CN104335166A - 用于执行混洗和操作(混洗-操作)的系统、装置和方法 - Google Patents

用于执行混洗和操作(混洗-操作)的系统、装置和方法 Download PDF

Info

Publication number
CN104335166A
CN104335166A CN201380028378.6A CN201380028378A CN104335166A CN 104335166 A CN104335166 A CN 104335166A CN 201380028378 A CN201380028378 A CN 201380028378A CN 104335166 A CN104335166 A CN 104335166A
Authority
CN
China
Prior art keywords
data element
register
instruction
source
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380028378.6A
Other languages
English (en)
Other versions
CN104335166B (zh
Inventor
I·厄莫拉夫
O-A-V·艾尔莫斯塔法
B·托尔
J·考博尔
A·纳赖金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN104335166A publication Critical patent/CN104335166A/zh
Application granted granted Critical
Publication of CN104335166B publication Critical patent/CN104335166B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30036Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/3001Arithmetic instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30029Logical and Boolean instructions, e.g. XOR, NOT
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30032Movement instructions, e.g. MOVE, SHIFT, ROTATE, SHUFFLE
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30098Register arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30145Instruction analysis, e.g. decoding, instruction word fields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30145Instruction analysis, e.g. decoding, instruction word fields
    • G06F9/3016Decoding the operand specifier, e.g. specifier format

Abstract

描述了用于在计算机处理器中响应于单个数据元素混洗和操作指令执行数据元素混洗并对经混洗的数据元素执行操作的系统、装置和方法的实施例,该指令包括目的地向量寄存器操作数、第一和第二源向量寄存器操作数、立即数值和操作码。

