴共轴设置,且四个线圈分别位于不同且相互平行的平面。所述两个第二级超导线圈2间隔且绝缘设置,所述两个第二级超导线圈2之间的空间形成一匀场区12以屏蔽外部磁场。
具体的,所述两组分别串联的第一级超导线圈1与第二级超导线圈2分别形成一第一线圈组101、第二线圈组102。在所述第一线圈组101中,所述第一级超导线圈1与所述第二级超导线圈2串联形成一闭合回路;在所述第二线圈组102中,所述第一级超导线圈1与所述第二级超导线圈2也串联形成一闭合回路。所述第一线圈组101与所述第二线圈组102之间绝缘设置。所述第一线圈组与第二线圈组呈镜像对称设置。设所述第一线圈组101及第二线圈组102围绕的对称轴为Y轴,与Y轴垂直的轴为X轴,两者相较于o点。所述第一线圈组101及第二线圈组102分别设置于所述X轴两侧。所述两个第一级超导线圈1及两个第二级超导线圈2沿Y轴设置,且对称设置于所述X轴两侧。所述第一线圈组101中所述第一级超导线圈1与第二级超导线圈2之间的距离,等于所述第二线圈组102中所述第一级超导线圈1与第二级超导线圈2之间的距离。所述第一线圈组101与第二线圈组102在o点位置周围形成一匀场区12,所述o点为屏蔽中心点13。
本发明中,所述线圈之间的距离均定义为线圈所在平面之间的距离。
在所述第一线圈组101及第二线圈组102中,所述第一级超导线圈1与所述第二级超导线圈2整体具有规则的几何形状,如圆形、椭圆形、矩形、方形、正多边形等几何形状。所述第一级超导线圈1与第二级超导线圈2整体的形状可相同或不同。本实施例中,所述第一级超导线圈1及第二级超导线圈2具有相同的几何形状。所述第一级超导线圈1与所述第二级超导线圈2组合形成闭合超导线圈组,且第一级超导线圈1的尺寸(半径或边长)大于第二级超导线圈2的尺寸。本实施例中,所述第一级超导线圈1与第二级超导线圈2分别为圆形。所述第一级超导线圈1与第二级超导线圈2共轴设置,即所述第一级超导线圈1与所述第二级超导线圈2围绕同一中心对称轴设置,且第一级超导线圈1与第二级超导线圈2的中心位于所述对称轴上。本实施例中,所述第一级超导线圈1和第二级超导线圈2均为圆形且围绕中心对称轴共轴设置。
所述第一级超导线圈1与第二级超导线圈2分别包括多匝线圈,所述第一级超导线圈1与第二级超导线圈2的材料可相同或不同,均为具有超导特性的材料。所述材料可为钇系YBCO(YBa2Cu3O7-x)和铋系BSCCO如Bi2223,Bi2212等。本实施例中,所述第一级超导线圈1与第二级超导线圈2的材料均相同。本实施例中,所述第一级超导线圈1与第二级超导线圈2的材料均为Bi2223高温超导材料。
进一步的,所述第一级超导线圈1及第二级超导线圈2均为一超导线材围绕一中心对称轴螺旋式环绕形成。具体地,可在同一平面内由内至外螺旋式环绕,形成饼状线圈;也可以相同的直径螺旋式堆叠环绕形成螺线管状线圈。另外,所述第一级超导线圈1与所述第二级超导线圈2的环绕方式可相同或不同。
在所述第一级超导线圈1中,所述超导线材以相同的直径螺旋堆叠环绕形成螺线管状线圈;同样的,在所述第二级超导线圈2中,所述超导线材以相同的直径螺旋堆叠环绕形成螺线管状线圈。所述第一级超导线圈1与第二级超导线圈2可通过连接线3串联,并且使多匝线圈均电连接,形成一闭合回路。具体地,所述第一级超导线圈1的两端分别通过连接线3与所述第二级超导线圈2的两端串联,构成一完整的闭合回路。所述第一级超导线圈1、第二级超导线圈2以及连接线3之间可通过常规的锡焊技术进行连接。
第二级超导线圈2的半径为R2,其具体大小可根据实际需要屏蔽的设备或仪器大小进行选择。所述第一级超导线圈1的半径为R1,且R1>R2,所述半径R1与R2的半径比α=R1/R2。所述第一级超导线圈1的匝数为N1,所述第二级超导线圈2的匝数为N2,则二者之间的匝数比β=N1/N2。所述第一级超导线圈1与所述第二级超导线圈2形成的磁场屏蔽效果主要取决于半径比α与所述匝数比β。优选地,所述半径比α满足:α≥2;匝数比β满足:0.01≤β≤20,所述磁场屏蔽系统100具有较好的屏蔽效果,原磁场的屏蔽比例达到90%以上。
根据不同的磁场屏蔽对象的不同需求,所述半径比α与所述匝数比β、以及具体的匝数N1、N2可通过以下方法进行计算:
步骤S10,根据保护对象的几何尺寸确定第二级超导线圈2的半径R2,并估算半径比α与匝数比β的取值范围;
步骤S20,初步确定所述半径比α与匝数比β取值范围,通过数值仿真求解具体的半径比α与所述匝数比β;
步骤S30,根据数值仿真获得的结果,建立横坐标为匝数比β,纵坐标为半径比α的坐标系,将满足((B0-B1)/B0<K)条件下的(β,α)在坐标系中标出并连线,其中B0为外加交流变化磁场强度,B1为匀场区12内的中心点13位置处屏蔽后的磁场值,K代表磁场屏蔽系统100需要满足的屏蔽效果;以及
