CN104340802A - Drive control system and drive control method for preventing car rolling of elevator - Google Patents
Drive control system and drive control method for preventing car rolling of elevator Download PDFInfo
- Publication number
- CN104340802A CN104340802A CN201410554601.7A CN201410554601A CN104340802A CN 104340802 A CN104340802 A CN 104340802A CN 201410554601 A CN201410554601 A CN 201410554601A CN 104340802 A CN104340802 A CN 104340802A
- Authority
- CN
- China
- Prior art keywords
- current
- car
- speed
- module
- control module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 34
- 238000005096 rolling process Methods 0.000 title abstract description 44
- 238000012806 monitoring device Methods 0.000 claims abstract description 7
- 238000006073 displacement reaction Methods 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 13
- 238000013528 artificial neural network Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000003094 perturbing effect Effects 0.000 claims 5
- 230000001105 regulatory effect Effects 0.000 claims 4
- 230000001276 controlling effect Effects 0.000 claims 1
- 230000008054 signal transmission Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 18
- 230000005284 excitation Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
Landscapes
- Elevator Control (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本发明提供一种电梯防溜车驱动控制系统,设置于控制电梯升降的电路中,包括依次连接的溜车判断模块、速度控制模块、电流控制模块和PWM输出模块,还包括与溜车判断模块连接的速度与位置检测装置,与电流控制模块连接的电流检测装置,以及信号监测装置。本发明提供的系统可以从曳引机的驱动控制方面对电梯轿厢的溜车现象进行控制。
The invention provides an elevator anti-rolling car drive control system, which is arranged in the circuit for controlling the lifting of the elevator, including a car rolling judging module, a speed control module, a current control module and a PWM output module connected in sequence, and also includes a car rolling judging module The connected speed and position detection device, the current detection device connected with the current control module, and the signal monitoring device. The system provided by the invention can control the sliding phenomenon of the elevator car from the driving control aspect of the traction machine.
Description
技术领域technical field
本发明涉及电梯控制技术领域,具体涉及一种电梯防溜车驱动控制系统及驱动控制方法。The invention relates to the technical field of elevator control, in particular to an elevator anti-rolling drive control system and a drive control method.
背景技术Background technique
随着社会经济的迅猛发展,城市化建设步伐的加快,许多高楼大厦如雨后春笋般涌现,使得人们在日常生活中对电梯的依赖程度与日俱增,电梯已经成为人们生活中必不可少的工具。With the rapid development of social economy and the acceleration of urbanization, many high-rise buildings have sprung up like mushrooms, which makes people rely more and more on elevators in daily life. Elevators have become an indispensable tool in people's lives.
对于曳引式电梯,对重装置与轿厢通过曳引绳的连接分别悬挂在曳引轮的两边,对重的作用是平衡一部分轿厢和负载的重量。正常情况下,电梯通过电动机带动曳引轮并依靠曳引轮槽与钢丝绳的摩擦力驱动电梯轿厢上下运行,电梯停止后靠机械制动器使曳引轮制停,靠曳引轮槽与钢丝绳的静摩擦使电梯轿厢和对重保持静止。一旦电梯的机械制动器受到卡阻等意外事件而失效,曳引轮将由于对重侧和轿厢侧的重量不同而被动转动,电梯轿厢也将发生失控位移(俗称溜车),严重时会引发人身伤害和设备损坏的重大事故。For the traction elevator, the counterweight device and the car are suspended on both sides of the traction sheave through the connection of the traction rope, and the function of the counterweight is to balance the weight of a part of the car and the load. Under normal circumstances, the elevator drives the traction sheave through the motor and relies on the friction between the traction sheave groove and the wire rope to drive the elevator car to run up and down. After the elevator stops, the mechanical brake stops the traction sheave. Static friction keeps the elevator car and counterweight stationary. Once the mechanical brake of the elevator fails due to unexpected events such as jamming, the traction sheave will passively rotate due to the weight difference between the counterweight side and the car side, and the elevator car will also undergo uncontrolled displacement (commonly known as slipping). Major accidents resulting in personal injury and equipment damage.
目前一般有两种方法来防止电梯轿厢的溜车。一种是安装保护装置,一旦轿厢发生溜车现象,保护装置立即作用迫使轿厢停止。这种方法一定程度上起到了作用,但需要在电梯装置基础上额外增加装置,并且保护装置还需定期检测维修,增大了成本浪费了时间。第二种是采用补偿力矩的方法,在出现溜车情况之前先计算出防止其倒溜的力矩,一旦出现溜车情况就进行力矩补偿。这种方法由于乘客的变化引起的负载的变化是不定的,使其补偿的力矩未必完全匹配存在一定偏差,因而也不完全可靠。Generally have two kinds of methods to prevent the slipping car of elevator car at present. One is to install a protection device. Once the car slips, the protection device acts immediately to force the car to stop. This method has played a role to a certain extent, but additional devices need to be added on the basis of the elevator device, and the protection device needs to be checked and maintained regularly, which increases the cost and wastes time. The second is to use the method of compensating torque. Before the car slips, the torque to prevent it from rolling back is calculated, and once the car slips, torque compensation is performed. In this method, the change of the load caused by the change of the passenger is uncertain, so the torque compensated may not be fully matched and there is a certain deviation, so it is not completely reliable.