Description

用于执行混洗和操作(混洗-操作)的系统、装置和方法
技术领域
本发明的领域一般涉及计算机处理器架构,更具体地涉及在执行时导致特定结果的指令。
背景技术
高性能计算(HPC)中的常见操作是具有交叉迭代数据依赖性(复现)的循环的处理。例如,以下的部分循环是这种循环的一个示例。
For:
A[i]=A[i-2]*B[i]+C[i]
i+=1
不幸的是,至今为止,没有简化这些循环类型的指令。
附图说明
本发明是通过示例说明的,而不仅局限于各个附图的图示,在附图中,类似的参考标号表示类似的元件,其中:
图1a-d示出VSHP{OP}指令的示例性操作。
图2示出在处理器中使用VSHP{OP}指令的实施例。
图3示出用于处理VSHP{OP}指令的方法的实施例。
图4示出用于处理四数据元素数据通道横向部分和的横向部分和的示例性伪代码。
图5示出根据本发明的一个实施例的1有效位向量写掩码元素的数量同向量尺寸和数据元素尺寸之间的相关性。
图6A示出示例性AVX指令格式。
图6B示出来自图6A的哪些字段构成完整操作码字段和基础操作字段。
图6C示出来自图6A的哪些字段构成寄存器索引字段。
图7A-7B是示出根据本发明的实施例的通用向量友好指令格式及其指令模板的框图。
图8A-8D是示出根据本发明的实施例的示例性专用向量友好指令格式的框图。
图9是根据本发明的一个实施例的寄存器架构的框图。
图10A是示出根据本发明的各实施例的示例性有序流水线和示例性的寄存器重命名的无序发布/执行流水线的框图。
图10B是示出根据本发明的各实施例的要包括在处理器中的有序架构核的示例性实施例和示例性的寄存器重命名的无序发布/执行架构核的框图。
图11A-B示出了更具体的示例性有序核架构的框图,该核将是芯片中的若干逻辑块之一(包括相同类型和/或不同类型的其他核)。
图12是根据本发明的实施例的可具有一个以上核、可具有集成存储器控制器、并且可具有集成图形的处理器的方框图。
图14是根据本发明的实施例的第一更具体的示例性系统的框图。
图15是根据本发明的实施例的第二更具体的示例性系统的框图。
图16是根据本发明的实施例的SoC的框图。
图17是根据本发明的实施例的对比使用软件指令变换器将源指令集中的二进制指令变换成目标指令集中的二进制指令的框图。
具体实施方式
在以下描述中,陈述了多个具体细节。然而,应当理解的是,可不通过这些具体细节来实施本发明的实施例。在其它实例中,未详细示出公知的电路、结构以及技术,以免模糊对本描述的理解。
说明书中对“一个实施例”、“实施例”、“示例实施例”等等的引用表示所描述的实施例可包括特定特征、结构或特性,但是,每一个实施例可以不一定包括该特定特征、结构,或特征。此外,这些短语不一定表示同一实施例。此外,当结合实施例描述特定的特征、结构或特性时,认为本领域普通技术人员能够知晓结合其它实施例来实现这种特征、结构或特性,无论是否明确描述。
概览
指令集、或指令集架构(ISA)是涉及编程的计算机架构的一部分,并且可包括原生数据类型、指令、寄存器架构、寻址模式、存储器架构、中断和异常处理、以及外部输入和输出(I/O)。术语指令在本申请中一般表示宏指令,宏指令是被提供给处理器(或指令转换器,该指令转换器(利用静态二进制转换、包括动态编译的动态二进制转换)转换、变形、仿真或以其他方式将指令转换成将由处理器处理的一个或多个其他指令)以供执行的指令——作为对比,微指令或微操作(微操作)是处理器的解码器解码宏指令的结果。
ISA与微架构不同,微架构是实现指令集的处理器的内部设计。具有不同的微架构的处理器可以共享共同的指令集。例如,奔腾四(Pentium 4)处理器、酷睿(CoreTM)处理器、以及来自加利福尼亚州桑尼威尔(Sunnyvale)的超微半导体有限公司(Advanced Micro Devices,Inc.)的诸多处理器执行几乎相同版本的x86指令集(在更新的版本中加入了一些扩展),但具有不同的内部设计。例如,ISA的相同寄存器架构在不同的微架构中使用公知的技术以不同方法来实现,公知的技术包括专用物理寄存器、使用寄存器重命名机制(例如,使用寄存器别名表(RAT)、重排序缓冲器(ROB)、以及引退寄存器组;使用多个寄存器映射和寄存器池)的一个或多个动态分配物理寄存器,等等。除非另行指出,术语寄存器架构、寄存器组和寄存器在本文中用于指代对软件/编程者可见的寄存器以及指令指定寄存器的方式。在需要特殊性的情况下,形容词“逻辑”、“架构”、或“软件可见的”将用于表示寄存器架构中的寄存器/寄存器组,而不同的形容词将用于指定给定微架构中的寄存器(例如,物理寄存器、重新排序缓冲器、引退寄存器、寄存器池)。
指令集包括一个或多个指令格式。给定指令格式限定各个字段(位的数量、位的位置)以指定要执行的操作(操作码)以及要对其执行该操作的操作数等。通过指令模板(或子格式)的限定来进一步分解一些指令格式。例如,给定指令格式的指令模板可被限定为具有指令格式的字段(所包括的字段通常按照相同顺序,但是至少一些字段具有不同的位位置,因为包括更少的字段)的不同子集,和/或被限定为具有不同解释的给定字段。由此,ISA的每一指令使用给定指令格式(并且如果限定,则在该指令格式的指令模板的给定一个中)来表达,并且包括用于指定操作和操作数的字段。例如,示例性ADD指令具有专用操作码以及包括用于指定该操作码的操作码字段和用于选择操作数的操作数字段(源1/目的地以及源2)的指令格式,并且该ADD指令在指令流中的出现将具有选择专用操作数的操作数字段中的专用内容。
科学、金融、自动向量化的通用、RMS(识别、挖掘以及合成)以及可视和多媒体应用程序(例如,2D/3D图形、图像处理、视频压缩/解压缩、语音识别算法和音频操纵)常常需要对大量的数据项执行相同操作(被称为“数据并行性”)。单指令多数据(SIMD)是指使处理器对多个数据项执行操作的一种指令。SIMD技术特别适于能够在逻辑上将寄存器中的位分割为若干个固定尺寸的数据元素的处理器,其中每一个数据元素都表示单独的值。例如,256位寄存器中的位可以作为四个单独的64位打包的数据元素(四字(Q)尺寸的数据元素)、八个单独的32位打包的数据元素(双字(D)尺寸的数据元素)、十六单独的16位打包的数据元素(字(W)尺寸的数据元素)、或三十二个单独的8位数据元素(字节(B)尺寸的数据元素),被指定为要被操作的源操作数。这种类型的数据被称为打包数据类型或向量数据类型,这种数据类型的操作数被称为打包数据操作数或向量操作数。换句话说,打包数据项或向量指的是打包数据元素的序列,并且打包数据操作数或向量操作数是SIMD指令(也称为打包数据指令或向量指令)的源操作数或目的地操作数。
作为示例,一种类型的SIMD指令指定要以纵向方式对两个源向量操作数执行的单个向量操作,以生成相同尺寸的、具有相同数量的数据元素、且有相同数据元素顺序的目的地向量操作数(也称为结果向量操作数)。源向量操作数中的数据元素被称为源数据元素,而目的地向量操作数中的数据元素被称为目的地或结果数据元素。这些源向量操作数具有相同尺寸,并包含相同宽度的数据元素,因此它们包含相同数量的数据元素。两个源向量操作数中的相同位位置中的源数据元素形成数据元素对(也称为相对应的数据元素;即,每个源操作数的数据元素位置0中的数据元素相对应,每个源操作数的数据元素位置1中的数据元素相对应,以此类推)。分别地对这些源数据元素对中的每一对执行由该SIMD指令所指定的操作,以生成匹配数量的结果数据元素,如此,每一对源数据元素都具有对应的结果数据元素。由于操作是纵向的,并且由于结果向量操作数尺寸相同、具有相同数量的数据元素、且结果数据元素与源向量操作数以相同数据元素顺序来存储,因此,结果数据元素与源向量操作数中的它们的对应的源数据元素对处于结果向量操作数的相同位位置中。除此示例性类型的SIMD指令之外,还有各种其他类型的SIMD指令(例如,仅有一个或具有两个以上的源向量操作数的SIMD指令;以水平方式操作的SIMD指令;生成不同尺寸的结果向量操作数的SIMD指令;具有不同尺寸的数据元素的SIMD指令;和/或具有不同的数据元素顺序的SIMD指令)。应该理解,术语目的地向量操作数(或目的地操作数)被限定为执行由指令所指定的操作的直接结果,包括将该目的地操作数存储在某一位置(寄存器或在由该指令所指定的存储器地址),以便它可以作为源操作数由另一指令访问(由另一指令指定该同一个位置)。
在以下描述中,在描述该指令集架构中的该特定指令的操作之前,需要解释一些项目。一个这样的项叫做“写掩码寄存器”,其一般用于断定(predicate)操作数,以有条件地控制每元素计算操作(下面,也可以使用术语“掩码寄存器”,是指诸如下面所讨论的“k”寄存器之类的写掩码寄存器)。如下文中使用,写掩码寄存器存储多个位(16、32、64等等),其中写掩码寄存器中的每个有效位控制向量寄存器的打包数据元素在SIMD处理期间的操作/更新。典型地,存在超过一个写掩码寄存器可供处理器核使用。
该指令集架构包括至少一些SIMD指令,该至少一些SIMD指令指定向量操作并具有用于从这些向量寄存器中选择源寄存器和/或目的地寄存器的字段(示例性的SIMD指令可指定要对向量寄存器中的一个或多个向量寄存器的内容执行的向量操作,并且将该向量操作的结果存储在向量寄存器之一中)。本发明的不同实施例可具有不同尺寸的向量寄存器,并支持更多/更少/不同尺寸的数据元素。
由SIMD指令所指定的多比特数据元素的大小(例如,字节、字、双字、四倍长字)确定矢量寄存器内的数据元素位置摂的比特位置,而矢量操作数的大小确定数据元素的数量。打包数据元素指的是存储在特定位置中的数据。换句话说,依赖于目的地操作数中的数据元素的尺寸和目的地操作数的尺寸(目的地操作数中总的位数量)(或者换句话说,依赖于目的地操作数的尺寸和该目的地操作数中的数据元素的数量),作为结果的向量操作数内的多位数据元素位置的位位置改变(例如,如果作为结果的向量操作数的目的地是向量寄存器,则该目的地向量寄存器内的多位数据元素位置的位位置改变)。例如,在对32位数据元素进行操作的向量操作(数据元素位置0占据位位置31:0,数据元素位置1占据位位置63:32,以此类推)与对64位数据元素进行操作的向量操作(数据元素位置0占据位位置63:0,数据元素位置1占据位位置127:64,以此类推)之间,多位数据元素的位位置不同。
此外,根据本发明的一个实施例,在1有效位向量写掩码元素的数量与向量尺寸和数据元素尺寸之间存在如图5所示的关联。示出了128位、256位以及512位的向量尺寸,不过其他宽度也是可能的。考虑了8位字节(B)、16位字(W)、32位双字(D)或单精度浮点以及64位四字(Q)或双精度浮点的数据元素尺寸,不过其他宽度也是可能的。如图所示,当矢量大小是128比特时,当矢量的数据元素大小是8比特时16比特可以用于掩码,当矢量的数据元素大小是16比特时8比特可以用于掩码,当矢量的数据元素大小是32比特时4比特可以用于掩码,且当矢量的数据元素大小是64比特时2比特可以用于掩码。当矢量大小是256比特时,当打包的数据元素宽度是8比特时32比特可以用于掩码,当矢量的数据元素大小是16比特时16比特可以用于掩码,当矢量的数据元素大小是32比特时8比特可以用于掩码,当矢量的数据元素大小是64比特时4比特可以用于掩码。当矢量大小是512比特时,当矢量的数据元素大小是8比特时64比特可以用于掩码,当矢量的数据元素大小是16比特时32比特可以用于掩码,当矢量的数据元素大小是32比特时16比特可以用于掩码,且当矢量的数据元素大小是64比特时,8比特可以用于掩码。
依赖于向量尺寸和数据元素尺寸的组合,可将所有64位、或仅64位的子集用作写掩码。一般而言,当使用单个、每元素掩码控制比特时,用于掩码(有效比特)的矢量写掩码寄存器中的比特的数量等于矢量大小(以比特为单位)除以矢量的数据元素大小(以比特为单位)。
以下是通常称为向量(avector)混洗和操作(“VSHP{OP}”)指令的指令实施例和可用于执行此类指令的系统、架构、指令格式等等的实施例,此类指令有益于包括循环向量化在内的若干不同领域。”VSHP{OP}指令的执行导致第一数据元素源(例如寄存器)的由指令的立即数定义的若干数据元素的混洗,以及对第一数据元素源的经混洗数据元素与第二数据元素源的未经混洗数据元素的操作。
利用该指令,背景的循环可被重新编码为(其中目的地寄存器在右侧):
Kl=3
FOR:
VMOVUPS A[i-2]{K1},ZMM1
VMOVUPS B[i],ZMM3
VMULPS ZMM1{K1},ZMM3,ZMM2
VSHPMULPS ZMM2,ZMM3,ZMM2,2
VMOVUPS C[i],ZMM4
VADDPS ZMM2,ZMM4,ZMM2
VMOVUPS ZMM2,A[i]
i+=16
图1(a)-(d)示出VSHP{OP}指令的操作的示例性图释。尽管这些示例将向量寄存器用于源和目的地两者,但应理解可将存储器位置用于源和/或目的地中的一个或多个。
图1(a)示出示例性VSHP{OP},其中源寄存器中的一个也是目的地寄存器,且操作是乘法。在该示例中,在任何混洗或乘法之前,第一源寄存器101的全部8个数据元素具有值1。该数量的数据元素仅仅是示例性的,且可只用其它数量和尺寸的数据元素。第二源寄存器103具有从0至7范围的数据元素。该指令的立即数值是“1”。这表示在任何乘法之前第一源寄存器的数据元素位置将被混洗一,其中混洗被定义为数据元素位置减去立即数。总之,该指令的操作是:目的地寄存器的特定数据元素位置(dest[j])等于将第二源的数据元素位置(src2[j])施加到第一源的经混洗的数据元素位置(srcl[j-imm])的操作(在这种情况下为乘法)。例如,在该示例的乘法操作的情况下,该指令将导致:按照数据元素位置,dest[j]=srcl[j-imm]*src2[j]。在该示例中,在数据元素位置0,没有混洗,所以没有发生乘法操作。然而,在替换实施例中,仍将发生乘法,但相对于0值。在数据元素位置1,存储在目的地数据元素位置1中的结果是利用第一源寄存器的数据元素位置1的数据(这是值1)与第二源寄存器的数据元素位置2的数据(这也是值1)的乘法功能单元的乘法结果,从而导致1*1的结果1被存储在目的地寄存器中的数据元素位置1处。可将相同的功能单元用于每次乘法,将不同的功能单元用于每次乘法,或在两者之间。
此外,在一些实施例中,写掩码寄存器用于对有效数据元素位置进行掩码操作,以免对其执行操作。例如,在图1(a)中,如果对第三数据元素(数据元素[2])进行掩码,则不会执行操作,且目的地寄存器中在该位置处的值将保持为1且不会如所示地变为2。
图1(b)示出示例性VSHP{OP},其中源和目的地不相同,且操作是加法。在该示例中,示出每个源仅4个数据元素。然而,应当理解可使用更多或更少的数据元素。另外,故意对数据元素的尺寸不作限定,但是可使用任何尺寸,诸如8-、16-、32-、64-、128-、256-位等等。
第一和第二源寄存器105、107具有如所示的数据元素。该指令的立即数值是“1”。这表示在任何加法之前第一源寄存器的数据元素位置将被混洗一,其中混洗被定义为数据元素位置减去立即数。总之,该指令的操作是:目的地寄存器的特定数据元素位置(dest[j])等于将第二源的数据元素位置(src2[j])施加到第一源的经混洗的数据元素位置(srcl[j-imm])的操作(在这种情况下为加法)。例如,在该示例的加法操作的情况下,该指令将导致:按照数据元素位置,dest[j]=srcl[j-imm]*src2[j]。在该示例中,在数据元素位置0,没有混洗,所以没有发生加法操作。如此,目的地不改变(图中标记为NC)。然而,在替换实施例中,仍将发生加法,但相对于0值。在数据元素位置1,存储在目的地数据元素位置1中的结果是利用第一源寄存器的数据元素位置1的数据(这是值2)与第二源寄存器的数据元素位置2的数据(这是3)的加法功能单元的加法结果,从而导致2+3的结果5被存储在目的地寄存器中的数据元素位置1处。可将相同的功能单元用于每次加法,将不同的功能单元用于每次加法,或在两者之间。
图1(c)示出示例性VSHP{OP},其中源和目的地不相同,且操作是除法。在该示例中,示出每个源仅4个数据元素。然而,应当理解可使用更多或更少的数据元素。另外,故意对数据元素的尺寸不作限定,但是可使用任何尺寸,诸如8-、16-、32-、64-、128-、256-位等等。