步骤S40,根据所述半径比α与匝数比β,确定第一级超导线圈1与第二级超导线圈2的匝数。
在步骤S10中,所述磁场屏蔽系统100中所述R1与R2的半径比α需要大于1,优选的,所述磁场屏蔽系统100中所述α大于等于2,则有可能形成完全的屏蔽。本实施例中,所述第二级超导线圈2的半径设为50毫米。本实施例中,假设所述N1与N2的匝数比β处于0.001-1000范围之间。
在步骤S20中,所述数值仿真可采用数值有限元仿真软件ANSYS完成,所述第一级超导线圈1与第二级超导线圈2的横截面以电阻率很小的矩形截面代表,并分别设置半径R1、R2,匝数N1、N2,所述第一级超导线圈1与第二级超导线圈2之间设置串联连接关系,即由多匝超导线材围绕形成的第一级超导线圈1包括相对的两末端,分别与同样由所述多匝超导线材围绕形成的第二级超导线圈2相对的两末端一一对应电连接,从而形成一闭合回路。设待屏蔽的外加交流变化磁场的幅值为B0。本实施例中,所述外加交流变化磁场为正弦磁场,频率为50Hz。所述半径比α在大于1的范围内,以0.1为步长扫描至20;每变化一次α值,β在0.001-1000范围内以0.1为步长扫描,仿真计算在每个(β,α)值,所述匀场区13内部中线点12处被屏蔽后的磁场强度B1
在步骤S30中,将所述(β,α)在坐标系中标出并连线后,意味着根据这条线上(β,α)值设计制造的屏蔽系统,均可满足在中心点13屏蔽原磁场达到100(1-K)%的屏蔽效果。本实施例中,K取值0.1,表示所述磁场屏蔽系统100需要屏蔽原磁场的90%。
在步骤S40中,在半径比α值确定的情况下,所述第二级超导线圈2的半径R2根据保护对象大小和兼容性而定,本实施例中,由于R2=50mm,则R1=115mm。在匝数比β确定的情况下,理论上,所述第二级超导线圈2的匝数越多越好。但同时,匝数多意味着线材使用量的增加和成本的提高。因此,在满足屏蔽需求的情况下,所述第二级超导线圈2的最少匝数N可根据以下公式计算:
其中,R为第一级超导线圈1和第二级超导线圈2之间的连接电阻,L为第二级超导线圈2中单匝线圈产生的电感,ω为待屏蔽磁场的角频率,m为ωL与R的比值系数,m越大,则屏蔽效果越好,优选的m>100,本实施例中,m=1000。本实施例中,所述连接电阻R控制为100nΩ。由于待屏蔽磁场的频率并不固定,因此可以待屏蔽磁场的主要频率确定。本实施例中,ω取50Hz。由此,所述第二级超导线圈2的匝数N2取值10,第一级超导线圈1的匝数N1亦取值10。
通过以上方法获得的第一级超导线圈1的半径R1、匝数N1,以及第二级超导线圈2的半径R2、匝数N2,将作为实际制造磁场屏蔽系统100的依据。
进一步,所述匀场区12的形状可根据所述两个第二级超导线圈2之间的距离,以及两个第一级超导线圈1之间的距离进行调整。具体的,设两个第二级超导线圈2之间的距离为2h2,两个第一级超导线圈1之间的距离为2h1,则两个第二级超导线圈2距离X轴的距离均为h2,两个第一级超导线圈1距离X轴的距离均未h1。优选的,所述R1,h1,R2,h2满足如下条件:h1/R1=h2/R2,从而控制所述匀场区12形状近乎圆形或椭圆形。本实施例中,所述h1=R1/2,h2=R2/2。
请参阅图2,图2中所述的连线上均可以达到屏蔽原磁场90%的目标。进一步的,虽然这条线上所有的(β,α)均可满足屏蔽要求,但从工程的角度而言,在满足屏蔽效果100(1-K)%的前提下,半径比α与匝数比β均不宜取过大的值。本实施例中,所述磁场屏蔽系统100选取α=2.3,β=1。在此情况下,所述磁场屏蔽系统100的屏蔽效果如图3所示。由此可见,所述磁场均匀性沿轴向方向(Y轴方向)具有更大的空间,因此所述磁场屏蔽系统100具有更大的屏蔽空间。
进一步,所述第一级超导线圈1的尺寸也可小于所述第二级超导线圈2的尺寸。另外,为形成不同的屏蔽拓扑空间结构,所述磁场屏蔽系统100还可进一步包括至少两个第一级超导线圈1分别设置于现有的所述两个第一级超导线圈1远离第二级超导线圈2的一侧,且所述多个超导线圈均共轴设置。
请参阅图4,本发明第二实施例提供一种磁场屏蔽系统200,所述磁场屏蔽系统包括两个第一级超导线圈1及两个第二级超导线圈2。本发明第二实施例提供的磁场屏蔽系统200与第一实施例所述磁场屏蔽系统100结构基本相同,其不同在于,进一步包括一第三级超导线圈2’设置于两个第二级超导线圈2中间,且与所述两个第二级超导线圈2间隔且绝缘设置。所述第三级超导线圈2’与第二级超导线圈2共轴设置。
具体的,所述第三级超导线圈2’的形状与第二级超导线圈2相同,所述第三级超导线圈2’的尺寸(半径或边长)可根据需屏蔽的设备选择,可与所述第二级超导线圈2相同,也可与所述第一级超导线圈1的尺寸相同。本实施例中,所述第三级超导线圈2’的形状、尺寸与第二级超导线圈2相同。所述第三级超导线圈2’距离所述两个第二级超导线圈2的距离相等。所述第三级超导线圈2’可进一步提高所述磁场屏蔽系统200的屏蔽效果。