发明内容Contents of the invention
本发明要解决的技术问题是,针对现有电梯防溜车技术的缺陷,从曳引机的驱动控制方面提供一种电梯防溜车驱动控制系统及驱动控制方法。The technical problem to be solved by the present invention is to provide an elevator anti-rolling drive control system and a drive control method from the drive control aspect of the traction machine in view of the defects of the existing elevator anti-rolling technology.
一种电梯防溜车驱动控制系统,设置于控制电梯升降的电路中,包括溜车判断模块、速度控制模块、电流控制模块、PWM输出模块、监测装置、电流检测装置和速度与位置检测装置。速度与位置检测装置包括位置传感器和速度与位置计算模块,位置传感器设置在电梯曳引机轴上,其输出端和速度与位置计算模块输入端连接,速度与位置计算模块输出端与溜车判断模块输入端连接。电流检测装置包括电流传感器和电流计算模块,电流传感器检测端与馈电于电梯电路的三项逆变器相连,电流传感器的输出端与电流计算模块的输入端连接,电流传感器的输出端与电流控制模块的输入端连接。速度控制模块包括扰动转矩计算模块、溜车速度控制模块和正常速度控制模块;其中溜车速度控制模块和正常速度控制模块的输入端均与溜车判断模块的输出端连接,溜车速度控制模块和正常速度控制模块的输出端均与电流控制模块连接;溜车速度控制模块的输入端还与扰动转矩计算模块的输出端连接,扰动转矩计算模块的输入端与电流检测装置的输出端连接。电流控制模块输出端与PWM输出模块输入端连接。监测装置,包括CAN总线和上位机,位置传感器和电流检测装置采集的数据通过CAN总线传输给上位机。An elevator anti-rolling drive control system, which is set in a circuit for controlling the lifting of an elevator, includes a rolling judgment module, a speed control module, a current control module, a PWM output module, a monitoring device, a current detection device, and a speed and position detection device. The speed and position detection device includes a position sensor and a speed and position calculation module. The position sensor is arranged on the shaft of the elevator traction machine, and its output terminal is connected to the input terminal of the speed and position calculation module. Module input connection. The current detection device includes a current sensor and a current calculation module. The detection end of the current sensor is connected to the three-phase inverter feeding the elevator circuit, the output end of the current sensor is connected to the input end of the current calculation module, and the output end of the current sensor is connected to the current Input connection of the control module. The speed control module includes a disturbance torque calculation module, a rolling speed control module and a normal speed control module; wherein the input terminals of the rolling speed control module and the normal speed control module are connected with the output terminals of the rolling judging module, and the rolling speed control module The output terminals of the module and the normal speed control module are connected with the current control module; the input terminal of the sliding speed control module is also connected with the output terminal of the disturbance torque calculation module, and the input terminal of the disturbance torque calculation module is connected with the output of the current detection device end connection. The output terminal of the current control module is connected with the input terminal of the PWM output module. The monitoring device includes a CAN bus and a host computer, and the data collected by the position sensor and the current detection device is transmitted to the host computer through the CAN bus.
一种电梯防溜车驱动控制方法,包括以下步骤:An elevator anti-rolling car drive control method, comprising the following steps:
步骤1,系统初始化,包括:Step 1, system initialization, including:
设定曳引机的给定转速ω*和给定位移值d*,励磁电流设定值id *=0,轿厢退出溜车状态前零速率运行的时间长度t*,轿厢正常负载变化引起的位移值,轿厢速度的允许值;Set the given speed ω * and given displacement value d * of the traction machine, the setting value of the excitation current i d * = 0, the time length t * of the car running at zero speed before it exits the slipping state, and the normal load of the car The displacement value caused by the change, the allowable value of the car speed;
步骤2,电流检测装置采集当前驱动电梯工作电路中的三相逆变器的实际工作电流,位置传感器采集当前电梯轿厢的位置和速度,计算转矩电流值、励磁电流值和曳引机转速值和轿厢位置值;Step 2, the current detection device collects the actual working current of the three-phase inverter in the current driving elevator working circuit, the position sensor collects the current position and speed of the elevator car, and calculates the torque current value, excitation current value and traction machine speed value and car position value;
步骤3,判断电梯轿厢是否处于溜车状态,若是,则进入溜车速度模式,转步骤4;若否,则执行正常速度模式,转步骤6;Step 3, judge whether the elevator car is in the rolling state, if so, enter the rolling speed mode, go to step 4; if not, execute the normal speed mode, go to step 6;
步骤4,执行溜车速度模式,并输出驱动曳引机运转的信号;Step 4, execute the slipping speed mode, and output a signal to drive the traction machine to run;
步骤5,重复步骤2和步骤3;Step 5, repeat steps 2 and 3;
步骤6,执行正常速度模式,并输出驱动曳引机运转的信号;Step 6, execute the normal speed mode, and output a signal to drive the traction machine to run;
步骤7,转步骤2。Step 7, go to step 2.
本发明与现有技术相比,具有显著优点:(1)本发明从曳引机驱动控制的角度提供了一种电梯防溜车驱动控制系统,无需安装额外的物力保护装置;(2)本发明提出利用观测器观测的扰动负载转矩作为输入,根据曳引机实际转速和轿厢溜车位置偏差进行耦合控制并加上扰动转矩的补偿控制量以确定转矩电流的设定值,能够快速有效的调节力矩至平衡,防止了轿厢溜车,保护了乘客和电梯的安全。Compared with the prior art, the present invention has significant advantages: (1) The present invention provides an elevator anti-rolling car drive control system from the perspective of traction machine drive control, without installing additional material protection devices; (2) the present invention The invention proposes to use the disturbance load torque observed by the observer as an input, to carry out coupling control according to the actual speed of the traction machine and the position deviation of the car slipping, and to add the compensation control amount of the disturbance torque to determine the set value of the torque current. It can quickly and effectively adjust the torque to balance, prevent the car from slipping, and protect the safety of passengers and elevators.