第一和第二源寄存器113、115具有如所示的数据元素。该指令的立即数值是“2”。这表示在任何除法之前第一源寄存器的数据元素位置将被混洗二,其中混洗被定义为数据元素位置减去立即数。总之,该指令的操作是:目的地寄存器的特定数据元素位置(dest[j])等于将第二源的数据元素位置(src2[j])施加到第一源的经混洗的数据元素位置(srcl[j-imm])的操作(在这种情况下为除法)。例如,在该示例的除法操作的情况下,该指令将导致:按照数据元素位置,dest[j]=srcl[j-imm]/src2[j]。在该示例中,在数据元素位置0,没有混洗,所以没有发生除法操作。如此,目的地不改变(图中标记为NC)。然而,在替换实施例中,仍将发生除法,但相对于0值。在数据元素位置2,存储在目的地数据元素位置2中的结果是利用第一源寄存器的数据元素位置0的数据(这是值1)与第二源寄存器的数据元素位置2的数据(这是2)的除法功能单元的除法结果,从而导致1/2的结果0.5被存储在目的地寄存器中的数据元素位置2处。可将相同的功能单元用于每次除法,将不同的功能单元用于每次除法,或在两者之间。
图1(d)示出示例性VSHP{OP},其中源和目的地不相同,且操作是减法。在该示例中,示出每个源仅4个数据元素。然而,应当理解可使用更多或更少的数据元素。另外,故意对数据元素的尺寸不作限定,但是可使用任何尺寸,诸如8-、16-、32-、64-、128-、256-位等等。
第一和第二源寄存器117、119具有如所示的数据元素。该指令的立即数值是“2”。这表示在任何减法之前第一源寄存器的数据元素位置将被混洗二,其中混洗被定义为数据元素位置减去立即数。总之,该指令的操作是:目的地寄存器的特定数据元素位置(dest[j])等于将第二源的数据元素位置(src2[j])施加到第一源的经混洗的数据元素位置(srcl[j-imm])的操作(在这种情况下为减法)。例如,在该示例的减法操作的情况下,该指令将导致:按照数据元素位置,dest[j]=srcl[j-imm]-src2[j]。在该示例中,在数据元素位置0,没有混洗,所以没有发生减法操作。如此,目的地不改变(图中标记为NC)。然而,在替换实施例中,仍将发生减法,但相对于0值。在数据元素位置2,存储在目的地数据元素位置2中的结果是利用第一源寄存器的数据元素位置0的数据(这是值4)与第二源寄存器的数据元素位置2的数据(这是2)的减法功能单元的减法结果,从而导致4-2的结果2被存储在目的地寄存器中的数据元素位置2处。可将相同的功能单元用于每次减法,将不同的功能单元用于每次减法,或在两者之间。
示例性格式
该指令的示例性格式是“VSHP{OP}ZMMl{kl},ZMM2,ZMM3,IMM”,其中操作上ZMM1是目的地向量寄存器,ZMM2和ZMM3是源向量寄存器(诸如128-、256-、512-位寄存器等)或源存储器位置,IMM是定义混洗量的立即数值(诸如8-、16-、32-位值),VSHP{OP}是指令的操作码。操作码的{OP}部分定义将在经混洗和未经混洗的数据上执行的操作,诸如数学操作(如加法、减法、乘法、除法、合并的多重加(fused multiple add)等)(可执行任何数据操纵操作)、布尔操作(如AND、OR、XOR等)或任何其它操作。数据元素的尺寸可被定义在该指令的“前缀”中,诸如通过使用数据粒度位的指示来定义。在多数实施例中,该位将指示每个数据元素是32位或64位,不过也可使用其他变型。在其它实施例中,通过该指令的操作码来限定打包数据元素的尺寸。例如,关于打包数据元素是字节、字、双字或四字尺寸的指示。记号{kl}指示该指令可如上所指出的使用写掩码。另外,在一些实施例中,目的地是存储器位置。
示例性的执行方法
图2示出在处理器中使用VSHP{OP}指令的实施例。在201,取出VSHP{OP}指令,该指令具有目的地向量寄存器操作数、至少两个源向量寄存器操作数、立即数值以及操作码。然而,该示例使用向量寄存器作为源操作数,
在203,通过解码逻辑解码VSHP{OP}指令。依赖于该指令的格式,可在该阶段解释多种数据,诸如是否将进行数据转换、要写入和检索哪些寄存器、要访问什么存储器地址、等等。
在205,检索/读取源操作数值。例如,读取源寄存器或访问一个或多个存储器位置。
在207,通过诸如一个或多个功能单元之类的执行资源来执行VSHP{OP}指令(或包括诸如微操作之类的之类的操作),以对第一源的数据元素位置执行由立即数定义的混洗和对第一源的经混洗的数据元素位置与第二源的未经混洗的数据元素位置执行操作。并非第一源的所有数据元素位置可用于稍后的操作。通过从每个数据元素位置减去立即数来限定第一源的混洗。
在209,每个操作结果被存储在目的地寄存器的与第二源的未经混洗的数据元素位置相对应的打包数据元素位置中。虽然分别示出了207和209,但在一些实施例中,它们作为指令执行的一部分一起执行。
图3示出用于处理VSHP{OP}指令的方法的实施例。更具体地,该示图详细描述了用于处理数据位置的步骤。在该实施例中,假定先前已经执行了操作201-205中的一些(若不是全部),然而未示出那些操作,以免模糊下文呈现的细节。例如,未示出取出和解码,也未示出操作数检索。
在301,计算第一源寄存器的最低有效数据元素位置减去立即数的值(例如,数据元素位置0减去立即数)。这提供了可对其执行操作的第一数据元素位置。在几乎所有的实例中,这将是小于1的值,并且如上所指出的该值在第一源中不具有相应的条目。如此,在大多数实施例,跳过该步骤。
在303,确定所计算的值是否大于或等于0。如果否,则该值在第一源中没有对应的条目,因此在305,在第二源的最低有效数据元素位置处通常不执行操作,且没有更新结果将被存储在目的地寄存器的最低有效数据元素位置中。在307,计算第一源寄存器的下一最低有效数据元素位置减去立即数的值。对该计算值进行303处的确定。
如果所计算的值大于或等于0,则在309,执行由操作码指定的操作。对来自第一源的与所计算的值对应的数据元素位置的数据和来自第二源的在301或307的计算中所使用的数据元素位置处的数据执行该操作。例如,回看图1(a),第一次导致计算的值大于或等于0的所使用的数据元素位置是数据元素位置1(1减去立即数1等于0)。在这一点,存在第一源的混洗和操作(混洗-操作)。
在311,操作的结果被存储到目的地寄存器中的与301或307的计算中所使用的数据元素位置对应的数据元素位置中。
在313,确定该数据元素位置在目的地寄存器中是否是最高有效。如果是,则该方法和指令已经完成。如果否,则轮到下一个最低有效数据元素位置进行307的计算。
当然,可执行上述步骤的变型。例如,方法可在最高有效数据元素位置开始,并且向后进行。另外,尽管已经以顺序方式描述了以上内容,但容易地将方法调节为并行。例如,301、307的计算均可并行完成,309的操作并行完成,和/或311的结果存储并行完成。
图4示出用于上述指令的示例性伪代码。
示例性指令格式
本文中所描述的指令的实施例可以不同的格式体现。例如,本文描述的指令可体现为VEX、通用向量友好或其它格式。以下讨论VEX和通用向量友好格式的细节。另外,在下文中详述示例性系统、架构、以及流水线。指令的实施例可在这些系统、架构、以及流水线上执行,但是不限于详述的系统、架构、以及流水线。
VEX指令格式
VEX编码允许指令具有两个以上操作数,并且允许SIMD向量寄存器比128位长。VEX前缀的使用提供了三个操作数(或者更多)句法。例如,先前的两操作数指令执行改写源操作数的操作(诸如A=A+B)。VEX前缀的使用使操作数执行非破坏性操作,诸如A=B+C。
图6A示出示例性AVX指令格式,包括VEX前缀602、实操作码字段630、MoD R/M字节640、SIB字节650、位移字段662以及IMM8672。图6B示出来自图6A的哪些字段构成完整操作码字段674和基础操作字段642。图6C示出来自图6A的哪些字段构成寄存器索引字段644。
VEX前缀(字节0-2)602以三字节形式进行编码。第一字节是格式字段640(VEX字节0,位[7:0]),该格式字段640包含明确的C4字节值(用于区分C4指令格式的唯一值)。第二-第三字节(VEX字节1-2)包括提供专用能力的多个位字段。具体地,REX字段605(VEX字节1,位[7-5])由VEX.R位字段(VEX字节1,位[7]–R)、VEX.X位字段(VEX字节1,位[6]–X)以及VEX.B位字段(VEX字节1,位[5]–B)组成。这些指令的其他字段对如在本领域中已知的寄存器索引的较低三个位(rrr、xxx以及bbb)进行编码,由此可通过增加VEX.R、VEX.X以及VEX.B来形成Rrrr、Xxxx以及Bbbb。操作码映射字段615(VEX字节1,位[4:0]–mmmmm)包括对隐含的前导操作码字节进行编码的内容。W字段664(VEX字节2,位[7]–W)由记号VEX.W表示,并且提供取决于该指令而不同的功能。VEX.vvvv 620(VEX字节2,位[6:3]-vvvv)的作用可包括如下:1)VEX.vvvv编码第一源寄存器操作数且对具有两个或两个以上源操作数的指令有效,第一源寄存器操作数以反转(1补码)形式被指定;2)VEX.vvvv编码目的地寄存器操作数,目的地寄存器操作数针对特定向量位移以1补码的形式被指定;或者3)VEX.vvvv不编码任何操作数,保留该字段,并且应当包含1111b。如果VEX.L 668尺寸字段(VEX字节2,位[2]-L)=0,则它指示128位向量;如果VEX.L=1,则它指示256位向量。前缀编码字段625(VEX字节2,位[1:0]-pp)提供了用于基础操作字段的附加位。
实操作码字段630(字节3)还被称为操作码字节。操作码的一部分在该字段中指定。
MOD R/M字段640(字节4)包括MOD字段642(位[7-6])、Reg字段644(位[5-3])、以及R/M字段646(位[2-0])。Reg字段644的作用可包括如下:对目的地寄存器操作数或源寄存器操作数(Rrrr中的rrr)进行编码;或者被视为操作码扩展且不用于对任何指令操作数进行编码。R/M字段646的作用可包括如下:对引用存储器地址的指令操作数进行编码;或者对目的地寄存器操作数或源寄存器操作数进行编码。
比例、索引、基址(SIB)-比例字段650(字节5)的内容包括用于存储器地址生成的SS652(位[7-6])。先前已经针对寄存器索引Xxxx和Bbbb参考了SIB.xxx 654(位[5-3])和SIB.bbb 656(位[2-0])的内容。
位移字段662和立即数字段(IMM8)672包含地址数据。
通用向量友好指令格式
向量友好指令格式是适于向量指令(例如,存在专用于向量操作的特定字段)的指令格式。尽管描述了其中通过向量友好指令格式支持向量和标量运算两者的实施例,但是替代实施例仅使用通过向量友好指令格式的向量运算。
图7A-7B是示出根据本发明的实施例的通用向量友好指令格式及其指令模板的框图。图7A是示出根据本发明的实施例的通用向量友好指令格式及其A类指令模板的框图;而图7B是示出根据本发明的实施例的通用向量友好指令格式及其B类指令模板的框图。具体地,针对通用向量友好指令格式700定义A类和B类指令模板,两者包括无存储器访问705的指令模板和存储器访问720的指令模板。在向量友好指令格式的上下文中的术语“通用”指不束缚于任何专用指令集的指令格式。
尽管将描述其中向量友好指令格式支持64字节向量操作数长度(或尺寸)与32位(4字节)或64位(8字节)数据元素宽度(或尺寸)(并且由此,64字节向量由16双字尺寸的元素或者替代地8四字尺寸的元素组成)、64字节向量操作数长度(或尺寸)与16位(2字节)或8位(1字节)数据元素宽度(或尺寸)、32字节向量操作数长度(或尺寸)与32位(4字节)、64位(8字节)、16位(2字节)、或8位(1字节)数据元素宽度(或尺寸)、以及16字节向量操作数长度(或尺寸)与32位(4字节)、64位(8字节)、16位(2字节)、或8位(1字节)数据元素宽度(或尺寸)的本发明的实施例,但是替代实施例可支持更大、更小、和/或不同的向量操作数尺寸(例如,256字节向量操作数)与更大、更小或不同的数据元素宽度(例如,128位(16字节)数据元素宽度)。
图7A中的A类指令模板包括:1)在无存储器访问705的指令模板内,示出无存储器访问的完全舍入控制型操作710的指令模板、以及无存储器访问的数据变换型操作715的指令模板;以及2)在存储器访问720的指令模板内,示出存储器访问的时效性725的指令模板和存储器访问的非时效性730的指令模板。图7B中的B类指令模板包括:1)在无存储器访问705的指令模板内,示出无存储器访问的写掩码控制的部分舍入控制型操作712的指令模板以及无存储器访问的写掩码控制的vsize型操作717的指令模板;以及2)在存储器访问720的指令模板内,示出存储器访问的写掩码控制727的指令模板。
通用向量友好指令格式700包括以下列出的按照在图7A-7B中示出的顺序的如下字段。
格式字段740-该字段中的特定值(指令格式标识符值)唯一地标识向量友好指令格式,并且由此标识指令在指令流中以向量友好指令格式出现。由此,该字段对于仅具有通用向量友好指令格式的指令集是不需要的,在这个意义上该字段是任选的。
基础操作字段742-其内容区分不同的基础操作。
寄存器索引字段744-其内容直接或者通过地址生成来指定源或目的地操作数在寄存器中或者在存储器中的位置。这些字段包括足够数量的位以从PxQ(例如,32x512、16x128、32x1024、64x1024)个寄存器组选择N个寄存器。尽管在一个实施例中N可高达三个源和一个目的地寄存器,但是替代实施例可支持更多或更少的源和目的地寄存器(例如,可支持高达两个源,其中这些源中的一个源还用作目的地,可支持高达三个源,其中这些源中的一个源还用作目的地,可支持高达两个源和一个目的地)。
修饰符(modifier)字段746-其内容将指定存储器访问的以通用向量指令格式出现的指令与不指定存储器访问的以通用向量指令格式出现的指令区分开;即在无存储器访问705的指令模板与存储器访问720的指令模板之间进行区分。存储器访问操作读取和/或写入到存储器层次(在一些情况下,使用寄存器中的值来指定源和/或目的地地址),而非存储器访问操作不这样(例如,源和/或目的地是寄存器)。尽管在一个实施例中,该字段还在三种不同的方式之间选择以执行存储器地址计算,但是替代实施例可支持更多、更少或不同的方式来执行存储器地址计算。
扩充操作字段750-其内容区分除基础操作以外还要执行各种不同操作中的哪一个操作。该字段是针对上下文的。在本发明的一个实施例中,该字段被分成类字段768、α字段752、以及β字段754。扩充操作字段750允许在单一指令而非2、3或4个指令中执行多组共同的操作。
比例字段760-其内容允许用于存储器地址生成(例如,用于使用2 *索引+基址的地址生成)的索引字段的内容的按比例缩放。
位移字段762A-其内容用作存储器地址生成的一部分(例如,用于使用2比例*索引+基址+位移的地址生成)。
位移因数字段762B(注意,位移字段762A直接在位移因数字段762B上的并置指示使用一个或另一个)-其内容用作地址生成的一部分,它指定通过存储器访问的尺寸(N)按比例缩放的位移因数,其中N是存储器访问中的字节数量(例如,用于使用2比例*索引+基址+按比例缩放的位移的地址生成)。忽略冗余的低阶位,并且因此将位移因数字段的内容乘以存储器操作数总尺寸(N)以生成在计算有效地址中使用的最终位移。N的值由处理器硬件在运行时基于完整操作码字段774(稍后在本文中描述)和数据操纵字段754C确定。位移字段762A和位移因数字段762B可以不用于无存储器访问705的指令模板和/或不同的实施例可实现两者中的仅一个或不实现两者中的任一个,在这个意义上位移字段762A和位移因数字段762B是任选的。
数据元素宽度字段764-其内容区分使用多个数据元素宽度中的哪一个(在一些实施例中用于所有指令,在其他实施例中只用于一些指令)。如果支持仅一个数据元素宽度和/或使用操作码的某一方面来支持数据元素宽度,则该字段是不需要的,在这个意义上该字段是任选的。