请一并参阅图5,本发明第三实施例提供一种磁场屏蔽设备300,所述磁场屏蔽设备300包括至少一杜瓦10、一磁场屏蔽系统100以及一微调模组20。所述磁场屏蔽系统100设置于所述杜瓦10中。
所述杜瓦10为中空的圆柱型管状结构,由内壁和外壁围绕同一中心对称轴形成,所述杜瓦10具有一沿中心对称轴贯穿的通孔,由所述内壁围绕形成,构成一室温腔11,以容纳待屏蔽的仪器或器件等。所述磁场屏蔽系统100的匀场区12位于所述室温腔11内部。所述杜瓦10的内部,即内壁和外壁之间的空间为中空结构,可填充有低温材料,如液氮等。所述磁场屏蔽系统100位于所述杜瓦10的内壁和外壁之间。
所述磁场屏蔽系统100与第一实施例中所述磁场屏蔽系统100结构相同,其包括一第一级超导线圈1及第二级超导线圈2,所述第一级超导线圈1及第二级超导线圈2设置于杜瓦10的内部,并浸泡于所述低温材料中,所述第一级超导线圈1及第二级超导线圈2环绕所述室温腔11设置,优选地,所述第一级超导线圈1及第二级超导线圈2与所述杜瓦10沿同一中心对称轴共轴设置,从而实现对内部的仪器或器件等实现屏蔽。
所述磁场屏蔽系统100中,所述两个第一级超导线圈1及两个第二级超导线圈2可设置于同一个杜瓦10中,也可设置于不同的杜瓦10中。本实施例中,所述一第一级超导线圈1与一第二级超导线圈2形成一第一线圈组101,并设置于一杜瓦10中;所述另一第一级超导线圈1与另一第二级超导线圈2形成一第二线圈组102,设置于另一杜瓦10中。所述第一线圈组101及第二线圈组102呈镜像对称设置。
所述微调模组20用于支撑线圈,并且控制第一级超导线圈1及第二级超导线圈2之间沿中心对称轴方向的相对位置。本实施例中,所述磁场屏蔽设备300包括两个微调模组20,分别用于控制第一线圈组101及第二线圈组202。所述微调模组20包括一第一连接杆4及一直线轴承5,所述第一连接杆4与所述第一级超导线圈1连接以支撑所述第一级超导线圈1,并调节第一级超导线圈1与第二级超导线圈2之间的相对距离。通过调节所述直线轴承5,带动所述第一连接杆4以及所述第一级超导线圈1沿中心轴的轴向移动,以对第一级超导线圈1与第二级超导线圈2之间沿轴向的相对位置作微调,从而改变第一级超导线圈1与第二级超导线圈2之间的互感耦合系数,达到最佳屏蔽效果。可以理解,所述直线轴承5也可设置于杜瓦10的外部。在调整过程中,在屏蔽中心点13放置磁强计,外加交变背景磁场,调整过程第一连接杆4的过程中,不断观察磁强计读数,当读数达到设计指标后,锁死两个线圈的相对位置。
进一步,所述磁场屏蔽系统100可包括两个铁磁介质环6分别设置于所述第一线圈组101及第二线圈组102中,所述铁磁介质环6与所述第一级超导线圈1及第二级超导线圈2可围绕同一中心轴共轴设置。具体的,所述铁磁介质环6可设置于第一级超导线圈1与第二级超导线圈2之间,所述铁磁介质环6的尺寸(半径、半径)大于所述第二级超导线圈2而小于所述第一级超导线圈1。所述铁磁介质环6的形状可为规则的几何形状,可同所述第一级超导线圈1以及第二级超导线圈2的形状相同或不同,本实施例中,所述铁磁介质环6的形状为圆形。所述铁磁介质环6具有一缺口,以防止形成大环流。
所述微调模组20可进一步包括一第二连接杆7与所述直线轴承5及所述铁磁介质环6连接,从而可控制所述铁磁介质环6沿中心轴的轴向移动。通过改变铁磁介质环6与第一级超导线圈1与第二级超导线圈2之间的相对位置关系,从而改变铁磁介质环6、第一级超导线圈1与第二级超导线圈2之间的互感耦合系数,达到最佳屏蔽状态。可以理解,在满足上述其他条件的情况下,所述铁磁介质环6也可设置于所述第二级超导线圈2的内部,即所述铁磁介质环6的半径小于所述第二级超导线圈2的半径;或所述铁磁介质环6也可设置于第一级超导线圈1的外部,即所述铁磁介质环6的半径大于所述第一级超导线圈1的半径。
所述铁磁介质环6的材料可为具有高磁导率的金属制成,其相对磁导率大于100。本实施例中,所述铁磁介质环6的材料为软铁。所述铁磁介质环6的半径大于第二级超导线圈2的半径,小于第一级超导线圈1的半径。本实施例中,所述铁磁介质环6的半径为60毫米,厚度为15毫米。调节铁磁介质环6沿轴向移动,同时记录屏蔽中心点13的磁场。
进一步,所述铁磁介质环6也可用一超导环替代,所述超导环亦具有一缺口,防止形成大环流。所述超导环的具体材料可与第一级超导线圈1相同或不同。
由于在实际制备过程中,所述第一级超导线圈1及第二级超导线圈2的线圈绕制可能与设计出现偏差,并且线圈放置在液氮之中,在材料冷热收缩的作用下,线圈的半径与设计总会有所偏差,影响屏蔽效果。通过所述铁磁介质环6的调整,可进一步提高所述磁场屏蔽系统100的屏蔽效果,并能够使所述磁场屏蔽系统100更容易调整。