附图说明Description of drawings
图1是本发明提出的电梯防溜车驱动控制系统原理图;Fig. 1 is the schematic diagram of the elevator anti-rolling car driving control system proposed by the present invention;
图2是本发明提出的电梯防溜车驱动控制系统结构图Fig. 2 is the structural diagram of the elevator anti-rolling car drive control system proposed by the present invention
图3是本发明提出的溜车速度模式下的神经网络控制结构图;Fig. 3 is the neural network control structure diagram under the rolling speed mode that the present invention proposes;
图4是本发明提出的溜车速度模式下的扰动负载转矩前馈补偿控制的扰动负载转矩观测器;Fig. 4 is the disturbance load torque observer of the disturbance load torque feed-forward compensation control under the rolling speed mode proposed by the present invention;
图5是本发明提出的电梯防溜车驱动控制系统的速度控制模块在溜车速度模式下的控制结构图;Fig. 5 is the control structure diagram of the speed control module of the elevator anti-rolling drive control system proposed by the present invention under the rolling speed mode;
图6是本发明提出的电梯防溜车驱动控制系统的速度控制模块在正常速度模式下的控制结构图;Fig. 6 is the control structure diagram of the speed control module of the elevator anti-rolling drive control system proposed by the present invention under the normal speed mode;
图7是本发明提出的电梯防溜车驱动控制方法的流程图。Fig. 7 is a flow chart of the elevator anti-rolling driving control method proposed by the present invention.
具体实施方式Detailed ways
下面结合说明书附图,具体描述本发明所提供的一种电梯防溜车驱动控制系统及驱动控制方法。In the following, an elevator anti-rolling car drive control system and drive control method provided by the present invention will be described in detail in conjunction with the accompanying drawings.
结合图1,一种电梯防溜车驱动控制系统,设置于控制电梯升降的电路中,包括溜车判断模块、速度控制模块、电流控制模块速、PWM输出模块、监测装置、电流检测装置和速度与位置检测装置。In conjunction with Figure 1, an elevator anti-rolling car drive control system is set in the circuit for controlling the lift, including a car rolling judgment module, a speed control module, a current control module speed, a PWM output module, a monitoring device, a current detection device and a speed control module. with position detection device.
结合图2,速度与位置检测装置包括位置传感器和速度与位置计算模块,位置传感器设置在电梯曳引机轴上,其输出端和速度与位置计算模块输入端连接,速度与位置计算模块输出端与溜车判断模块输入端连接;电流检测装置包括电流传感器和电流计算模块,电流传感器检测端与馈电于电梯点路的三项逆变器相连,电流传感器的输出端与电流计算模块的输入端连接,电流传感器的输出端与电流控制模块的输入端连接;速度控制模块包括扰动转矩计算模块、溜车速度控制模块和正常速度控制模块,其中溜车速度控制模块和正常速度控制模块的输入端均与溜车判断模块的输出端连接,溜车速度控制模块和正常速度控制模块的输出端均与电流控制模块连接,溜车速度控制模块的输入端还与扰动转矩计算模块的输出端连接,扰动转矩计算模块的输入端与电流检测装置的输出端连接;电流控制模块输出端与PWM输出模块输入端连接;监测装置,包括CAN总线和上位机,位置传感器和电流检测装置采集的数据通过CAN总线传输给上位机。上位机实时监测轿厢的实际位置及速度信息。Referring to Figure 2, the speed and position detection device includes a position sensor and a speed and position calculation module. The position sensor is arranged on the shaft of the elevator traction machine, and its output terminal is connected to the input terminal of the speed and position calculation module, and the output terminal of the speed and position calculation module It is connected with the input end of the car slip judgment module; the current detection device includes a current sensor and a current calculation module. The output terminal of the current sensor is connected to the input terminal of the current control module; the speed control module includes a disturbance torque calculation module, a rolling speed control module and a normal speed control module, wherein the rolling speed control module and the normal speed control module The input terminals are all connected to the output terminals of the rolling car judgment module, the output terminals of the rolling car speed control module and the normal speed control module are connected to the current control module, and the input terminals of the rolling car speed control module are also connected to the output of the disturbance torque calculation module The input end of the disturbance torque calculation module is connected to the output end of the current detection device; the output end of the current control module is connected to the input end of the PWM output module; the monitoring device includes CAN bus and host computer, position sensor and current detection device to collect The data is transmitted to the host computer through the CAN bus. The upper computer monitors the actual position and speed information of the car in real time.
本发明涉及的驱动控制器使用型号为TMS320F28335的高性能数字信号处理器。本发明涉及的曳引机使用永磁同步无齿轮电机;本发明涉及的传感器有编码器和霍尔元件。The drive controller involved in the present invention uses a high-performance digital signal processor whose model is TMS320F28335. The traction machine involved in the invention uses a permanent magnet synchronous gearless motor; the sensor involved in the invention includes an encoder and a Hall element.