写掩码字段770-其内容在每一数据元素位置的基础上控制目的地向量操作数中的数据元素位置是否反映基础操作和扩充操作的结果。A类指令模板支持合并-写掩码操作,而B类指令模板支持合并写掩码操作和归零写掩码操作两者。当合并时,向量掩码允许在执行任何操作期间保护目的地中的任何元素集免于更新(由基础操作和扩充操作指定);在另一实施例中,保持其中对应掩码位具有0的目的地的每一元素的旧值。相反,当归零时,向量掩码允许在执行任何操作期间使目的地中的任何元素集归零(由基础操作和扩充操作指定);在一个实施例中,目的地的元素在对应掩码位具有0值时被设为0。该功能的子集是控制执行的操作的向量长度的能力(即,从第一个到最后一个要修改的元素的跨度),然而,被修改的元素不一定要是连续的。由此,写掩码字段770允许部分向量操作,这包括加载、存储、算术、逻辑等。尽管描述了其中写掩码字段770的内容选择了多个写掩码寄存器中的包含要使用的写掩码的一个写掩码寄存器(并且由此写掩码字段770的内容间接地标识了要执行的掩码操作)的本发明的实施例,但是替代实施例相反或另外允许掩码写字段770的内容直接地指定要执行的掩码操作。
立即数字段772-其内容允许对立即数的指定。该字段在实现不支持立即数的通用向量友好格式中不存在且在不使用立即数的指令中不存在,在这个意义上该字段是任选的。
类字段768-其内容在不同类的指令之间进行区分。参考图7A-B,该字段的内容在A类和B类指令之间进行选择。在图7A-B中,圆角方形用于指示专用值存在于字段中(例如,在图7A-B中分别用于类字段768的A类768A和B类768B)。
A类指令模板
在A类非存储器访问705的指令模板的情况下,α字段752被解释为其内容区分要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的舍入型操作710和无存储器访问的数据变换型操作715的指令模板分别指定舍入752A.1和数据变换752A.2)的RS字段752A,而β字段754区分要执行指定类型的操作中的哪一种。在无存储器访问705指令模板中,比例字段760、位移字段762A以及位移比例字段762B不存在。
无存储器访问的指令模板-完全舍入控制型操作
在无存储器访问的完全舍入控制型操作710的指令模板中,β字段754被解释为其内容提供静态舍入的舍入控制字段754A。尽管在本发明的所述实施例中舍入控制字段754A包括抑制所有浮点异常(SAE)字段756和舍入操作控制字段758,但是替代实施例可支持、可将这些概念两者都编码成相同的字段或者仅具有这些概念/字段中的一个或另一个(例如,可仅有舍入操作控制字段758)。
SAE字段756-其内容区分是否停用异常事件报告;当SAE字段756的内容指示启用抑制时,给定指令不报告任何种类的浮点异常标志且不唤起任何浮点异常处理程序。
舍入操作控制字段758-其内容区分执行一组舍入操作中的哪一个(例如,向上舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控制字段758允许在每一指令的基础上改变舍入模式。在其中处理器包括用于指定舍入模式的控制寄存器的本发明的一个实施例中,舍入操作控制字段750的内容优先于该寄存器值。
无存储器访问的指令模板-数据变换型操作
在无存储器访问的数据变换型操作715的指令模板中,β字段754被解释为数据变换字段754B,其内容区分要执行多个数据变换中的哪一个(例如,无数据变换、混合、广播)。
在A类存储器访问720的指令模板的情况下,α字段752被解释为驱逐提示字段752B,其内容区分要使用驱逐提示中的哪一个(在图7A中,对于存储器访问时效性725的指令模板和存储器访问非时效性730的指令模板分别指定时效性的752B.1和非时效性的752B.2),而β字段754被解释为数据操纵字段754C,其内容区分要执行多个数据操纵操作(也称为基元(primitive))中的哪一个(例如,无操纵、广播、源的向上转换、以及目的地的向下转换)。存储器访问720的指令模板包括比例字段760、以及任选的位移字段762A或位移比例字段762B。
向量存储器指令使用转换支持来执行来自存储器的向量加载并将向量存储到存储器。如同寻常的向量指令,向量存储器指令以数据元素式的方式与存储器来回传输数据,其中实际传输的元素由选为写掩码的向量掩码的内容规定。
存储器访问的指令模板-时效性的
时效性的数据是可能足够快地重新使用以从高速缓存受益的数据。然而,这是提示,且不同的处理器可以不同的方式实现它,包括完全忽略该提示。
存储器访问的指令模板-非时效性的
非时效性的数据是不可能足够快地重新使用以从第一级高速缓存中的高速缓存受益且应当被给予驱逐优先级的数据。然而,这是提示,且不同的处理器可以不同的方式实现它,包括完全忽略该提示。
B类指令模板
在B类指令模板的情况下,α字段752被解释为写掩码控制(Z)字段752C,其内容区分由写掩码字段770控制的写掩码操作应当是合并还是归零。
在B类非存储器访问705的指令模板的情况下,β字段754的一部分被解释为RL字段757A,其内容区分要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的写掩码控制部分舍入控制类型操作712的指令模板和无存储器访问的写掩码控制VSIZE型操作717的指令模板分别指定舍入757A.1和向量长度(VSIZE)757A.2),而β字段754的其余部分区分要执行指定类型的操作中的哪一种。在无存储器访问705指令模板中,比例字段760、位移字段762A以及位移比例字段762B不存在。
在无存储器访问的写掩码控制的部分舍入控制型操作710的指令模板中,β字段754的其余部分被解释为舍入操作字段759A,并且停用异常事件报告(给定指令不报告任何种类的浮点异常标志且不唤起任何浮点异常处理程序)。
舍入操作控制字段759A-只作为舍入操作控制字段758,其内容区分执行一组舍入操作中的哪一个(例如,向上舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控制字段759A允许在每一指令的基础上改变舍入模式。在其中处理器包括用于指定舍入模式的控制寄存器的本发明的一个实施例中,舍入操作控制字段750的内容优先于该寄存器值。
在无存储器访问的写掩码控制VSIZE型操作717的指令模板中,β字段754的其余部分被解释为向量长度字段759B,其内容区分要执行多个数据向量长度中的哪一个(例如,128字节、256字节、或512字节)。
在B类存储器访问720的指令模板的情况下,β字段754的一部分被解释为广播字段757B,其内容区分是否要执行广播型数据操纵操作,而β字段754的其余部分被解释为向量长度字段759B。存储器访问720的指令模板包括比例字段760、以及任选的位移字段762A或位移比例字段762B。
针对通用向量友好指令格式700,示出完整操作码字段774包括格式字段740、基础操作字段742以及数据元素宽度字段764。尽管示出了其中完整操作码字段774包括所有这些字段的一个实施例,但是在不支持所有这些字段的实施例中,完整操作码字段774包括少于所有的这些字段。完整操作码字段774提供操作码(opcode)。
扩充操作字段750、数据元素宽度字段764以及写掩码字段770允许在每一指令的基础上以通用向量友好指令格式指定这些特征。
写掩码字段和数据元素宽度字段的组合创建各种类型的指令,因为这些指令允许基于不同的数据元素宽度应用该掩码。
在A类和B类内出现的各种指令模板在不同的情形下是有益的。在本发明的一些实施例中,不同处理器或者处理器内的不同核可支持仅A类、仅B类、或者可支持两类。举例而言,旨在用于通用计算的高性能通用无序核可仅支持B类,旨在主要用于图形和/或科学(吞吐量)计算的核可仅支持A类,并且旨在用于两者的核可支持两者(当然,具有来自两类的模板和指令的一些混合、但是并非来自两类的所有模板和指令的核在本发明的范围内)。同样,单一处理器可包括多个核,所有核支持相同的类或者其中不同的核支持不同的类。举例而言,在具有单独的图形和通用核的处理器中,图形核中的旨在主要用于图形和/或科学计算的一个核可仅支持A类,而通用核中的一个或多个可以是具有旨在用于通用计算的仅支持B类的无序执行和寄存器重命名的高性能通用核。不具有单独的图形核的另一处理器可包括既支持A类又支持B类的一个或多个通用有序或无序核。当然,在本发明的不同实施例中,来自一类的特征也可在其他类中实现。可使以高级语言撰写的程序成为(例如,及时编译或者统计编译)各种不同的可执行形式,包括:1)仅具有用于执行的目标处理器支持的类的指令的形式;或者2)具有使用所有类的指令的不同组合而编写的替代例程且具有选择这些例程以基于由当前正在执行代码的处理器支持的指令而执行的控制流代码的形式。
示例性专用向量友好指令格式
图8是示出根据本发明的实施例的示例性专用向量友好指令格式的框图。图8示出专用向量友好指令格式800,其指定位置、尺寸、解释和字段的次序、以及那些字段中的一些字段的值,在这个意义上向量友好指令格式800是专用的。专用向量友好指令格式800可用于扩展x86指令集,并且由此一些字段类似于在现有x86指令集及其扩展(例如,AVX)中使用的那些字段或与之相同。该格式保持与具有扩展的现有x86指令集的前缀编码字段、实操作码字节字段、MOD R/M字段、SIB字段、位移字段、以及立即数字段一致。示出来自图7的字段,来自图8的字段映射到来自图7的字段。
应当理解,虽然出于说明的目的在通用向量友好指令格式700的上下文中参考专用向量友好指令格式800描述了本发明的实施例,但是本发明不限于专用向量友好指令格式800,除非另有声明。例如,通用向量友好指令格式700构想各种字段的各种可能的尺寸,而专用向量友好指令格式800被示为具有特定尺寸的字段。作为具体示例,尽管在专用向量友好指令格式800中数据元素宽度字段764被示为一位字段,但是本发明不限于此(即,通用向量友好指令格式700构想数据元素宽度字段764的其他尺寸)。
通用向量友好指令格式700包括以下列出的按照图8A中示出的顺序的如下字段。
EVEX前缀(字节0-3)802-以四字节形式进行编码。
格式字段740(EVEX字节0,位[7:0])-第一字节(EVEX字节0)是格式字段740,并且它包含0x62(在本发明的一个实施例中用于区分向量友好指令格式的唯一值)。
第二-第四字节(EVEX字节1-3)包括提供专用能力的多个位字段。
REX字段805(EVEX字节1,位[7-5])-由EVEX.R位字段(EVEX字节1,位[7]–R)、EVEX.X位字段(EVEX字节1,位[6]–X)以及(757BEX字节1,位[5]–B)组成。EVEX.R、EVEX.X和EVEX.B位字段提供与对应VEX位字段相同的功能,并且使用1补码的形式进行编码,即ZMM0被编码为1111B,ZMM15被编码为0000B。这些指令的其他字段对如在本领域中已知的寄存器索引的较低三个位(rrr、xxx、以及bbb)进行编码,由此可通过增加EVEX.R、EVEX.X以及EVEX.B来形成Rrrr、Xxxx以及Bbbb。
REX’字段710-这是REX’字段710的第一部分,并且是用于对扩展的32个寄存器集合的较高16个或较低16个寄存器进行编码的EVEX.R’位字段(EVEX字节1,位[4]–R’)。在本发明的一个实施例中,该位与以下指示的其他位一起以位反转的格式存储以(在公知x86的32位模式下)与实操作码字节是62的BOUND指令进行区分,但是在MOD R/M字段(在下文中描述)中不接受MOD字段中的值11;本发明的替代实施例不以反转的格式存储该指示的位以及其他指示的位。值1用于对较低16个寄存器进行编码。换句话说,通过组合EVEX.R’、EVEX.R、以及来自其他字段的其他RRR来形成R’Rrrr。
操作码映射字段815(EVEX字节1,位[3:0]–mmmm)–其内容对隐含的前导操作码字节(0F、0F 38、或0F 3)进行编码。
数据元素宽度字段764(EVEX字节2,位[7]–W)-由记号EVEX.W表示。EVEX.W用于定义数据类型(32位数据元素或64位数据元素)的粒度(尺寸)。
EVEX.vvvv 820(EVEX字节2,位[6:3]-vvvv)-EVEX.vvvv的作用可包括如下:1)EVEX.vvvv编码第一源寄存器操作数且对具有两个或两个以上源操作数的指令有效,第一源寄存器操作数以反转(1补码)的形式被指定;2)EVEX.vvvv编码目的地寄存器操作数,目的地寄存器操作数针对特定向量位移以1补码的形式被指定;或者3)EVEX.vvvv不编码任何操作数,保留该字段,并且应当包含1111b。由此,EVEX.vvvv字段820对以反转(1补码)的形式存储的第一源寄存器指定符的4个低阶位进行编码。取决于该指令,额外不同的EVEX位字段用于将指定符尺寸扩展到32个寄存器。
EVEX.U 768类字段(EVEX字节2,位[2]-U)-如果EVEX.U=0,则它指示A类或EVEX.U0;如果EVEX.U=1,则它指示B类或EVEX.U1。
前缀编码字段825(EVEX字节2,位[1:0]-pp)-提供了用于基础操作字段的附加位。除了对以EVEX前缀格式的传统SSE指令提供支持以外,这也具有压缩SIMD前缀的益处(EVEX前缀只需要2位,而不是需要字节来表达SIMD前缀)。在一个实施例中,为了支持使用以传统格式和以EVEX前缀格式的SIMD前缀(66H、F2H、F3H)的传统SSE指令,将这些传统SIMD前缀编码成SIMD前缀编码字段;并且在运行时在提供给解码器的PLA之前被扩展成传统SIMD前缀(因此PLA可执行传统和EVEX格式的这些传统指令,而无需修改)。虽然较新的指令可将EVEX前缀编码字段的内容直接作为操作码扩展,但是为了一致性,特定实施例以类似的方式扩展,但允许由这些传统SIMD前缀指定不同的含义。替代实施例可重新设计PLA以支持2位SIMD前缀编码,并且由此不需要扩展。
α字段752(EVEX字节3,位[7]–EH,也称为EVEX.EH、EVEX.rs、EVEX.RL、EVEX.写掩码控制、以及EVEX.N;也以α示出)-如先前所述,该字段是针对上下文的。
β字段754(EVEX字节3,位[6:4]-SSS,也称为EVEX.s2-0、EVEX.r2-0、EVEX.rr1、EVEX.LL0、EVEX.LLB;也以βββ示出)-如先前所述,该字段是针对上下文的。
REX’字段710-这是REX’字段的其余部分,并且是可用于对扩展的32个寄存器集合的较高16个或较低16个寄存器进行编码的EVEX.V’位字段(EVEX字节3,位[3]–V’)。该位以位反转的格式存储。值1用于对较低16个寄存器进行编码。换句话说,通过组合EVEX.V’、EVEX.vvvv来形成V’VVVV。
写掩码字段770(EVEX字节3,位[2:0]-kkk)-其内容指定写掩码寄存器中的寄存器索引,如先前所述。在本发明的一个实施例中,特定值EVEX.kkk=000具有暗示没有写掩码用于特定指令的特殊行为(这可以各种方式实现,包括使用硬连线到所有的写掩码或者旁路掩码硬件的硬件来实现)。
实操作码字段830(字节4)还被称为操作码字节。操作码的一部分在该字段中被指定。
MOD R/M字段840(字节5)包括MOD字段842、Reg字段844、以及R/M字段846。如先前所述的,MOD字段842的内容将存储器访问和非存储器访问操作区分开。Reg字段844的作用可被归结为两种情形:对目的地寄存器操作数或源寄存器操作数进行编码;或者被视为操作码扩展且不用于对任何指令操作数进行编码。R/M字段846的作用可包括如下:对引用存储器地址的指令操作数进行编码;或者对目的地寄存器操作数或源寄存器操作数进行编码。
比例、索引、基址(SIB)字节(字节6)-如先前所述的,比例字段750的内容用于存储器地址生成。SIB.xxx 854和SIB.bbb 856-先前已经针对寄存器索引Xxxx和Bbbb提及了这些字段的内容。
位移字段762A(字节7-10)-当MOD字段842包含10时,字节7-10是位移字段762A,并且它与传统32位位移(disp32)一样地工作,并且以字节粒度工作。
位移因数字段762B(字节7)-当MOD字段842包含01时,字节7是位移因数字段762B。该字段的位置与传统x86指令集8位位移(disp8)的位置相同,它以字节粒度工作。由于disp8是符号扩展的,因此它仅能在-128和127字节偏移量之间寻址;在64字节高速缓存行的方面,disp8使用可被设为仅四个真正有用的值-128、-64、0和64的8位;由于常常需要更大的范围,所以使用disp32;然而,disp32需要4个字节。与disp8和disp32对比,位移因数字段762B是disp8的重新解释;当使用位移因数字段762B时,通过将位移因数字段的内容乘以存储器操作数访问的尺寸(N)来确定实际位移。该类型的位移被称为disp8*N。这减小了平均指令长度(单个字节用于位移,但具有大得多的范围)。这种压缩位移基于有效位移是存储器访问的粒度的倍数的假设,并且由此地址偏移量的冗余低阶位不需要被编码。换句话说,位移因数字段762B替代传统x86指令集8位位移。由此,位移因数字段762B以与x86指令集8位位移相同的方式(因此在ModRM/SIB编码规则中没有变化)进行编码,唯一的不同在于,将disp8超载至disp8*N。换句话说,在编码规则或编码长度中没有变化,而仅在通过硬件对位移值的解释中有变化(这需要按存储器操作数的尺寸按比例缩放位移量以获得字节式地址偏移量)。