进一步,所述磁场屏蔽系统100可包括两个超导闭合环8分别设置于所述第一线圈组101及第二线圈组102中。所述超导闭合环8与所述第一级超导线圈1及第二级超导线圈2围绕同一中心轴共轴设置。所述超导闭合环8可设置于所述第二级超导线圈2内部,所述超导闭合环8的尺寸(半径、边长)小于所述第二级超导线圈2。所述超导闭合环8的形状可与所述第一级超导线圈1以及第二级超导线圈2的形状相同或不同,本实施例中,所述超导闭合环8的形状为圆形。所述超导闭合环8为一独立结构,即与所述第一级超导线圈1及第二级超导线圈2间隔且绝缘设置。所述超导闭合环8的半径小于第二级超导线圈2,但大于所述室温腔11或待屏蔽仪器的尺寸,以预留空间容纳待屏蔽仪器或物体。所述超导闭合环8可由单匝或多匝超导线圈围绕而成。本实施例中,所述超导闭合环8为单匝。所述超导闭合环8的材料可与第二级超导线圈2的材料相同或不同。所述超导闭合环8可提供额外的屏蔽效果。
进一步,所述微调模组20可包括一第三连接杆9与所述超导闭合环8连接,以调整所述超导闭合环8可沿中心轴的轴向移动。本实施例中,所述超导闭合环8通过一第三连接杆9与所述直线轴承5连接,以实现超导闭合环8沿轴向移动。通过改变超导闭合环8与第一级超导线圈1、第二级超导线圈2之间眼中心轴方向的相对位置,改变超导闭合环8与第一级超导线圈1、第二级超导线圈2之间的耦合关系,从而达到更好的屏蔽效果。本实施方式中,所述超导闭合环8的半径为25mm。调整超导闭合环8的位置,并记录所述屏蔽中心点13的磁场强度。
可以理解,在满足上述其他条件的情况下,所述超导闭合环8也可设置于所述第一级超导线圈1与第二级超导线圈2之间,并与所述第一级超导线圈1及第二级超导线圈2共轴设置,即所述超导闭合环8的半径大于第二级超导线圈2,小于第一级超导线圈1。所述超导闭合环8也可设置于所述第一级超导线圈1的外部,即所述超导闭合环8的半径大于所述第一级超导线圈1。
另外,优选的,所述磁场屏蔽系统100中,所述铁磁介质环6与所述超导闭合环8可同时设置。所述铁磁介质环6设置于所述第一级超导线圈1与第二级超导线圈2之间,所述超导闭合环8设置于所述第二级超导线圈2内部,所述铁磁介质环6、超导闭合环8均与所述第一级超导线圈1、第二级超导线圈2同轴设置。通过调节所述铁磁介质环6以及超导闭合环8,可以更加灵活的改变相互之间的相对位置,并使所述磁场屏蔽系统100具有更好的屏蔽效果。
请一并参阅图6,本发明第四实施例提供一种磁场屏蔽系统400,所述磁场屏蔽系统400包括两个第一级超导线圈1间隔且围绕一中心对称轴共轴设置,以及一第二级超导线圈2设置于两个第一级超导线圈1之间。所述两个第一级超导线圈1、第二级超导线圈2分别位于不同且相互平行的平面,且所述两个第一级超导线圈1与所述第二级超导线圈2围绕一中心对称轴共轴设置。所述第二级超导线圈2位于所述间隔设置的第一级超导线圈1之间,且与所述两个第一级超导线圈1串联设置形成一闭合回路。
具体的,所述第一级超导线圈1及第二级超导线圈2的形状具有规则的几何形状,可为圆形、椭圆形、矩形、方形、正多边形等几何形状。所述第一级超导线圈1与第二级超导线圈2的形状可相同或不同。本实施例中,所述第一级超导线圈1及第二级超导线圈2具有相同的几何形状。所述第一级超导线圈1的尺寸(半径、边长)可大于所述第二级超导线圈2的尺寸。本实施例中,所述第一级超导线圈1及第二级超导线圈2的形状均为圆形。所述两个第一级超导线圈1与所述第二级超导线圈2之间的距离可相等或不等,从而实现不同的磁场屏蔽拓扑结构。本实施例中,所述两个第一级超导线圈1与第二级超导线圈2之间的距离相等,即两个第一级超导线圈1相对于所述第二级超导线圈2对称设置。
所述两个第一级超导线圈1与第二级超导线圈2串联设置形成一闭合回路,具体的,设两个第一级超导线圈1的末端分别为a1、a2、b1、b2,设第二级超导线圈2的两个末端分别为c1、c2。则所述两个第一级超导线圈1与第二级超导线圈2之间的连接方式为……a1-c1-c2-b1-b2-a2-a1-c1……,从而形成一闭合回路。
可以理解,在所述两个第一级超导线圈1远离第二级超导线圈2的一侧,还可分别包括一第三级超导线圈(图未示)与所述两个第一级超导线圈1间隔设置。所述第三级超导线圈的形状、尺寸可与所述第一级超导线圈1的形状、尺寸分别相同。所述两个第三级超导线圈与所述第一级超导线圈1及第二级超导线圈2共轴设置。所述两个第三级超导线圈、两个第一级超导线圈1相对于所述第二级超导线圈2对称设置,且位于所述第二级超导线圈2两侧的所述第三级超导线圈与第一级超导线圈1之间的距离相等。所述两个第三级超导线圈、两个第一级超导线圈1及第二级超导线圈2串联形成一闭合回路。可以理解,所述第三级超导线圈的形状、尺寸也可与第二级超导线圈2相同,并且也可以包括多个第三级超导线圈相对于所述第二级超导线圈2对称分布,从而保证所述多个线圈的数量始终为奇数。