该系统的信号走向为:The signal direction of the system is:
当人按了呼梯模块后产生触发信号给信号采集模块,电梯开始工作运行,此时位置传感器将采集的电梯轿厢的位置和速度参数经过速度与位置计算模块处理后传输给溜车判断模块;When a person presses the elevator call module, a trigger signal is generated to the signal acquisition module, and the elevator starts to work. At this time, the position sensor transmits the collected elevator car position and speed parameters to the speed and position calculation module and then transmits them to the car slip judgment module. ;
溜车判断模块将判断后的信号传递给速度控制模块中的正查过速度控制模块和溜车素的控制模块;在正常速度模式时,正常速度控制模块进行调节,将调节结果传输给电流控制模块;在溜车速度模式时,溜车速度控制模块接收电流传感器采集的实际工作电流传输到扰动转矩计算模块处理所得的信号和溜车判断模块输出的信号,并将二者进行调节得到的结果传输给电流控制模块;The vehicle slipping judging module transmits the judged signal to the speed control module and the control module of the speed control module; in the normal speed mode, the normal speed control module adjusts and transmits the adjustment result to the current control module. module; in the rolling speed mode, the rolling speed control module receives the actual working current collected by the current sensor and transmits it to the signal processed by the disturbance torque calculation module and the signal output by the rolling judging module, and adjusts the two. The result is transmitted to the current control module;
电流控制模块接收速度控制模块调节后的结果和电流传感器采集的实际工作电流传输到电流计算模块处理所得的信号,并将二者进行调节后得到的结果传输给PWM输出模块;The current control module receives the adjusted result of the speed control module and the actual working current collected by the current sensor, transmits the processed signal to the current calculation module, and transmits the adjusted result of the two to the PWM output module;
PWM输出模块的输出信号作用于电梯的馈电网络驱动电梯曳引机运转。The output signal of the PWM output module acts on the feed network of the elevator to drive the elevator traction machine to run.
一种电梯防溜车驱动控制方法,包括以下步骤:An elevator anti-rolling car drive control method, comprising the following steps:
步骤1,系统初始化,包括:Step 1, system initialization, including:
设定曳引机的给定转速ω*,励磁电流设定值id *,给定位移值d*,轿厢退出溜车状态前零速率运行的时间长度t*,轿厢正常负载变化引起的位移值da,轿厢速度的允许值va;其中,ω*是根据电梯需要的运行速度给定的,可以为0~150转/分钟,id *=0,t*=取3秒左右,da位移是通过编码器每个控制周期的脉冲数得到的,这里取每个周期2~10个脉冲数,va=普通载客电梯速度一般在1.5米/秒左右。Set the given speed ω * of the traction machine, the set value of the excitation current i d * , the given displacement value d * , the time length t * of the car running at zero speed before it exits the slipping state, and the normal load change of the car. The displacement value d a of the car, the allowable value v a of the car speed; among them, ω * is given according to the running speed required by the elevator, which can be 0 to 150 rpm, id * = 0, t * = 3 Seconds, d a displacement is obtained by the number of pulses in each control cycle of the encoder, here we take 2-10 pulses in each cycle, v a = the speed of ordinary passenger elevators is generally about 1.5 m/s.
步骤2,电流检测装置采集当前驱动电梯工作电路中的三相逆变器的实际工作电流,位置传感器采集当前电梯轿厢的位置和速度,计算转矩电流值、励磁电流值和曳引机转速值和轿厢实际位移值,具体过程为:Step 2, the current detection device collects the actual working current of the three-phase inverter in the current driving elevator working circuit, the position sensor collects the current position and speed of the elevator car, and calculates the torque current value, excitation current value and traction machine speed value and the actual displacement value of the car, the specific process is:
步骤2.1,电流传感器采集得到的三项逆变器tn时刻的实际电流经过CLARK变换得到tn时刻静止坐标系下的两相电流n指循环步骤3次数的索引值;Step 2.1, the current sensor collects the actual current of the three inverters at time t n After CLARK transformation, the two-phase current in the stationary coordinate system at time t n is obtained n refers to the index value of the cycle step 3 times;
步骤2.2,静止坐标系下的两相电流和曳引机转子角度进行PARK变换得到转矩电流和励磁电流 Step 2.2, two-phase current in the stationary coordinate system and traction machine rotor angle Perform PARK transformation to obtain torque current and excitation current
步骤2.3,根据轿厢在tn时刻的速度计算曳引机的转速是根据编码器在控制程序的每个运行周期的脉冲数换算得到的。Step 2.3, calculate the speed of the traction machine according to the speed of the car at time t n It is converted according to the number of pulses of the encoder in each operating cycle of the control program.
步骤2.4,根据轿厢在tn时刻的位置得到实际位移值是根据曳引机转子转到的位置换算得到的。Step 2.4, get the actual displacement value according to the position of the car at time t n It is obtained by converting the position of the rotor of the traction machine.