立即数字段772如先前所述地操作。
完整操作码字段
图8B是示出根据本发明的实施例的构成完整操作码字段774的具有专用向量友好指令格式800的字段的框图。具体地,完整操作码字段774包括格式字段740、基础操作字段742、以及数据元素宽度(W)字段764。基础操作字段742包括前缀编码字段825、操作码映射字段815以及实操作码字段830。
寄存器索引字段
图8C是示出根据本发明的一个实施例的构成寄存器索引字段744的具有专用向量友好指令格式800的字段的框图。具体地,寄存器索引字段744包括REX字段805、REX’字段810、MODR/M.reg字段844、MODR/M.r/m字段846、VVVV字段820、xxx字段854以及bbb字段856。
扩充操作字段
图8D是示出根据本发明的一个实施例的构成扩充操作字段750的具有专用向量友好指令格式800的字段的框图。当类(U)字段768包含0时,它表明EVEX.U0(A类768A);当它包含1时,它表明EVEX.U1(B类768B)。当U=0且MOD字段842包含11(表明无存储器访问操作)时,α字段752(EVEX字节3,位[7]–EH)被解释为rs字段752A。当rs字段752A包含1(舍入752A.1)时,β字段754(EVEX字节3,位[6:4]–SSS)被解释为舍入控制字段754A。舍入控制字段754A包括一位SAE字段756和两位舍入操作字段758。当rs字段752A包含0(数据变换752A.2)时,β字段754(EVEX字节3,位[6:4]–SSS)被解释为三位数据变换字段754B。当U=0且MOD字段842包含00、01或10(表明存储器访问操作)时,α字段752(EVEX字节3,位[7]–EH)被解释为驱逐提示(EH)字段752B且β字段754(EVEX字节3,位[6:4]–SSS)被解释为三位数据操纵字段754C。
当U=1时,α字段752(EVEX字节3,位[7]–EH)被解释为写掩码控制(Z)字段752C。当U=1且MOD字段842包含11(表明无存储器访问操作)时,β字段754的一部分(EVEX字节3,位[4]–S0)被解释为RL字段757A;当它包含1(舍入757A.1)时,β字段754的其余部分(EVEX字节3,位[6-5]–S2-1)被解释为舍入操作字段759A,而当RL字段757A包含0(VSIZE 757.A2)时,β字段754的其余部分(EVEX字节3,位[6-5]-S2-1)被解释为向量长度字段759B(EVEX字节3,位[6-5]–L1-0)。当U=1且MOD字段842包含00、01或10(表明存储器访问操作)时,β字段754(EVEX字节3,位[6:4]–SSS)被解释为向量长度字段759B(EVEX字节3,位[6-5]–L1-0)和广播字段757B(EVEX字节3,位[4]–B)。
示例性寄存器架构
图9是根据本发明的一个实施例的寄存器架构900的框图。在所示出的实施例中,有32个512位宽的向量寄存器910;这些寄存器被引用为zmm0到zmm31。较低的16zmm寄存器的较低阶256个位覆盖在寄存器ymm0-16上。较低的16zmm寄存器的较低阶128个位(ymm寄存器的较低阶128个位)覆盖在寄存器xmm0-15上。专用向量友好指令格式800对这些覆盖的寄存器组操作,如在以下表格中所示的。
换句话说,向量长度字段759B在最大长度与一个或多个其他较短长度之间进行选择,其中每一这种较短长度是前一长度的一半,并且不具有向量长度字段759B的指令模板在最大向量长度上操作。此外,在一个实施例中,专用向量友好指令格式800的B类指令模板对打包或标量单/双精度浮点数据以及打包或标量整数数据操作。标量操作是对zmm/ymm/xmm寄存器中的最低阶数据元素位置执行的操作;取决于本实施例,较高阶数据元素位置保持与在指令之前相同或者归零。
写掩码寄存器915-在所示的实施例中,存在8个写掩码寄存器(k0至k7),每一写掩码寄存器的尺寸是64位。在替代实施例中,写掩码寄存器915的尺寸是16位。如先前所述的,在本发明的一个实施例中,向量掩码寄存器k0无法用作写掩码;当正常指示k0的编码用作写掩码时,它选择硬连线的写掩码0xFFFF,从而有效地停用该指令的写掩码操作。
通用寄存器925——在所示出的实施例中,有十六个64位通用寄存器,这些寄存器与现有的x86寻址模式一起使用来寻址存储器操作数。这些寄存器通过名称RAX、RBX、RCX、RDX、RBP、RSI、RDI、RSP以及R8到R15来引用。
标量浮点堆栈寄存器组(x87堆栈)945,在其上面重叠了MMX打包整数平坦寄存器组950——在所示出的实施例中,x87堆栈是用于使用x87指令集扩展来对32/64/80位浮点数据执行标量浮点运算的八元素堆栈;而使用MMX寄存器来对64位打包整数数据执行操作,以及为在MMX和XMM寄存器之间执行的一些操作保存操作数。
本发明的替代实施例可以使用较宽的或较窄的寄存器。另外,本发明的替代实施例可以使用更多、更少或不同的寄存器组和寄存器。
示例性核架构、处理器和计算机架构
处理器核可以用出于不同目的的不同方式在不同的处理器中实现。例如,这样的核的实现可以包括:1)旨在用于通用计算的通用有序核;2)预期用于通用计算的高性能通用无序核;3)旨在主要用于图形和/或科学(吞吐量)计算的专用核。不同处理器的实现可包括:1)包括旨在用于通用计算的一个或多个通用有序核和/或旨在用于通用计算的一个或多个通用无序核的CPU;以及2)包括旨在主要用于图形和/或科学(吞吐量)的一个或多个专用核的协处理器。这样的不同处理器导致不同的计算机系统架构,其可包括:1)在与CPU分开的芯片上的协处理器;2)在与CPU相同的封装中但分开的管芯上的协处理器;3)与CPU在相同管芯上的协处理器(在该情况下,这样的协处理器有时被称为诸如集成图形和/或科学(吞吐量)逻辑等专用逻辑,或被称为专用核);以及4)可以将所描述的CPU(有时被称为应用核或应用处理器)、以上描述的协处理器和附加功能包括在同一管芯上的芯片上系统。接着描述示例性核架构,随后描述示例性处理器和计算机架构。
示例性核架构
有序和无序核框图
图10A是示出根据本发明的各实施例的示例性有序流水线和示例性的寄存器重命名的无序发布/执行流水线的框图。图10B是示出根据本发明的各实施例的要包括在处理器中的有序架构核的示例性实施例和示例性的寄存器重命名的无序发布/执行架构核的框图。图10A-B中的实线框示出了有序流水线和有序核,而可选增加的虚线框示出了寄存器重命名的、无序发布/执行流水线和核。给定有序方面是无序方面的子集的情况下,将描述无序方面。
在图10A中,处理器流水线1000包括取出级1002、长度解码级1004、解码级1006、分配级1008、重命名级1010、调度(也称为分派或发布)级1012、寄存器读取/存储器读取级1014、执行级1016、写回/存储器写入级1018、异常处理级1022和提交级1024。
图10B示出了包括耦合到执行引擎单元1050的前端单元1030的处理器核1090,且执行引擎单元和前端单元两者都耦合到存储器单元1070。核1090可以是精简指令集计算(RISC)核、复杂指令集计算(CISC)核、超长指令字(VLIW)核或混合或替代核类型。作为又一选项,核1090可以是专用核,诸如例如网络或通信核、压缩引擎、协处理器核、通用计算图形处理器单元(GPGPU)核、或图形核等等。
前端单元1030包括耦合到指令高速缓存单元1034的分支预测单元1032,该指令高速缓存单元1034耦合到指令转换后备缓冲器(TLB)1036,该指令转换后备缓冲器1036耦合到指令取出单元1038,指令取出单元1038耦合到解码单元1040。解码单元1040(或解码器)可解码指令,并生成从原始指令解码出的、或以其他方式反映原始指令的、或从原始指令导出的一个或多个微操作、微代码进入点、微指令、其他指令、或其他控制信号作为输出。解码单元1040可使用各种不同的机制来实现。合适的机制的示例包括但不限于查找表、硬件实现、可编程逻辑阵列(PLA)、微代码只读存储器(ROM)等。在一个实施例中,核1090包括(例如,在解码单元1040中或否则在前端单元1030内的)用于存储某些宏指令的微代码的微代码ROM或其他介质。解码单元1040耦合到执行引擎单元1050中的重命名/分配单元1052。
执行引擎单元1050包括重命名/分配器单元1052,该重命名/分配器单元1052耦合至引退单元1054和一个或多个调度器单元1056的集合。调度器单元1056表示任何数目的不同调度器,包括预留站、中央指令窗等。调度器单元1056耦合到物理寄存器组单元1058。每个物理寄存器组单元1058表示一个或多个物理寄存器组,其中不同的物理寄存器组存储一种或多种不同的数据类型,诸如标量整数、标量浮点、打包整数、打包浮点、向量整数、向量浮点、状态(例如,作为要执行的下一指令的地址的指令指针)等。在一个实施例中,物理寄存器组单元1058包括向量寄存器单元、写掩码寄存器单元和标量寄存器单元。这些寄存器单元可以提供架构向量寄存器、向量掩码寄存器、和通用寄存器。物理寄存器组单元1058与引退单元1054重叠以示出可以用来实现寄存器重命名和无序执行的各种方式(例如,使用重新排序缓冲器和引退寄存器组;使用将来的文件、历史缓冲器和引退寄存器组;使用寄存器映射和寄存器池等等)。引退单元1054和物理寄存器组单元1058耦合到执行群集1060。执行群集1060包括一个或多个执行单元1062的集合和一个或多个存储器访问单元1064的集合。执行单元1062可以对各种类型的数据(例如,标量浮点、打包整数、打包浮点、向量整型、向量浮点)执行各种操作(例如,移位、加法、减法、乘法)。尽管一些实施例可以包括专用于特定功能或功能集合的多个执行单元,但其他实施例可包括全部执行所有功能的仅一个执行单元或多个执行单元。调度器单元1056、物理寄存器组单元1058和执行群集1060被示为可能有多个,因为某些实施例为某些类型的数据/操作创建分开的流水线(例如,标量整型流水线、标量浮点/打包整型/打包浮点/向量整型/向量浮点流水线,和/或各自具有其自己的调度器单元、物理寄存器组单元和/或执行群集的存储器访问流水线——以及在分开的存储器访问流水线的情况下,实现其中仅该流水线的执行群集具有存储器访问单元1064的某些实施例)。还应当理解,在使用分开的流水线的情况下,这些流水线中的一个或多个可以为无序发布/执行,并且其余流水线可以为有序发布/执行。
存储器访问单元1064的集合耦合到存储器单元1070,该存储器单元1070包括耦合到数据高速缓存单元1074的数据TLB单元1072,其中数据高速缓存单元1074耦合到二级(L2)高速缓存单元1076。在一个示例性实施例中,存储器访问单元1064可以包括加载单元、存储地址单元和存储数据单元,这些单元中的每一个单元耦合到存储器单元1070中的数据TLB单元1072。指令高速缓存单元1034还耦合到存储器单元1070中的二级(L2)高速缓存单元1076。L2高速缓存单元1076耦合到一个或多个其他级的高速缓存,并最终耦合到主存储器。
作为示例,示例性寄存器重命名的、无序发布/执行核架构可以如下实现流水线1000:1)指令取出1038执行取出和长度解码级1002和1004;2)解码单元1040执行解码级1006;3)重命名/分配器单元1052执行分配级1008和重命名级1010;4)调度器单元1056执行调度级1012;5)物理寄存器组单元1058和存储器单元1070执行寄存器读取/存储器读取级1014;执行群集1060执行执行级1016;6)存储器单元1070和物理寄存器组单元1058执行写回/存储器写入级1018;7)各单元可牵涉到异常处理级1022;以及8)引退单元1054和物理寄存器组单元1058执行提交级1024。
核1090可支持一个或多个指令集(例如,x86指令集(具有与较新版本一起添加的一些扩展);加利福尼亚州桑尼维尔市的MIPS技术公司的MIPS指令集;加利福尼州桑尼维尔市的ARM控股的ARM指令集(具有诸如NEON等可选附加扩展)),其中包括本文中描述的各指令。在一个实施例中,核1090包括用于支持打包数据指令集扩展(例如,AVX1、AVX2和/或先前描述的一些形式的一般向量友好指令格式(U=0和/或U=1))的逻辑,从而允许很多多媒体应用使用的操作能够使用打包数据来执行。
应当理解,核可支持多线程化(执行两个或更多个并行的操作或线程的集合),并且可以按各种方式来完成该多线程化,此各种方式包括时分多线程化、同步多线程化(其中单个物理核为物理核正在同步多线程化的各线程中的每一个线程提供逻辑核)、或其组合(例如,时分取出和解码以及此后诸如用超线程化技术来同步多线程化)。
尽管在无序执行的上下文中描述了寄存器重命名,但应当理解,可以在有序架构中使用寄存器重命名。尽管所示出的处理器的实施例还包括分开的指令和数据高速缓存单元1034/1074以及共享L2高速缓存单元1076,但替代实施例可以具有用于指令和数据两者的单个内部高速缓存,诸如例如一级(L1)内部高速缓存或多个级别的内部高速缓存。在一些实施例中,该系统可包括内部高速缓存和在核和/或处理器外部的外部高速缓存的组合。或者,所有高速缓存都可以在核和/或处理器的外部。
具体的示例性有序核架构
图11A-B示出了更具体的示例性有序核架构的框图,该核将是芯片中的若干逻辑块之一(包括相同类型和/或不同类型的其他核)。根据应用,这些逻辑块通过高带宽的互连网络(例如,环形网络)与一些固定的功能逻辑、存储器I/O接口和其它必要的I/O逻辑通信。
图11A是根据本发明的各实施例的单个处理器核以及它与管芯上互连网络1102的连接及其二级(L2)高速缓存1104的本地子集的框图。在一个实施例中,指令解码器1100支持具有打包数据指令集扩展的x86指令集。L1高速缓存1106允许对进入标量和向量单元中的高速缓存存储器的低等待时间访问。尽管在一个实施例中(为了简化设计),标量单元1108和向量单元1110使用分开的寄存器集合(分别为标量寄存器1112和向量寄存器1114),并且在这些寄存器之间转移的数据被写入到存储器并随后从一级(L1)高速缓存1106读回,但是本发明的替代实施例可以使用不同的方法(例如使用单个寄存器集合或包括允许数据在这两个寄存器组之间传输而无需被写入和读回的通信路径)。
L2高速缓存的本地子集1104是全局L2高速缓存的一部分,该全局L2高速缓存被划分成多个分开的本地子集,即每个处理器核一个本地子集。每个处理器核具有到其自己的L2高速缓存1104的本地子集的直接访问路径。被处理器核读出的数据被存储在其L2高速缓存子集1104中,并且可以与其他处理器核访问其自己的本地L2高速缓存子集并行地被快速访问。被处理器核写入的数据被存储在其自己的L2高速缓存子集1104中,并在必要的情况下从其它子集清除。环形网络确保共享数据的一致性。环形网络是双向的,以允许诸如处理器核、L2高速缓存和其它逻辑块之类的代理在芯片内彼此通信。每个环形数据路径为每个方向1012位宽。
图11B是根据本发明的各实施例的图11A中的处理器核的一部分的展开图。图11B包括L1高速缓存1104的L1数据高速缓存1106A部分,以及关于向量单元1110和向量寄存器1114的更多细节。具体地说,向量单元1110是16宽向量处理单元(VPU)(见16宽ALU 1128),该单元执行整型、单精度浮点以及双精度浮点指令中的一个或多个。该VPU通过混合单元1120支持对寄存器输入的混合、通过数值转换单元1122A-B支持数值转换、并通过复制单元1124支持对存储器输入的复制。写掩码寄存器1126允许断言所得的向量写入。
具有集成存储器控制器和图形器件的处理器