可以理解,所述磁场屏蔽系统400还可进一步包括铁磁介质环(图未示)分别设置于所述第一级超导线圈1与第二级超导线圈2之间,且与所述第一级超导线圈1及第二级超导线圈2共轴且间隔设置。所述两个铁磁介质环相对于所述第二级超导线圈2对称分布设置。进一步的,所述两个铁磁介质环也可分别设置于所述第一级超导线圈1远离第二级超导线圈2的一侧,且与所述第一级超导线圈1间隔设置。
请一并参阅图7,本发明第五实施例提供一种磁场屏蔽系统500,所述磁场屏蔽系统500包括一第一级超导线圈1及间隔设置两个第二级超导线圈2。所述第一级超导线圈1、两个第二级超导线圈2分别位于不同且相互平行的平面,且所述第一级超导线圈1与两个第二级超导线圈2围绕一中心对称轴共轴设置。所述第一级超导线圈1位于所述间隔设置的第二级超导线圈2之间,且与所述两个第二级超导线圈2串联设置形成一闭合回路。
本发明第五实施例提供的磁场屏蔽系统500与第四实施例提供的磁场屏蔽系统400基本相同,其不同在于,所述磁场屏蔽系统500中,所述较小尺寸的两个第二级超导线圈2相对于所述较大尺寸的第一级超导线圈1对称设置。
请一并参阅图8,本发明第六实施例提供一种磁场屏蔽系统600,所述磁场屏蔽系统600可包括N个超导线圈,其中N大于等于4的偶数,该N个超导线圈共轴设置且分别位于不同且相互平行的平面,该N个超导线圈串联设置形成一闭合回路,该N个超导线圈由不同尺寸的第一级超导线圈1和第二级超导线圈2组成,由该N个超导线圈呈镜像对称分布。所述对称分布的N个超导线圈具有一对称中心,即所述屏蔽中心点。位于对称中心两侧的N/2个超导线圈分别通过连接线串联形成一闭合回路。
请一并参阅图9,本发明第七实施例提供一种磁场屏蔽系统700,所述磁场屏蔽系统700可包括N个超导线圈,其中N为大于等于3的奇数,该N个超导线圈共轴设置且分别位于不同且相互平行的平面,该N个超导线圈串联设置形成一闭合回路,该N个超导线圈由不同尺寸的第一级超导线圈1和第二级超导线圈2组成,该N个超导线圈中有一个超导线圈位于中间位置,其它的N-1个超导线圈相对于该中间位置的超导线圈镜像对称分布。位于中间位置处的所述超导线圈的中心为所述屏蔽中心点。
在本发明中通过组合多级超导线圈组形成磁场屏蔽系统,无需基于亥姆霍兹线圈结构,使得连接结构和组合方式的复杂程度大幅度降低,工艺实现路线大幅度降低。该磁场屏蔽系统可提供不同空间拓扑结构形式的屏蔽。进一步,本发明提供的磁场屏蔽系统,在磁场迎面方向视线开阔,不阻碍光学探测,能够形成多种拓扑结构屏蔽空间,并且系统简单、能耗小、可在线调整,使用灵活的特点。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (17)

1.一种磁场屏蔽系统,包括两个第一级超导线圈及两个第二级超导线圈围绕一中心对称轴共轴设置,所述第一级超导线圈的尺寸不同于所述第二级超导线圈的尺寸,四个线圈分别位于不同且相互平行的平面,其中一第一级超导线圈与一第二级超导线圈构成一第一线圈组,另一个第一级超导线圈与另一第二级超导线圈构成一第二线圈组,所述第一线圈组与第二线圈组绝缘且镜像对称设置,每一线圈组中所述第一级超导线圈与所述第二级超导线圈通过连接线串联形成一闭合回路。
2.如权利要求1所述的磁场屏蔽系统,其特征在于,所述第一级超导线圈与所述第二级超导线圈的形状为圆形、椭圆形、矩形、方形或正多边形。
3.如权利要求1所述的磁场屏蔽系统,其特征在于,在第一线圈组或第二线圈组中,所述第一级超导线圈及所述第二级超导线圈均为圆形,所述第一级超导线圈的半径R1与第二级超导线圈的半径R2的比值α满足:α≥2,所述第一级超导线圈及所述第二级超导线圈均包括多匝线圈,所述第一级超导线圈中线圈的匝数N1与第二级超导线圈中线圈的匝数N2的比值β满足:0.01≤β≤20,并且所述第二级超导线圈的最小匝数N满足:
其中,R为第一级超导线圈和第二级超导线圈之间的连接电阻,L为第二级超导线圈中单匝线圈产生的电感,ω为待屏蔽磁场的角频率,m为ωL与R的比值系数。
4.如权利要求1所述的磁场屏蔽系统,其特征在于,所述第一级超导线圈及第二级超导线圈的材料分别为钇系YBCO和铋系BSCCO中的一种。
5.如权利要求1所述的磁场屏蔽系统,其特征在于,所述第一级超导线圈及第二级超导线圈为饼状线圈或螺线管状线圈。
6.如权利要求1所述的磁场屏蔽系统,进一步包括一第三级超导线圈设置于第一线圈组及第二线圈组之间,且与所述第一级超导线圈及第二级超导线圈共轴设置,所述第一线圈组及第二线圈组中的第一级超导线圈及第二级超导线圈相对于所述第三级超导线圈对称分布。
7.如权利要求7所述的磁场屏蔽系统,其特征在于,所述第三级超导线圈的尺寸等于所述第一级超导线圈的尺寸或第二级超导线圈的尺寸。