步骤3,判断电梯轿厢是否处于溜车状态,若是,则进入溜车速度模式,转步骤4;若否,则执行正常速度模式,转步骤6;判断电梯轿厢是否处于溜车状态的具体方法为:位置传感器采集当前电梯轿厢的位置和速度信息,当电梯轿厢的速度大于设定的允许值va并且轿厢位移的变化超过设定正常负载变化引起的位移da时,就判定轿厢处于溜车状态;当电梯轿厢的速度不大于设定的允许值并且轿厢位移的变化未超过设定正常负载变化引起的位移,且零速率运行保持时间大于设定值t*时,轿厢正常工作。Step 3, judge whether the elevator car is in the state of rolling, if so, enter the speed mode of rolling, go to step 4; if not, execute the normal speed mode, go to step 6; determine whether the car is in the state of rolling The method is: the position sensor collects the current position and speed information of the elevator car. When the speed of the elevator car is greater than the set allowable value v a and the change of the car displacement exceeds the displacement d a caused by the set normal load change, the Determine that the car is in a slipping state; when the speed of the elevator car is not greater than the set allowable value and the change of the car displacement does not exceed the displacement caused by the set normal load change, and the zero-speed running time is greater than the set value t * , the car works normally.
步骤4,执行溜车速度模式,结合图5,具体过程为:Step 4, execute the rolling speed mode, combined with Figure 5, the specific process is:
步骤4.1,计算曳引机的给定转速ω*和tn时刻曳引机的实际反馈转速的闭环PI调节值 Step 4.1, calculate the given speed ω * of the traction machine and the actual feedback speed of the traction machine at time t n The closed-loop PI regulation value of
步骤4.2,计算轿厢位置的给定位移值d*与tn时刻轿厢位置的实际位移值的闭环PI调节值 Step 4.2, calculate the given displacement value d * of the car position and the actual displacement value of the car position at time t n The closed-loop PI regulation value of
步骤4.3,计算溜车速度模式下输出的转矩电流设定值具体过程为:Step 4.3, calculate the output torque current setting value in the slipping speed mode The specific process is:
步骤4.3.1,将和作为输入量进行反馈神经网络控制,输出得到曳引机转矩电流的设定值的一部分输入量 Step 4.3.1, will and Feedback neural network control is performed as an input, and the output is the set value of the torque current of the traction machine part of the input
步骤4.3.2,根据三项逆变器的实际工作电流计算得到tn时刻的电磁转矩电磁转矩计算得到转子角速度的过程中出现扰动负载转矩利用扰动转矩观测器观测扰动负载转矩扰动负载转矩乘以电流补偿系数β后得到补偿电流 Step 4.3.2, calculate the electromagnetic torque at time t n according to the actual working current of the three inverters Electromagnetic torque Calculate the angular velocity of the rotor A disturbance load torque occurs during the Observing Disturbance Load Torque Using Disturbance Torque Observer Disturbance load torque The compensation current is obtained after multiplying by the current compensation coefficient β
步骤4.3.3,溜车速度模式下输出的转矩电流设定值为与之和;Step 4.3.3, output torque current setting value in slipping speed mode for and Sum;
步骤4.4,将转矩电流设定值与转矩电流进行闭环PI调节,输出转矩电压 Step 4.4, set the torque current setting value with torque current Perform closed-loop PI regulation, output torque voltage
步骤4.5,将励磁电流设定值与励磁电流进行闭环PI调节,输出励磁电压 Step 4.5, set the field current setting value and excitation current Perform closed-loop PI regulation, output excitation voltage
步骤4.6,将和曳引机转子角度经IPARK变换得到静止坐标系下两相电压和 Step 4.6, will and traction machine rotor angle The two-phase voltage in the static coordinate system is obtained by IPARK transformation and
步骤4.7,和进行SVPWM变换,更新输出PWM占空比作用于三相逆变器,更新曳引机的驱动电流进而更新曳引机的转速。Step 4.7, and Perform SVPWM conversion, update the output PWM duty cycle to act on the three-phase inverter, update the driving current of the traction machine and then update the speed of the traction machine.
步骤5,重复步骤2和步骤3,电流检测装置采集此刻驱动电梯工作电路中的三相逆变器的实际工作电流,位置传感器采集当前电梯轿厢的位置和速度,计算转矩电流值、励磁电流值和曳引机转速值和轿厢位置值。当电梯轿厢的速度大于设定的允许值va并且轿厢位移的变化超过设定正常负载变化引起的位移da时,就判定轿厢处于溜车状态;则转到步骤4;否则,轿厢正常工作,转到步骤6。Step 5, repeat steps 2 and 3, the current detection device collects the actual working current of the three-phase inverter driving the elevator working circuit at the moment, the position sensor collects the current position and speed of the elevator car, calculates the torque current value, excitation Current value, motor speed value and car position value. When the speed of the elevator car is greater than the set allowable value v a and the change of the car displacement exceeds the displacement d a caused by the set normal load change, it is determined that the car is in a slipping state; then go to step 4; otherwise, The car works normally, go to step 6.
步骤6,执行正常速度模式,结合图6,具体方法为:Step 6, execute the normal speed mode, combined with Figure 6, the specific method is:
步骤6.1,曳引机的给定转速ω*和tn时刻实际反馈转速的进行闭环PI调节得到正常速度模式下的转矩电流设定值 Step 6.1, the given speed ω * of the traction machine and the actual feedback speed at time t n The closed-loop PI adjustment is performed to obtain the torque current setting value in normal speed mode
步骤6.2,将与转矩电流进行闭环PI调节,输出转矩电压 Step 6.2, will with torque current Perform closed-loop PI regulation, output torque voltage
步骤6.3,将励磁电流设定值与励磁电流进行闭环PI调节,输出励磁电压 Step 6.3, set the field current setting value and excitation current Perform closed-loop PI regulation, output excitation voltage
步骤6.4,将和曳引机转子角度经IPARK变换得到静止坐标系下两相电压和 Step 6.4, will and traction machine rotor angle The two-phase voltage in the static coordinate system is obtained by IPARK transformation and
步骤6.5,和进行SVPWM变换,更新输出PWM波占空比。Step 6.5, and Carry out SVPWM conversion and update the duty cycle of the output PWM wave.