图12是根据本发明的各实施例可能具有一个以上核、可能具有集成存储器控制器、以及可能具有集成图形器件的处理器1200的框图。图12中的实线框示出具有单个核1202A、系统代理1210、一个或多个总线控制器单元1216的集合的处理器1200,而虚线框的可选附加示出具有多个核1202A-N、系统代理单元1210中的一个或多个集成存储器控制器单元1214的集合以及专用逻辑1208的替代处理器1200。
因此,处理器1200的不同实现可包括:1)CPU,其中专用逻辑1208是集成图形和/或科学(吞吐量)逻辑(其可包括一个或多个核),并且核1202A-N是一个或多个通用核(例如,通用的有序核、通用的无序核、这两者的组合);2)协处理器,其中核1202A-N是旨在主要用于图形和/或科学(吞吐量)的多个专用核;以及3)协处理器,其中核1202A-N是多个通用有序核。因此,处理器1200可以是通用处理器、协处理器或专用处理器,诸如例如网络或通信处理器、压缩引擎、图形处理器、GPGPU(通用图形处理单元)、高吞吐量的集成众核(MIC)协处理器(包括30个或更多核)、或嵌入式处理器等。该处理器可以被实现在一个或多个芯片上。处理器1200可以是一个或多个衬底的一部分,和/或可以使用诸如例如BiCMOS、CMOS或NMOS等的多个加工技术中的任何一个技术将处理器1200实现在一个或多个衬底上。
存储器层次结构包括在各核内的一个或多个级别的高速缓存、一个或多个共享高速缓存单元1206的集合、以及耦合至集成存储器控制器单元1214的集合的外部存储器(未示出)。该共享高速缓存单元1206的集合可以包括一个或多个中间级高速缓存,诸如二级(L2)、三级(L3)、四级(L4)或其他级别的高速缓存、末级高速缓存(LLC)、和/或其组合。尽管在一个实施例中,基于环的互连单元1212将集成图形逻辑1208、共享高速缓存单元1206的集合以及系统代理单元1210/集成存储器控制器单元1214互连,但替代实施例可使用任何数量的公知技术来将这些单元互连。在一个实施例中,可以维护一个或多个高速缓存单元1206和核1202A-N之间的一致性(coherency)。
在一些实施例中,核1202A-N中的一个或多个核能够多线程化。系统代理1210包括协调和操作核1202A-N的那些组件。系统代理单元1210可包括例如功率控制单元(PCU)和显示单元。PCU可以是或包括用于调整核1202A-N和集成图形逻辑1208的功率状态所需的逻辑和组件。显示单元用于驱动一个或多个外部连接的显示器。
核1202A-N在架构指令集方面可以是同构的或异构的;即,这些核1202A-N中的两个或更多个核可能能够执行相同的指令集,而其他核可能能够执行该指令集的仅仅子集或不同的指令集。
示例性计算机架构
图13-16是示例性计算机架构的框图。本领域已知的对膝上型设备、台式机、手持PC、个人数字助理、工程工作站、服务器、网络设备、网络集线器、交换机、嵌入式处理器、数字信号处理器(DSP)、图形设备、视频游戏设备、机顶盒、微控制器、蜂窝电话、便携式媒体播放器、手持设备以及各种其他电子设备的其他系统设计和配置也是合适的。一般地,能够包含本文中所公开的处理器和/或其它执行逻辑的多个系统和电子设备一般都是合适的。
现在参见图13,所示为根据本发明的一个实施例的系统1300的框图。系统1300可以包括一个或多个处理器1310、1315,这些处理器耦合到控制器中枢1320。在一个实施例中,控制器中枢1320包括图形存储器控制器中枢(GMCH)1390和输入/输出中枢(IOH)1350(其可以在分开的芯片上);GMCH 1390包括存储器和图形控制器,存储器1340和协处理器1345耦合到该存储器和图形控制器;IOH 1350将输入/输出(I/O)设备1360耦合到GMCH 1390。或者,存储器和图形控制器中的一个或两者可以被集成在处理器内(如本文中所描述的),存储器1340和协处理器1345直接耦合到处理器1310以及控制器中枢1320,控制器中枢1320与IOH 1350处于单个芯片中。
附加处理器1315的任选性质用虚线表示在图13中。每一处理器1310、1315可包括本文中描述的处理核中的一个或多个,并且可以是处理器1200的某一版本。
存储器1340可以是例如动态随机存取存储器(DRAM)、相变存储器(PCM)或这两者的组合。对于至少一个实施例,控制器中枢1320经由诸如前端总线(FSB)之类的多分支总线、诸如快速通道互连(QPI)之类的点对点接口、或者类似的连接1395与处理器1310、1315进行通信。
在一个实施例中,协处理器1345是专用处理器,诸如例如高吞吐量MIC处理器、网络或通信处理器、压缩引擎、图形处理器、GPGPU、或嵌入式处理器等等。在一个实施例中,控制器中枢1320可以包括集成图形加速器。
在物理资源1310、1315之间可以存在包括架构、微架构、热、和功耗特征等的一系列品质度量方面的各种差异。
在一个实施例中,处理器1310执行控制一般类型的数据处理操作的指令。协处理器指令可嵌入在这些指令中。处理器1310将这些协处理器指令识别为应当由附连的协处理器1345执行的类型。因此,处理器1310在协处理器总线或者其他互连上将这些协处理器指令(或者表示协处理器指令的控制信号)发布到协处理器1345。协处理器1345接受并执行所接收的协处理器指令。
现在参考图14,所示为根据本发明的一实施例的更具体的第一示例性系统1400的框图。如图14所示,多处理器系统1400是点对点互连系统,并包括经由点对点互连1450耦合的第一处理器1470和第二处理器1480。处理器1470和1480中的每一个都可以是处理器1200的某一版本。在本发明的一个实施例中,处理器1470和1480分别是处理器1310和1315,而协处理器1438是协处理器1345。在另一实施例中,处理器1470和1480分别是处理器1310和协处理器1345。
处理器1470和1480被示为分别包括集成存储器控制器(IMC)单元1472和1482。处理器1470还包括作为其总线控制器单元的一部分的点对点(P-P)接口1476和1478;类似地,第二处理器1480包括点对点接口1486和1488。处理器1470、1480可以使用点对点(P-P)电路1478、1488经由P-P接口1450来交换信息。如图14所示,IMC 1472和1482将各处理器耦合至相应的存储器,即存储器1432和存储器1434,这些存储器可以是本地附连至相应的处理器的主存储器的部分。
处理器1470、1480可各自经由使用点对点接口电路1476、1494、1486、1498的各个P-P接口1452、1454与芯片组1490交换信息。芯片组1490可以可选地经由高性能接口1439与协处理器1438交换信息。在一个实施例中,协处理器1438是专用处理器,诸如例如高吞吐量MIC处理器、网络或通信处理器、压缩引擎、图形处理器、GPGPU、或嵌入式处理器等等。
共享高速缓存(未示出)可以被包括在任一处理器之内,或被包括在两个处理器外部但仍经由P-P互连与这些处理器连接,从而如果将某处理器置于低功率模式时,可将任一处理器或两个处理器的本地高速缓存信息存储在该共享高速缓存中。
芯片组1490可经由接口1496耦合至第一总线1416。在一个实施例中,第一总线1416可以是外围组件互连(PCI)总线,或诸如PCI Express总线或其它第三代I/O互连总线之类的总线,但本发明的范围并不受此限制。
如图14所示,各种I/O设备1414可以连同总线桥1418耦合到第一总线1416,总线桥1418将第一总线1416耦合至第二总线1420。在一个实施例中,诸如协处理器、高吞吐量MIC处理器、GPGPU的处理器、加速器(诸如例如图形加速器或数字信号处理器(DSP)单元)、现场可编程门阵列或任何其他处理器的一个或多个附加处理器1415耦合到第一总线1416。在一个实施例中,第二总线1420可以是低引脚计数(LPC)总线。各种设备可以被耦合至第二总线1420,在一个实施例中这些设备包括例如键盘/鼠标1422、通信设备1427以及诸如可包括指令/代码和数据1430的盘驱动器或其它大容量存储设备的存储单元1428。此外,音频I/O 1424可以被耦合至第二总线1420。注意,其它架构是可能的。例如,代替图14的点对点架构,系统可以实现多分支总线或其它这类架构。
现在参考图15,所示为根据本发明的实施例的更具体的第二示例性系统1500的框图。图14和图15中的相同部件用相同附图标记表示,并从图15中省去了图14中的某些方面,以避免使图15的其它方面变得模糊。
图15示出处理器1470、1480可分别包括集成存储器和I/O控制逻辑(“CL”)1472和1482。因此,CL 1472、1482包括集成存储器控制器单元并包括I/O控制逻辑。图15不仅示出存储器1432、1434耦合至CL 1472、1482,而且还示出I/O设备1514也耦合至控制逻辑1472、1482。传统I/O设备1515被耦合至芯片组1490。
现在参考图16,所示为根据本发明的一实施例的SoC 1600的框图。在图12中,相似的部件具有同样的附图标记。另外,虚线框是更先进的SoC的可选特征。在图16中,互连单元1602被耦合至:应用处理器1610,该应用处理器包括一个或多个核202A-N的集合以及共享高速缓存单元1206;系统代理单元1210;总线控制器单元1216;集成存储器控制器单元1214;一组或一个或多个协处理器1620,其可包括集成图形逻辑、图像处理器、音频处理器和视频处理器;静态随机存取存储器(SRAM)单元1630;直接存储器存取(DMA)单元1632;以及用于耦合至一个或多个外部显示器的显示单元1640。在一个实施例中,协处理器1620包括专用处理器,诸如例如网络或通信处理器、压缩引擎、GPGPU、高吞吐量MIC处理器、或嵌入式处理器等等。
本文公开的机制的各实施例可以被实现在硬件、软件、固件或这些实现方法的组合中。本发明的实施例可实现为在可编程系统上执行的计算机程序或程序代码,该可编程系统包括至少一个处理器、存储系统(包括易失性和非易失性存储器和/或存储元件)、至少一个输入设备以及至少一个输出设备。
可将程序代码(诸如图14中示出的代码1430)应用于输入指令,以执行本文描述的各功能并生成输出信息。可以按已知方式将输出信息应用于一个或多个输出设备。为了本申请的目的,处理系统包括具有诸如例如数字信号处理器(DSP)、微控制器、专用集成电路(ASIC)或微处理器之类的处理器的任何系统。
程序代码可以用高级程序化语言或面向对象的编程语言来实现,以便与处理系统通信。在需要时,也可用汇编语言或机器语言来实现程序代码。事实上,本文中描述的机制不限于任何特定编程语言的范围。在任一情形下,该语言可以是编译语言或解释语言。
至少一个实施例的一个或多个方面可以由存储在机器可读介质上的表示性指令来实现,指令表示处理器中的各种逻辑,指令在被机器读取时使得该机器制作用于执行本文所述的技术的逻辑。被称为“IP核”的这些表示可以被存储在有形的机器可读介质上,并被提供给多个客户或生产设施以加载到实际制造该逻辑或处理器的制造机器中。
这样的机器可读存储介质可以包括但不限于通过机器或设备制造或形成的物品的非瞬态的有形安排,其包括存储介质,诸如:硬盘;任何其它类型的盘,包括软盘、光盘、紧致盘只读存储器(CD-ROM)、紧致盘可重写(CD-RW)以及磁光盘;半导体器件,例如只读存储器(ROM)、诸如动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)之类的随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、闪存、电可擦除可编程只读存储器(EEPROM);相变存储器(PCM);磁卡或光卡;或适于存储电子指令的任何其它类型的介质。
因此,本发明的各实施例还包括非瞬态的有形机器可读介质,该介质包含指令或包含设计数据,诸如硬件描述语言(HDL),它定义本文中描述的结构、电路、装置、处理器和/或系统特征。这些实施例也被称为程序产品。
仿真(包括二进制变换、代码变形等)
在一些情况下,指令转换器可用来将指令从源指令集转换至目标指令集。例如,指令转换器可以变换(例如使用静态二进制变换、包括动态编译的动态二进制变换)、变形、仿真或以其它方式将指令转换成将由核来处理的一个或多个其它指令。指令转换器可以用软件、硬件、固件、或其组合实现。指令转换器可以在处理器上、在处理器外、或者部分在处理器上且部分在处理器外。
图17是根据本发明的各实施例的对照使用软件指令转换器将源指令集中的二进制指令转换成目标指令集中的二进制指令的框图。在所示的实施例中,指令转换器是软件指令转换器,但作为替代,该指令转换器可以用软件、固件、硬件或其各种组合来实现。图17示出可以使用x86编译器1704来编译利用高级语言1702的程序,以生成可以由具有至少一个x86指令集核的处理器1716原生执行的x86二进制代码1706。具有至少一个x86指令集核的处理器1716表示任何处理器,这些处理器能通过兼容地执行或以其他方式处理以下内容来执行与具有至少一个x86指令集核的英特尔处理器基本相同的功能:1)英特尔x86指令集核的指令集的本质部分,或2)目标为在具有至少一个x86指令集核的英特尔处理器上运行的应用或其它程序的目标代码版本,以便取得与具有至少一个x86指令集核的英特尔处理器基本相同的结果。x86编译器1704表示用于生成x86二进制代码1706(例如,目标代码)的编译器,该二进制代码1706可通过或不通过附加的链接处理在具有至少一个x86指令集核的处理器1716上执行。类似地,图17示出可以使用替代的指令集编译器1708来编译利用高级语言1702的程序,以生成可以由不具有至少一个x86指令集核的处理器1714(例如具有执行加利福尼亚州桑尼维尔市的MIPS技术公司的MIPS指令集、和/或执行加利福尼亚州桑尼维尔市的ARM控股公司的ARM指令集的核的处理器)原生执行的替代指令集二进制代码1710。指令转换器1712被用来将x86二进制代码1706转换成可以由不具有x86指令集核的处理器1714原生执行的代码。该转换后的代码不大可能与替代性指令集二进制代码1710相同,因为能够这样做的指令转换器难以制造;然而,转换后的代码将完成一般操作并由来自替代指令集的指令构成。因此,指令转换器1712通过仿真、模拟或任何其它过程来表示允许不具有x86指令集处理器或核的处理器或其它电子设备执行x86二进制代码1706的软件、固件、硬件或其组合。
以下句子和/或示例涉及进一步的实施例。这些句子和/或示例中的细节可以在一个或多个实施例的任何地方被使用。
在一些实施例中,一种在计算机处理器中响应于单个数据元素混洗和操作指令执行数据元素混洗并对经混洗的数据元素执行操作的方法,所述指令包括目的地向量寄存器操作数、第一和第二源向量寄存器操作数、立即数值和操作码,所述方法包括以下步骤:执行单个数据元素混洗和操作指令,以根据数据元素的数量混洗第一源寄存器的数据元素,其中所述数据元素的数量由指令的立即数定义,并且对第一源向量寄存器的经混洗的数据元素与第二源向量寄存器的未经混洗的数据元素执行由操作码定义的操作;以及将每次操作的结果存储在目的地向量寄存器的相应打包数据元素位置中。
在该方法的一些实施例中,第一源目的地寄存器和目的地寄存器是相同寄存器。
在该方法的一些实施例中,该操作是数学操作,且其它是布尔操作。
在一些实施例中,源寄存器和目的地寄存器的数据元素的尺寸是8位、16位、32位或64位和/或源寄存器和目的地寄存器的尺寸是128位、256位或512位。
在该方法的一些实施例中,指令包括操作掩码寄存器操作数,且将每次操作的结果存储在目的地向量寄存器的相应打包数据元素位置中由所述操作掩码寄存器操作数来定义。
在一些实施例中,详细描述的处理器包括硬件解码器,用于解码数据元素混洗和操作指令,所述数据元素混洗和操作指令包括目的地向量寄存器操作数、第一和第二源向量寄存器操作数、立即数值和操作码,以及执行逻辑,用于执行数据元素混洗和操作指令,以根据数据元素的数量混洗第一源寄存器的数据元素,其中所述数据元素的数量由指令的立即数定义,并且对第一源向量寄存器的经混洗的数据元素与第二源向量寄存器的未经混洗的数据元素执行由操作码限定的操作,并将每次操作的结果存储在目的地向量寄存器的相应打包数据元素位置中。
在该处理器的一个或多个实施例中,第一源目的地寄存器和目的地寄存器是相同寄存器。
在处理器的一些实施例中,该操作是数学操作,且其它是布尔操作。
在一些实施例中,源寄存器和目的地寄存器的数据元素的尺寸是8位、16位、32位或64位和/或源寄存器和目的地寄存器的尺寸是128位、256位或512位。