8.一种磁场屏蔽系统,包括多个第一级超导线圈及多个第二级超导线圈围绕一中心对称轴共轴设置,每个超导线圈分别位于不同且相互平行的平面,所述多个第一级超导线圈及多个第二级超导线圈构成一第一线圈组和一第二线圈组,所述第一线圈组与第二线圈组绝缘且镜像对称设置,每一线圈组中的多个超导线圈通过连接线串联形成一闭合回路。
9.一种磁场屏蔽设备,包括一杜瓦、一磁场屏蔽系统以及一微调模组,所述杜瓦包括一内壁与一外壁围绕同一对称轴构成,所述内壁环绕所述中心对称轴形成一通孔,所述磁场屏蔽系统包括两个第一级超导线圈与两个第二级超导线圈,所述第一级超导线圈及第二级超导线圈均设置于内壁与外壁之间且围绕所述中心对称轴共轴设置,所述第一级超导线圈的尺寸不同于所述第二级超导线圈的尺寸,四个线圈分别位于不同且相互平行的平面,其中一第一级超导线圈与一第二级超导线圈构成一第一线圈组,另一个第一级超导线圈与另一个第二级超导线圈构成一第二线圈组,所述第一线圈组与第二线圈组绝缘且呈镜像对称设置,每一线圈组中所述第一级超导线圈与所述第二级超导线圈通过连接线串联形成一闭合回路,所述微调模组对第一级超导线圈与第二级超导线圈之间的沿中心对称轴方向的相对位置进行微调。
10.如权利要求9所述的磁场屏蔽设备,其特征在于,所述内壁围绕形成的通孔形成一室温腔,所述内壁与外壁之间填充有液氮,所述第一级超导线圈及第二级超导线圈浸泡于液氮中,并对室温腔实现屏蔽。
11.如权利要求9所述的磁场屏蔽设备,其特征在于,进一步包括一铁磁介质环设置于内壁和外壁之间,并与所述第一级超导线圈与第二级超导线圈共轴且绝缘间隔设置,所述铁磁介质环具有防止形成环流的一缺口。
12.如权利要求9所述的磁场屏蔽设备,其特征在于,进一步包括一超导闭合环设置于所述内壁和外壁之间,与所述第一级超导线圈及第二级超导线圈共轴设置,且所述超导闭合环与所述第一级超导到线圈及第二级超导线圈间隔且绝缘设置。
13.如权利要求11或12所述的磁场屏蔽设备,其特征在于,所述微调模组控制所述铁磁介质环或超导闭合环沿所述中心对称轴的轴向移动,以调整所述铁磁介质环或超导闭合环与第一级超导线圈及第二级超导线圈之间的相对位置。
14.一种磁场屏蔽系统,包括两个第一级超导线圈间隔且围绕一中心对称轴共轴设置,以及一第二级超导线圈设置于两个第一级超导线圈之间且共轴设置,所述第一级超导线圈与所述第二级超导线圈具有不同的尺寸,所述两个第一级超导线圈相对于所述第二级超导线圈对称分布,三个线圈分别位于不同且相互平行的平面,所述两个第一级超导线圈与所述第二级超导线圈串联设置形成一闭合回路。
15.如权利要求14所述的磁场屏蔽系统,其特征在于,所述两个第一级超导线圈与所述第二级超导线圈之间的距离相等。
16.如权利要求14所述的磁场屏蔽系统,其特征在于,进一步包括铁磁介质环相对于所述第二级超导线圈对称设置,且与所述第二级超导线圈共轴。
17.一种磁场屏蔽系统,包括N个超导线圈,其中N为大于等于3的奇数,该N个超导线圈共轴设置且分别位于不同且相互平行的平面,该N个超导线圈串联设置形成一闭合回路,该N个超导线圈由不同尺寸的第一级超导线圈和第二级超导线圈组成,该N个超导线圈中有一个超导线圈位于中间位置,其它的N-1个超导线圈相对于该中间位置的超导线圈镜像对称分布。
CN201310318686.4A 2013-07-26 2013-07-26 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备 Expired - Fee Related CN104349654B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310318686.4A CN104349654B (zh) 2013-07-26 2013-07-26 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备
PCT/CN2013/086013 WO2015010379A1 (zh) 2013-07-26 2013-10-25 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备
US15/005,021 US10015917B2 (en) 2013-07-26 2016-01-25 Magnetic field shielding system based on closed superconducting coil groups and magnetic field shielding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310318686.4A CN104349654B (zh) 2013-07-26 2013-07-26 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备