步骤7,PWM作用于三项逆变器从而驱动曳引机运转,转步骤2,具体过程为:PWM波更新的占空比作用于三相逆变器进而驱动曳引机运转,跳转步骤2,系统继续监控电梯的运行状态。Step 7, PWM acts on the three-phase inverter to drive the traction machine to run, go to step 2, the specific process is: the duty ratio of the PWM wave update acts on the three-phase inverter to drive the traction machine to run, skip to the step 2. The system continues to monitor the running status of the elevator.
步骤4.3中所述的反馈神经网络对非线性多输入输出动态系统具有良好的建模能力。反馈神经网络可以看作一个具有局部记忆单元和局部反馈连接的前向BP神经网络的改进形式。反馈神经网络加入关联层作为动态记忆环节,其输入层节点到隐含层节点、隐含层节点到输出层节点、关联层节点到隐含层节点之间都具有可以调整的权值。本发明的溜车速度模式中两个控制量——曳引机的速度和轿厢溜车位置偏差,具有很强的耦合性,应用反馈神经网络的控制方法能够反映出系统输出随时间变化的动态过程,从而可以更及时准确地对轿厢溜车进行调节,使其快速恢复正常。结合图3,曳引机速度和轿厢位置分别进行PI调节后的输出量为和和即为反馈神经网络的两个输入量,和可以用矢量u表示,故u即为反馈神经网络的输入。表达式f(z,u)代表关联层函数,其中z为状态矢量。表达式代表隐含层函数,输出为溜车速度模式下输出的曳引机转矩电流设定值的一部分关于反馈神经网络的内容参见“潘长波、李红星的《反馈神经网络用于多输入输出动态系统建模》,发表于《计算机应用》,2009年6月,第29卷”。The feedback neural network described in step 4.3 has a good modeling ability for nonlinear multiple-input-output dynamic systems. Feedback neural network can be regarded as an improved form of feedforward BP neural network with local memory units and local feedback connections. The feedback neural network adds the association layer as a dynamic memory link, and its input layer nodes to hidden layer nodes, hidden layer nodes to output layer nodes, and association layer nodes to hidden layer nodes all have adjustable weights. The two control quantities in the rolling speed mode of the present invention——the speed of the traction machine and the position deviation of the car rolling, have strong coupling, and the control method using the feedback neural network can reflect the change of the system output with time. Dynamic process, so that the car slip can be adjusted more timely and accurately, so that it can quickly return to normal. Combined with Figure 3, the output after PI adjustment of the traction machine speed and car position is and and are the two input quantities of the feedback neural network, and It can be represented by vector u, so u is the input of the feedback neural network. The expression f(z,u) represents the association layer function, where z is the state vector. expression Represents the hidden layer function, and the output is the torque current setting value of the traction machine output in the slipping speed mode a part of For the content of feedback neural network, please refer to "Pan Changbo and Li Hongxing's "Feedback Neural Network for Multiple Input and Output Dynamic System Modeling", published in "Computer Applications", June 2009, Volume 29".
本发明涉及的电梯是用于运输的垂直升降设备,在电梯出现溜车状况时,由于各种干扰使其负载转矩是不断变化的,因此,此时电梯曳引机控制系统的扰动转矩是未知的。在负载转矩未知或受到干扰的情况下,传统PID不能迅速调节控制输入,而是通过转速的误差反馈来进行调节,这样导致控制效果不佳。然而在系统控制过程中,仅用输出反馈通常不能达到预期的控制目标,因此还要借助状态反馈。通过状态变量的反馈信息,可以更好的对控制系统进行校正,抑制外界扰动的影响。然而,有些状态变量的值无法通过传感器进行测量,因此可以通过状态观测器对状态变量的值进行估计。为了在轿厢出现溜车时提高曳引机拖动的系统性能使其快速恢复正常,在步骤4.3.2中采用基于扰动转矩观测的方法,通过扰动转矩前馈补偿,可以抑制扰动对系统的影响。The elevator involved in the present invention is a vertical lifting device used for transportation. When the elevator slips, the load torque is constantly changing due to various disturbances. Therefore, at this time, the disturbance torque of the elevator traction machine control system is unknown. When the load torque is unknown or disturbed, the traditional PID cannot adjust the control input quickly, but adjusts it through the error feedback of the speed, which leads to poor control effect. However, in the process of system control, only using output feedback usually cannot achieve the expected control goal, so state feedback is also used. Through the feedback information of the state variables, the control system can be better calibrated and the influence of external disturbances can be suppressed. However, the values of some state variables cannot be measured by sensors, so the values of state variables can be estimated by state observers. In order to improve the system performance of the traction machine and make it return to normal quickly when the car slips, the method based on disturbance torque observation is adopted in step 4.3.2, and the disturbance to system impact.