Claims (20)

1.一种在计算机处理器中响应于单个数据元素混洗和操作指令执行数据元素混洗并对经混洗的数据元素执行操作的方法,所述指令包括目的地向量寄存器操作数、第一和第二源向量寄存器操作数、立即数值和操作码,所述方法包括以下步骤:
执行单个数据元素混洗和操作指令,以根据数据元素的数量混洗第一源寄存器的数据元素,其中所述数据元素的数量由指令的立即数定义,并且对第一源向量寄存器的经混洗的数据元素与第二源向量寄存器的未经混洗的数据元素执行由操作码定义的操作;以及
将每次操作的结果存储在目的地向量寄存器的相应打包数据元素位置中。
2.如权利要求1所述的方法,其特征在于,第一源目的地寄存器和目的地寄存器是相同寄存器。
3.如权利要求1所述的方法,其特征在于,所述操作是数学操作。
4.如权利要求1所述的方法,其特征在于,所述操作是布尔操作。
5.如权利要求1所述的方法,其特征在于,所述源寄存器和所述目的地寄存器的数据元素的尺寸是8位、16位、32位或64位。
6.如权利要求1所述的方法,其特征在于,所述源寄存器和目的地寄存器的尺寸是128位、256位或512位。
7.如权利要求1所述的方法,其特征在于,所述指令包括操作掩码寄存器操作数,且将每次操作的结果存储在目的地向量寄存器的相应打包数据元素位置中由所述操作掩码寄存器操作数来定义。
8.一种制品,包括:
其上存储指令表示的有形机器可读存储介质,其中所述指令的格式指定第一向量寄存器作为其第一源操作数,指定第二向量寄存器作为其第二源操作数,并且指定单个目的地向量寄存器作为其目的地,且包括立即数值,其中所述指令格式包括操作码,所述操作码响应于单个指令的单次发生,指示机器,以致使根据数据元素的数量混洗第一源寄存器的数据元素,其中所述数据元素的数量由立即数定义,并且对第一源向量寄存器的经混洗的数据元素与第二源向量寄存器的未经混洗的数据元素执行由操作码定义的操作;以及
将每次操作的结果存储在目的地向量寄存器的相应打包数据元素位置中。
9.如权利要求8所述的制品,其特征在于,第一源目的地寄存器和目的地寄存器是相同寄存器。
10.如权利要求8所述的制品,其特征在于,所述操作是数学操作。
11.如权利要求8所述的制品,其特征在于,所述操作是布尔操作。
12.如权利要求8所述的制品,其特征在于,所述源寄存器和所述目的地寄存器的数据元素的尺寸是8位、16位、32位或64位。
13.如权利要求8所述的制品,其特征在于,所述源寄存器和目的地寄存器的尺寸是128位、256位、或512位。
14.如权利要求8所述的制品,其特征在于,所述指令包括操作掩码寄存器操作数,且将每次操作的结果存储在目的地向量寄存器的相应打包数据元素位置中由所述操作掩码寄存器操作数来定义。
15.一种装置,包括:
硬件解码器,用于解码数据元素混洗和操作指令,所述数据元素混洗和操作指令包括目的地向量寄存器操作数、第一和第二源向量寄存器操作数、立即数值和操作码;
执行逻辑,用于执行数据元素混洗和操作指令,以根据数据元素的数量混洗第一源寄存器的数据元素,其中所述数据元素的数量由指令的立即数定义,并且对第一源向量寄存器的经混洗的数据元素与第二源向量寄存器的未经混洗的数据元素执行由操作码定义的操作,并将每次操作的结果存储在目的地向量寄存器的相应打包数据元素位置中。
16.如权利要求15所述的装置,其特征在于,第一源目的地寄存器和目的地寄存器是相同寄存器。
17.如权利要求15所述的装置,其特征在于,所述操作是数学操作。
18.如权利要求15所述的装置,其特征在于,所述操作是布尔操作。
19.如权利要求15所述的装置,其特征在于,所述源寄存器和所述目的地寄存器的数据元素的尺寸是8位、16位、32位或64位。
20.如权利要求15所述的装置,其特征在于,所述源寄存器和目的地寄存器的尺寸是128位、256位或512位。
CN201380028378.6A 2012-06-29 2013-06-07 用于执行混洗和操作的装置和方法 Expired - Fee Related CN104335166B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/539,116 2012-06-29
US13/539,116 US9218182B2 (en) 2012-06-29 2012-06-29 Systems, apparatuses, and methods for performing a shuffle and operation (shuffle-op)
PCT/US2013/044799 WO2014004050A2 (en) 2012-06-29 2013-06-07 Systems, apparatuses, and methods for performing a shuffle and operation (shuffle-op)