Publications (2)

Publication Number Publication Date
CN104349654A true CN104349654A (zh) 2015-02-11
CN104349654B CN104349654B (zh) 2018-06-15

Family

ID=52504140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310318686.4A Expired - Fee Related CN104349654B (zh) 2013-07-26 2013-07-26 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备

Country Status (1)

Country Link
CN (1) CN104349654B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765406A (zh) * 2015-03-23 2015-07-08 北京原力辰超导技术有限公司 磁场调节器
CN106341975A (zh) * 2016-09-14 2017-01-18 北京航空航天大学 基于高温超导线圈的混合磁屏蔽装置
CN110690024A (zh) * 2019-10-12 2020-01-14 燕山大学 一种磁场发生装置及其制作方法
CN111627641A (zh) * 2020-06-17 2020-09-04 上海大学 一种基于多组异形闭环超导线圈的磁场屏蔽系统
CN112768171A (zh) * 2020-12-21 2021-05-07 中国船舶重工集团有限公司第七一0研究所 一种球形外空间的无矩线圈
CN114974791A (zh) * 2022-07-29 2022-08-30 华中科技大学 一种超导磁体被动抵消式外磁屏蔽线圈的优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322324A1 (en) * 2007-05-04 2009-12-31 Penanen Konstantin I Geometries for superconducting sensing coils for squid-based systems
CN101707860A (zh) * 2009-11-09 2010-05-12 清华大学 被动抵消式磁屏蔽装置
CN103065758A (zh) * 2013-01-25 2013-04-24 中国科学院电工研究所 一种超短腔自屏蔽磁共振成像超导磁体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322324A1 (en) * 2007-05-04 2009-12-31 Penanen Konstantin I Geometries for superconducting sensing coils for squid-based systems
CN101707860A (zh) * 2009-11-09 2010-05-12 清华大学 被动抵消式磁屏蔽装置
CN103065758A (zh) * 2013-01-25 2013-04-24 中国科学院电工研究所 一种超短腔自屏蔽磁共振成像超导磁体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765406A (zh) * 2015-03-23 2015-07-08 北京原力辰超导技术有限公司 磁场调节器
CN104765406B (zh) * 2015-03-23 2016-02-24 北京原力辰超导技术有限公司 磁场调节器
CN106341975A (zh) * 2016-09-14 2017-01-18 北京航空航天大学 基于高温超导线圈的混合磁屏蔽装置
CN110690024A (zh) * 2019-10-12 2020-01-14 燕山大学 一种磁场发生装置及其制作方法
CN110690024B (zh) * 2019-10-12 2020-10-02 燕山大学 一种磁场发生装置及其制作方法
CN111627641A (zh) * 2020-06-17 2020-09-04 上海大学 一种基于多组异形闭环超导线圈的磁场屏蔽系统
CN112768171A (zh) * 2020-12-21 2021-05-07 中国船舶重工集团有限公司第七一0研究所 一种球形外空间的无矩线圈
CN114974791A (zh) * 2022-07-29 2022-08-30 华中科技大学 一种超导磁体被动抵消式外磁屏蔽线圈的优化方法

Also Published As

Publication number Publication date
CN104349654B (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
CN104349653A (zh) 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备
CN104349654A (zh) 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备
US10899575B2 (en) Linear media handling system and devices produced using the same
US4890082A (en) Coil for generating a homogeneous magnetic field
US4280095A (en) Extremely sensitive super conducting quantum interference device constructed as a double-helix array
CN111627641B (zh) 一种基于多组异形闭环超导线圈的磁场屏蔽系统
JP5101520B2 (ja) 関心領域に一様磁場を発生させる特にnmrイメージング用の方法および装置
CN104640426A (zh) 磁屏蔽装置
WO1989009475A1 (en) Shielding superconducting solenoids
US7427908B1 (en) Magnetic shimming configuration with optimized turn geometry and electrical circuitry
US11199599B2 (en) Magnet assembly comprising closed superconducting HTS shims
CN109712773B (zh) 一种极高场核磁共振超导磁体
US10015917B2 (en) Magnetic field shielding system based on closed superconducting coil groups and magnetic field shielding device
Wang et al. Tesseral superconducting shim coil design with quasi-saddle geometry for use in high-field magnet system
Parry Helmholtz coils and coil design
CN212516755U (zh) 螺线管线圈和包括螺线管线圈的磁测量设备
Bologna et al. Effective magnetic permeability measurement in composite resonator structures
CN111642123A (zh) 一种基于异形闭环超导线圈的磁场屏蔽系统
CN112444761B (zh) 一种八边形轴向匀场线圈设计方法
Sohn et al. Fabrication and test results of HTS magnet for a superconducting property measurement system
CN102681016A (zh) 一种低频磁波动分析仪传感器
CN114340366A (zh) 一种高温超导环片堆叠结构的无阻无源磁屏蔽器件
Fukada et al. Numerical study to obtain the improved field homogeneity of HTS bulk magnet with enlarged inner diameter for compact NMR
Taryanik et al. Magnetic Systems for an Electron Paramagnetic Resonance Radio Spectrometer
Harwood et al. A superconducting iron-dominated quadrupole for CEBAF

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180615

CF01 Termination of patent right due to non-payment of annual fee