在电梯曳引机速度控制模块中,扰动负载转矩难以通过传感器进行直接测量。因此,通过扰动负载转矩观测器将转矩信息反馈给控制器,从而实现对转矩扰动的抑制。本发明中,考虑到曳引机转速与负载转矩存在必然联系,在实现负载转矩观测的同时也对转速进行了观测。根据三项逆变器的实际工作电流计算得到tn时刻的电磁转矩电磁转矩计算得到转子角速度的过程中出现扰动负载转矩利用扰动转矩观测器观测扰动负载转矩扰动负载转矩乘以电流补偿系数β后得到补偿电流 In the elevator traction machine speed control module, the disturbance load torque is difficult to be directly measured by sensors. Therefore, the torque information is fed back to the controller through the disturbance load torque observer, so as to suppress the torque disturbance. In the present invention, considering that there is an inevitable connection between the rotational speed of the traction machine and the load torque, the rotational speed is also observed while realizing the observation of the load torque. Calculate the electromagnetic torque at time t n according to the actual working current of the three-phase inverter Electromagnetic torque Calculate the angular velocity of the rotor A disturbance load torque occurs during the Observing Disturbance Load Torque Using Disturbance Torque Observer Disturbance load torque The compensation current is obtained after multiplying by the current compensation coefficient β
由于同时观测了扰动负载转矩和曳引机转速,因此将曳引机转速和TL作为状态变量,即
式中,状态矩阵
将观测得到的扰动负载转矩TL乘以电流补偿系数β后得到补偿电流icomp,作为补偿量加入到电流控制器的输入端,实现扰动转矩的提前补偿控制。选择合适的补偿系数β,就可以补偿扰动负载转矩,达到减小瞬时转速静差,缩短扰动后的恢复时间的目的。当补偿系数选择恰到好处时,就会使静差消失,这时称为全补偿,全补偿的临界补偿系数为β0。当β<β0,称为欠补偿;当β>β0,称为过补偿。临界补偿系数β取值尽量等于β0,越接近越好,其中,p为曳引机极对数,ψf为永磁体磁链。The observed disturbance load torque T L is multiplied by the current compensation coefficient β to obtain the compensation current i comp , which is added to the input terminal of the current controller as a compensation amount to realize the advance compensation control of the disturbance torque. By selecting an appropriate compensation coefficient β, the disturbance load torque can be compensated, and the purpose of reducing the instantaneous static speed difference and shortening the recovery time after the disturbance can be achieved. When the compensation coefficient is selected just right, the static error will disappear, which is called full compensation, and the critical compensation coefficient of full compensation is β 0 . When β<β 0 , it is called undercompensation; when β>β 0 , it is called overcompensation. critical compensation coefficient The value of β should be as equal to β 0 as possible, the closer the better, where p is the number of pole pairs of the traction machine, and ψ f is the flux linkage of the permanent magnet.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410554601.7A CN104340802B (en) | 2014-10-17 | 2014-10-17 | A kind of elevator anti-running driving control system and driving control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410554601.7A CN104340802B (en) | 2014-10-17 | 2014-10-17 | A kind of elevator anti-running driving control system and driving control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104340802A true CN104340802A (en) | 2015-02-11 |
CN104340802B CN104340802B (en) | 2016-12-07 |
Family
ID=52497361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410554601.7A Active CN104340802B (en) | 2014-10-17 | 2014-10-17 | A kind of elevator anti-running driving control system and driving control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104340802B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105480805A (en) * | 2015-11-24 | 2016-04-13 | 广东亚太西奥电梯有限公司 | Car elevator capable of being prevented from accidental movement and method for preventing accidental movement of car elevator |
CN108069303A (en) * | 2016-11-17 | 2018-05-25 | 上海三菱电梯有限公司 | Elevator staring torque compensation method |
CN109019232A (en) * | 2018-09-07 | 2018-12-18 | 江苏蒙哥马利电梯有限公司 | A kind of express elevator can decelerating electron safety tongs system and method |
CN109095301A (en) * | 2018-09-25 | 2018-12-28 | 日立楼宇技术(广州)有限公司 | A kind of elevator control method, device, equipment and medium |
CN109305612A (en) * | 2017-07-28 | 2019-02-05 | 上海三菱电梯有限公司 | Elevator starts control device |
CN110002298A (en) * | 2019-04-09 | 2019-07-12 | 深圳市海浦蒙特科技有限公司 | A kind of elevator starting control method and system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1619940A (en) * | 2003-11-20 | 2005-05-25 | 株式会社日立制作所 | Control device for permanent magnet type synchronous motor |
JP2005162376A (en) * | 2003-12-02 | 2005-06-23 | Hitachi Ltd | Elevator controlling device and elevator system |
CN101143670A (en) * | 2007-09-20 | 2008-03-19 | 上海三意楼宇实业有限公司 | Electrical protection method and device during frequency-changing elevator mechanical brake disabling |
CN101269770A (en) * | 2008-05-09 | 2008-09-24 | 上海永大电梯设备有限公司 | A method for detecting motor brake force |
CN101531309A (en) * | 2008-03-10 | 2009-09-16 | 苏州默纳克控制技术有限公司 | Method and system for controlling elevator by adopting permanent magnet synchronous motor |
CN102163943A (en) * | 2010-02-23 | 2011-08-24 | 山洋电气株式会社 | Motor control method and motor control system |
CN102729838A (en) * | 2012-07-09 | 2012-10-17 | 上海中科深江电动车辆有限公司 | Car slip prevention control system and control system for ramp-way stop of no-obliquity sensor electro-mobile |