Publications (2)

Publication Number Publication Date
CN104335166A true CN104335166A (zh) 2015-02-04
CN104335166B CN104335166B (zh) 2017-12-08

Family

ID=49779475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380028378.6A Expired - Fee Related CN104335166B (zh) 2012-06-29 2013-06-07 用于执行混洗和操作的装置和方法

Country Status (3)

Country Link
US (2) US9218182B2 (zh)
CN (1) CN104335166B (zh)
WO (1) WO2014004050A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292223A (zh) * 2015-12-30 2018-07-17 英特尔公司 用于得到偶数数据元素和奇数数据元素的系统、设备和方法
CN114297138A (zh) * 2021-12-10 2022-04-08 龙芯中科技术股份有限公司 向量混洗方法、处理器及电子设备
CN115061731A (zh) * 2022-06-23 2022-09-16 摩尔线程智能科技(北京)有限责任公司 混洗电路和方法、以及芯片和集成电路装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659046B2 (en) 2013-07-31 2017-05-23 Oracle Inernational Corporation Probing a hash table using vectorized instructions
US9256631B2 (en) 2013-07-31 2016-02-09 Oracle International Corporation Building a hash table using vectorized instructions
US10013253B2 (en) * 2014-12-23 2018-07-03 Intel Corporation Method and apparatus for performing a vector bit reversal
US10296489B2 (en) * 2014-12-27 2019-05-21 Intel Corporation Method and apparatus for performing a vector bit shuffle
CN105022609A (zh) * 2015-08-05 2015-11-04 浪潮(北京)电子信息产业有限公司 一种数据混洗方法和数据混洗单元
US20170161069A1 (en) * 2015-12-08 2017-06-08 Knuedge, Inc. Microprocessor including permutation instructions
US10089110B2 (en) 2016-07-02 2018-10-02 Intel Corporation Systems, apparatuses, and methods for cumulative product
US10592468B2 (en) 2016-07-13 2020-03-17 Qualcomm Incorporated Shuffler circuit for lane shuffle in SIMD architecture
US11222070B2 (en) 2020-02-27 2022-01-11 Oracle International Corporation Vectorized hash tables
US11630864B2 (en) 2020-02-27 2023-04-18 Oracle International Corporation Vectorized queues for shortest-path graph searches
EP4240652A1 (en) 2020-11-05 2023-09-13 Katalyst Space Technologies, LLC Devices, systems and methods for augmenting satellites

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385634B1 (en) * 1995-08-31 2002-05-07 Intel Corporation Method for performing multiply-add operations on packed data
US7197625B1 (en) * 1997-10-09 2007-03-27 Mips Technologies, Inc. Alignment and ordering of vector elements for single instruction multiple data processing
US5933650A (en) * 1997-10-09 1999-08-03 Mips Technologies, Inc. Alignment and ordering of vector elements for single instruction multiple data processing
EP1102165A1 (en) * 1999-11-15 2001-05-23 Texas Instruments Incorporated Microprocessor with execution packet spanning two or more fetch packets
US6745319B1 (en) * 2000-02-18 2004-06-01 Texas Instruments Incorporated Microprocessor with instructions for shuffling and dealing data
US20040054877A1 (en) * 2001-10-29 2004-03-18 Macy William W. Method and apparatus for shuffling data
US8505002B2 (en) * 2006-09-29 2013-08-06 Arm Limited Translation of SIMD instructions in a data processing system
US8489825B2 (en) * 2007-04-16 2013-07-16 St-Ericsson Sa Method of storing data, method of loading data and signal processor
US7814303B2 (en) * 2008-10-23 2010-10-12 International Business Machines Corporation Execution of a sequence of vector instructions preceded by a swizzle sequence instruction specifying data element shuffle orders respectively
CN102253823A (zh) * 2010-05-18 2011-11-23 江苏芯动神州科技有限公司 一种数据混洗的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292223A (zh) * 2015-12-30 2018-07-17 英特尔公司 用于得到偶数数据元素和奇数数据元素的系统、设备和方法
CN114297138A (zh) * 2021-12-10 2022-04-08 龙芯中科技术股份有限公司 向量混洗方法、处理器及电子设备
WO2023104143A1 (zh) * 2021-12-10 2023-06-15 龙芯中科技术股份有限公司 向量混洗方法、处理器及电子设备
CN114297138B (zh) * 2021-12-10 2023-12-26 龙芯中科技术股份有限公司 向量混洗方法、处理器及电子设备
CN115061731A (zh) * 2022-06-23 2022-09-16 摩尔线程智能科技(北京)有限责任公司 混洗电路和方法、以及芯片和集成电路装置

Also Published As

Publication number Publication date
US20160196139A1 (en) 2016-07-07
US20140006756A1 (en) 2014-01-02
CN104335166B (zh) 2017-12-08
WO2014004050A2 (en) 2014-01-03
WO2014004050A3 (en) 2014-05-22
US9684510B2 (en) 2017-06-20
US9218182B2 (en) 2015-12-22

Similar Documents

Publication Publication Date Title
CN104011670B (zh) 用于基于向量写掩码的内容而在通用寄存器中存储两个标量常数之一的指令
CN104335166A (zh) 用于执行混洗和操作(混洗-操作)的系统、装置和方法
CN104011649B (zh) 用于在simd/向量执行中传播有条件估算值的装置和方法
CN104011673B (zh) 向量频率压缩指令
CN104813277A (zh) 用于处理器的功率效率的向量掩码驱动时钟门控
CN104094218A (zh) 用于执行写掩码寄存器到向量寄存器中的一系列索引值的转换的系统、装置和方法
CN104756068A (zh) 合并相邻的聚集/分散操作
CN103999037A (zh) 用于响应于单个指令来执行横向相加或相减的系统、装置和方法
CN104583958A (zh) 用于sha256算法的消息调度的指令集
CN104126166A (zh) 用于执行使用掩码的向量打包一元编码的系统、装置和方法
CN104781803A (zh) 用于架构不同核的线程迁移支持
CN104137054A (zh) 用于执行从索引值列表向掩码值的转换的系统、装置和方法
CN104509026A (zh) 用于处理sha-2安全散列算法的方法和设备
CN104040482A (zh) 用于在打包数据元素上执行增量解码的系统、装置和方法
CN104350492A (zh) 在大寄存器空间中利用累加的向量乘法
CN104011672A (zh) 转置指令
CN104025040A (zh) 用于混洗浮点或整数值的装置和方法
CN104081336A (zh) 用于检测向量寄存器内的相同元素的装置和方法
CN104011643A (zh) 打包数据重新安排控制索引产生处理器、方法、系统及指令
CN104115114A (zh) 经改进的提取指令的装置和方法
CN104137059A (zh) 多寄存器分散指令
CN104011644A (zh) 用于产生按照数值顺序的相差恒定跨度的整数的序列的处理器、方法、系统和指令
CN104137053A (zh) 用于响应于单个指令来执行蝴蝶横向和交叉加法或减法的系统、装置和方法
CN104011665A (zh) 超级乘加(超级madd)指令
CN104169867A (zh) 用于执行掩码寄存器至向量寄存器的转换的系统、装置和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171208

CF01 Termination of patent right due to non-payment of annual fee