US20130226388A1 (en) * | 2010-11-15 | 2013-08-29 | Akira Kikuchi | Electrically driven vehicle |
CN103287937A (en) * | 2013-05-09 | 2013-09-11 | 深圳市海浦蒙特科技有限公司 | Automatic adjustment method and system of elevator starting torque |
US20140203747A1 (en) * | 2013-01-23 | 2014-07-24 | Juhyoung LEE | Motor control apparatus and method |
-
2014
- 2014-10-17 CN CN201410554601.7A patent/CN104340802B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1619940A (en) * | 2003-11-20 | 2005-05-25 | 株式会社日立制作所 | Control device for permanent magnet type synchronous motor |
JP2005162376A (en) * | 2003-12-02 | 2005-06-23 | Hitachi Ltd | Elevator controlling device and elevator system |
CN101143670A (en) * | 2007-09-20 | 2008-03-19 | 上海三意楼宇实业有限公司 | Electrical protection method and device during frequency-changing elevator mechanical brake disabling |
CN101531309A (en) * | 2008-03-10 | 2009-09-16 | 苏州默纳克控制技术有限公司 | Method and system for controlling elevator by adopting permanent magnet synchronous motor |
CN101269770A (en) * | 2008-05-09 | 2008-09-24 | 上海永大电梯设备有限公司 | A method for detecting motor brake force |
CN102163943A (en) * | 2010-02-23 | 2011-08-24 | 山洋电气株式会社 | Motor control method and motor control system |
US20130226388A1 (en) * | 2010-11-15 | 2013-08-29 | Akira Kikuchi | Electrically driven vehicle |
CN102729838A (en) * | 2012-07-09 | 2012-10-17 | 上海中科深江电动车辆有限公司 | Car slip prevention control system and control system for ramp-way stop of no-obliquity sensor electro-mobile |
US20140203747A1 (en) * | 2013-01-23 | 2014-07-24 | Juhyoung LEE | Motor control apparatus and method |
CN103287937A (en) * | 2013-05-09 | 2013-09-11 | 深圳市海浦蒙特科技有限公司 | Automatic adjustment method and system of elevator starting torque |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105480805A (en) * | 2015-11-24 | 2016-04-13 | 广东亚太西奥电梯有限公司 | Car elevator capable of being prevented from accidental movement and method for preventing accidental movement of car elevator |
CN105480805B (en) * | 2015-11-24 | 2018-02-06 | 广东亚太西奥电梯有限公司 | The method that elevator accidental movement can be prevented |
CN108069303A (en) * | 2016-11-17 | 2018-05-25 | 上海三菱电梯有限公司 | Elevator staring torque compensation method |
CN108069303B (en) * | 2016-11-17 | 2019-08-06 | 上海三菱电梯有限公司 | Elevator staring torque compensation method |
CN109305612A (en) * | 2017-07-28 | 2019-02-05 | 上海三菱电梯有限公司 | Elevator starts control device |
CN109305612B (en) * | 2017-07-28 | 2020-09-18 | 上海三菱电梯有限公司 | Elevator starting control device |
CN109019232A (en) * | 2018-09-07 | 2018-12-18 | 江苏蒙哥马利电梯有限公司 | A kind of express elevator can decelerating electron safety tongs system and method |
CN109095301A (en) * | 2018-09-25 | 2018-12-28 | 日立楼宇技术(广州)有限公司 | A kind of elevator control method, device, equipment and medium |
CN110002298A (en) * | 2019-04-09 | 2019-07-12 | 深圳市海浦蒙特科技有限公司 | A kind of elevator starting control method and system |
CN110002298B (en) * | 2019-04-09 | 2021-09-14 | 深圳市海浦蒙特科技有限公司 | Elevator starting control method and system |
Also Published As
Publication number | Publication date |
---|---|
CN104340802B (en) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104340802B (en) | A kind of elevator anti-running driving control system and driving control method | |
WO2016091200A1 (en) | Parameter measurement, control, operation, and load monitoring method and system for crane | |
CN101605712A (en) | Lift appliance | |
EP0924851B1 (en) | Automatic fine-tuning of rotor time constant and magnetizing current in field-oriented elevator motor drive | |
CN103287937A (en) | Automatic adjustment method and system of elevator starting torque | |
US20150019182A1 (en) | Obtaining parameters of a transport system | |
CN101674996B (en) | Elevator | |
JP2018131283A (en) | Winch control device and crane | |
CN103079978B (en) | Control device for elevator | |
EP3845478A2 (en) | Elevator speed control | |
EP2597062B1 (en) | Elevator controlling method, elevator controlling device, and elevator device using the same | |
CN102857171B (en) | Multi-motor synchronous control system | |
CN103771206B (en) | A kind of compensation method of elevator starter moment | |
CN101687614A (en) | Door controller of elevator | |
CN106672717A (en) | Elevator load torque current correction method and device and elevator control method | |
JP5328892B2 (en) | Elevator door control device | |
CN103492301B (en) | Lift appliance | |
Hewson et al. | Dynamic mechanical load emulation test facility to evaluate the performance of AC inverters | |
US20210331892A1 (en) | Method for testing safety characteristics of an elevator | |
JP5272546B2 (en) | Elevator control device | |
JP5836793B2 (en) | Electric vehicle control device | |
JPH11292411A (en) | Speed control device for elevator | |
CN118316338B (en) | Winch brushless motor operation control method and device | |
WO2017209269A1 (en) | Motor-driven winch device | |
JP6184858B2 (en) | Manual hoisting machine with electric auxiliary motor and operating method of manual hoisting machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |