CN104333317B - 一种太阳能光伏水泵控制系统及其控制方法 - Google Patents

一种太阳能光伏水泵控制系统及其控制方法 Download PDF

Info

Publication number
CN104333317B
CN104333317B CN201410569591.4A CN201410569591A CN104333317B CN 104333317 B CN104333317 B CN 104333317B CN 201410569591 A CN201410569591 A CN 201410569591A CN 104333317 B CN104333317 B CN 104333317B
Authority
CN
China
Prior art keywords
resistance
feet
voltage
power
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410569591.4A
Other languages
English (en)
Other versions
CN104333317A (zh
Inventor
郭春禹
何必荣
林军
许亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Sun Create Electronic Co Ltd
Original Assignee
Anhui Sun Create Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Sun Create Electronic Co Ltd filed Critical Anhui Sun Create Electronic Co Ltd
Priority to CN201410569591.4A priority Critical patent/CN104333317B/zh
Publication of CN104333317A publication Critical patent/CN104333317A/zh
Application granted granted Critical
Publication of CN104333317B publication Critical patent/CN104333317B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及一种太阳能光伏水泵控制系统,包括太阳能光伏组件,其输出端通过汇流箱分别向控制器和通用变频器供电,通用变频器与控制器之间双向通讯,通用变频器的输出端与水泵的控制端相连,水泵的出水口通过水管与水源连通,控制器包括水位传感器,水位传感器安装在水源内。本发明还公开了一种太阳能光伏水泵控制系统的控制方法。本发明通过对太阳能光伏组件电压、电路、功率的AD采样,经过控制器实时计算出最大功率点所对应的通用变频器的运行频率,并通过485通信电路传送给通用变频器,使得通用变频器可以应用在太阳能光伏水泵系统中,降低了成本,增大了通用变频器的使用范围。

Description

一种太阳能光伏水泵控制系统及其控制方法
技术领域
本发明涉及太阳能技术领域,尤其是一种太阳能光伏水泵控制系统及其控制方法。
背景技术
太阳能光伏水泵系统主要由太阳能光伏组件、光伏水泵专用逆变器、水泵及附件组成,传统的通用变频器无法在太阳能光伏水泵系统中使用,因为通用变频器额定工作在220V,50HZ交流输入,380V50HZ交流输出的系统中,而太阳能光伏水泵系统的输入端为太阳能直流电,太阳能光伏组件因为光照强度、温度等因素的影响输出电压不断变化,通用变频器无法在这种输入电压大范围变化的情况下稳定工作,通用变频器不知道在对应的直流电压下应该工作在什么频率是最优的,如果输入电压降低但同时通用变频器不降低频率到合适的值,那么系统就会死机,反之,如果输入电压升高但同时通用变频器不升高频率到合适的值,那么就浪费了一部分电能,没有最大效率地转换为交流电能输出到水泵,即通用变频器自身无法匹配输入电压和输出频率,所以通用变频器无法单独使用在太阳能光伏水泵系统中。
太阳能光伏水泵专用逆变器是最近新上市的专门应用在太阳能光伏水泵系统中的逆变器,但是光伏水泵专用逆变器目前价格很贵,是通用变频器的好几倍,原因在于太阳能光伏水泵系统目前应用还不是特别广泛,光伏水泵专用逆变器每年的生产量还不大,远远没有达到通用变频器的生产量,所以价格上比通用变频器贵好几倍。
发明内容
本发明的首要目的在于提供一种使通用变频器能够应用在太阳能光伏水泵系统中的太阳能光伏水泵控制系统。
为实现上述目的,本发明采用了以下技术方案:一种太阳能光伏水泵控制系统,包括太阳能光伏组件,其输出端通过汇流箱分别向控制器和通用变频器供电,通用变频器与控制器之间双向通讯,通用变频器的输出端与水泵的控制端相连,水泵的出水口通过水管与水源连通,控制器包括水位传感器,水位传感器安装在水源内。
所述控制器由用于采集太阳能光伏组件电压信号的电压AD采样电路、用于采集太阳能光伏组件电流信号的电流AD采样电路、功率AD采样电路、基准电压电路、CPU最小系统、16位AD采样电路、485通信电路、电源转换电路和水位传感器组成,太阳能光伏组件的输出端通过汇流箱依次向电压AD采样电路、电流AD采样电路和通用变频器供电,通用变频器向电源转换电路供电,CPU最小系统通过485通信电路与通用变频器双向通讯。
所述电压AD采样电路的输出端分别与功率AD采样电路、16位AD采样电路的输入端相连,电流AD采样电路的输出端与功率AD采样电路的输入端相连,功率AD采样电路的输出端与16位AD采样电路的输入端相连,16位AD采样电路的输出端与CPU最小系统的输入端相连,所述水位传感器、电源转换电路、基准电压电路的输出端均与CPU最小系统的输入端相连。
所述CPU最小系统采用ATMEGA128-8AU单片机,其1、3、5、6、9脚分别与程序仿真接口JTAG1的57、55、56、20、54脚相连;其4、5脚分别与发光二极管H1、H2的阴极相连,发光二极管H1、H2的阳极分别与通过电阻R19、R20接+5V直流电;其22、63脚接地,其21、52脚接+5V直流电;其63、64脚上跨接电容C10,其63脚还与电感L3的一端相连,电容C10的另一端接地,电感L3的另一端接+5V直流电;其24、23脚分别与晶振N8的1、2脚相连,晶振N8的1脚与电容C19相连,晶振N8的2脚与电容C20相连。
所述电压AD采样电路包括接线端子XS1,接线端子XS1的2脚即太阳能光伏组件输出电压正极与电阻R1的一端相连,电阻R1的另一端分别接二极管V1的阴极和光耦N2A的1脚;接线端子XS1的1脚即太阳能光伏组件输出电压负极与电阻R3的一端相连,电阻R3的另一端分别接二极管V1的阳极和光耦N2A的2脚;光耦N2A的8脚、比较器N3A的8脚、跟随器N2B的6脚均接+12V直流电,光耦N2A的7脚分别与电阻R4、比较器N3A的正相输入端相连,电阻R4的另一端接地,比较器N3A的反相输入端分别与电容C6和电阻R9的一端相连,电容C6的另一端接比较器N3A的输出端,比较器N3A的输出端与光耦N2B的3脚相连,光耦N2B的4脚分两路输出,一路通过电阻R8接地,另一路通过电阻R6接跟随器N3B的正相输入端,光耦N2B的5脚通过电阻R2接地,跟随器N3B的反相输入端与其输出端相连,跟随器N3B的输出端通过电阻R7分别与功率AD采样电路、16位AD采样电路的输入端相连。
所述电流AD采样电路包括电流传感器T1,其1脚接+5V直流电,其2脚接地,其3脚通过分压电阻R10接运放N5A的正相输入端,运放N5A的正相输入端通过电阻R12接地,运放N5A的反相输入端与其输出端相连,运放N5A的输出端分别与电阻R11、电容C14的一端相连,电容C14的另一端接地,电阻R11的另一端与功率AD采样电路的输入端相连。
所述功率AD采样电路包括可调电阻W1,其两端分别接+12V直流电、地,其可调端分别与分压电阻R21、R26相连,分压电阻R21的另一端与乘法器N10的1脚相连,分压电阻R26的另一端接地,乘法器N10的4、5、6脚接地,9脚接+12V直流电,7、8脚相连后接跟随器N5B的正相输入端,跟随器N5B的反相输入端与其输出端相连,跟随器N5B的输出端与电阻R27的一端相连,电阻R27通过电阻R29接地。
本发明还公开了一种太阳能光伏水泵控制系统的控制方法,该方法包括下列顺序的步骤:
(1)上电初始化,控制器对太阳能组件开路电压进行采样,赋值CVT算法给定电压Vg=0.8*太阳能组件开路电压;
(2)控制器进行CVT计算,得出通用变频器的运行频率,并通过485通信电路发送至通用变频器;
(3)控制器进行MPPT计算,得出最大功率点对应的CVT算法给定电压Vg,并将该值返回CVT算法计算出最大功率点对应的通用变频器的运行频率,并通过485通信电路发送至通用变频器。
所述的CVT算法流程如下:先计算出太阳能组件电压Vpv与CVT算法给定电压Vg的差值err;再计算出PI增量调节法比例部分a,a=Kp*(err(t)-err(t-1)),其中,Kp为PI调节比例系数;接着,计算PI增量调节法积分部分b,b=Ki*err(t),其中Ki为PI调节积分系数;最后,计算变频器运行频率f,f=f_xs+a+b,其中,f_xs为频率系数参数。
所述的MPPT算法流程如下:首先,运行第k-1次太阳能组件功率Pk-1采样,CVT算法给定电压Vg减小一个步长,即Vg=Vg-step,其中,step为MPPT搜索步长,MPPT搜索次数N减一,即N=N-1,运行CVT算法,得出Vg-step电压下对应的太阳能功率;其次,运行第k次太阳能组件功率Pk采样,若Pk>Pk-1,返回到第k-1次太阳能组件功率Pk-1采样继续减低一个步长搜索,反之,若Pk<Pk-1,则运行第k次太阳能组件功率Pk采样;再次,在运行第k次太阳能组件功率Pk采样时,增大Vg步长搜索,即Vg=Vg+step,搜索次数加1,即N=N+1,运行CVT算法,得出Vg+step电压下对应的太阳能功率;接着,运行第k+1次太阳能组件功率Pk+1采样,若Pk+1>Pk,返回到第k次太阳能组件功率Pk采样继续增加一个步长搜索,反之,若Pk+1<Pk,则使Vg=Vg+(N-1)*step,得出最大功率点对应的电压Vg;最后,对Vg进行校正判断,若Vg超过上下限值则进行校正,使最大功率点对应的CVT算法给定电压Vg=Vg+(N-1)*step后返回CVT算法,反之,则使最大功率点对应的CVT算法给定电压Vg=Vg+(N-1)*step后返回CVT算法。
由上述技术方案可知,本发明通过对太阳能光伏组件电压、电路、功率的AD采样,经过控制器实时计算出最大功率点所对应的通用变频器的运行频率,并通过485通信电路传送给通用变频器,使得通用变频器可以应用在太阳能光伏水泵系统中,降低了成本,增大了通用变频器的使用范围。
附图说明
图1、2均为本发明的系统框图;
图3、4、5、6分别为图2中CPU最小系统、电压AD采样电路、电流AD采样电路、功率AD采样电路的电路原理图;
图7为本发明的算法流程图。
具体实施方式
一种太阳能光伏水泵控制系统,包括太阳能光伏组件10,其输出端通过汇流箱20分别向控制器40和通用变频器30供电,通用变频器30与控制器40之间双向通讯,通用变频器30的输出端与水泵50的控制端相连,水泵50的出水口通过水管与水源连通,控制器40包括水位传感器,水位传感器安装在水源内,如图1所示。
如图2所示,所述控制器40由用于采集太阳能光伏组件电压信号的电压AD采样电路42、用于采集太阳能光伏组件电流信号的电流AD采样电路43、功率AD采样电路44、基准电压电路、CPU最小系统41、16位AD采样电路、485通信电路、电源转换电路和水位传感器组成,太阳能光伏组件10的输出端通过汇流箱20依次向电压AD采样电路42、电流AD采样电路43和通用变频器30供电,通用变频器30向电源转换电路供电,CPU最小系统41通过485通信电路与通用变频器30双向通讯。所述电压AD采样电路42的输出端分别与功率AD采样电路44、16位AD采样电路的输入端相连,电流AD采样电路43的输出端与功率AD采样电路44的输入端相连,功率AD采样电路44的输出端与16位AD采样电路的输入端相连,16位AD采样电路的输出端与CPU最小系统41的输入端相连,所述水位传感器、电源转换电路、基准电压电路的输出端均与CPU最小系统41的输入端相连。
如图2所示,通用变频器30都预留有24V电源接口,控制器40连接通用变频器30的24V电源接口,通过24V-12V,24V-5V的电源转换电路将24V转换为12V、5V供给控制器40使用,控制器40通过电压AD采样电路42、电流AD采样电路43实时采样光伏组件电压、电流,并通过模拟乘法器电路实时采集光伏组件的功率,即光伏组件电压乘以光伏组件电流,将电压、电流、功率三个值通过CPU内部最大功率跟踪(Maximum Power Point Tracker-MPPT)算法计算后,将通用变频器30应该运行的频率实时通过485通信电路传递给通用变频器30,通用变频器30的频率运行一直通过控制器40来控制,这样通用变频器30就能够适应太阳能电压的不断变化并且有最大功率跟踪功能,从而可以应用在太阳能光伏水泵50系统中。
如图3所示,所述CPU最小系统41采用ATMEGA128-8AU单片机,其1、3、5、6、9脚分别与程序仿真接口JTAG1的57、55、56、20、54脚相连;其4、5脚分别与发光二极管H1、H2的阴极相连,发光二极管H1、H2的阳极分别与通过电阻R19、R20接+5V直流电;其22、63脚接地,其21、52脚接+5V直流电;其63、64脚上跨接电容C10,其63脚还与电感L3的一端相连,电容C10的另一端接地,电感L3的另一端接+5V直流电;其24、23脚分别与晶振N8的1、2脚相连,晶振N8的1脚与电容C19相连,晶振N8的2脚与电容C20相连。D1为ATMEGA128-8AU单片机,JATG1为程序仿真接口,用于烧写仿真程序;N8为CPU外接晶振;电容C18、C19是晶振电容;电感L3和电容C10为CPU滤波;电阻R17和电容C22组成复位电路;H1、H2为发光二极管,用于显示控制器40状态;电阻R19、R20用于限制发光二极管电流。
如图4所示,所述电压AD采样电路42包括接线端子XS1,接线端子XS1的2脚即太阳能光伏组件10输出电压正极与电阻R1的一端相连,电阻R1的另一端分别接二极管V1的阴极和光耦N2A的1脚;接线端子XS1的1脚即太阳能光伏组件10输出电压负极与电阻R3的一端相连,电阻R3的另一端分别接二极管V1的阳极和光耦N2A的2脚;光耦N2A的8脚、比较器N3A的8脚、跟随器N2B的6脚均接+12V直流电,光耦N2A的7脚分别与电阻R4、比较器N3A的正相输入端相连,电阻R4的另一端接地,比较器N3A的反相输入端分别与电容C6和电阻R9的一端相连,电容C6的另一端接比较器N3A的输出端,比较器N3A的输出端与光耦N2B的3脚相连,光耦N2B的4脚分两路输出,一路通过电阻R8接地,另一路通过电阻R6接跟随器N3B的正相输入端,光耦N2B的5脚通过电阻R2接地,跟随器N3B的反相输入端与其输出端相连,跟随器N3B的输出端通过电阻R7分别与功率AD采样电路44、16位AD采样电路的输入端相连。电阻R1、R3为功率电阻,用于限流;V1为防反接二极管;N2A、N2B用于光电隔离;电阻R4、R8、R2、R9、R6为限流电阻;电阻R7、电容C7组成RC滤波电路;电容C6为滤波电容。
如图5所示,所述电流AD采样电路43包括电流传感器T1,其1脚接+5V直流电,其2脚接地,其3脚通过分压电阻R10接运放N5A的正相输入端,运放N5A的正相输入端通过电阻R12接地,运放N5A的反相输入端与其输出端相连,运放N5A的输出端分别与电阻R11、电容C14的一端相连,电容C14的另一端接地,电阻R11的另一端与功率AD采样电路44的输入端相连。
如图6所示,所述功率AD采样电路44包括可调电阻W1,其两端分别接+12V直流电、地,其可调端分别与分压电阻R21、R26相连,分压电阻R21的另一端与乘法器N10的1脚相连,分压电阻R26的另一端接地,乘法器N10的4、5、6脚接地,9脚接+12V直流电,7、8脚相连后接跟随器N5B的正相输入端,跟随器N5B的反相输入端与其输出端相连,跟随器N5B的输出端与电阻R27的一端相连,电阻R27通过电阻R29接地。
如图7所示,本方法包括:首先,上电初始化,控制器40对太阳能组件开路电压进行采样,赋值CVT算法给定电压Vg=0.8*太阳能组件开路电压;其次,控制器40进行CVT计算,得出通用变频器30的运行频率,并通过485通信电路发送至通用变频器30;再次,控制器40进行MPPT计算,得出最大功率点对应的CVT算法给定电压Vg,并将该值返回CVT算法计算出最大功率点对应的通用变频器30的运行频率,并通过485通信电路发送至通用变频器30。
如图7所示,所述的CVT算法流程如下:先计算出太阳能组件电压Vpv与CVT算法给定电压Vg的差值err;再计算出PI增量调节法比例部分a,a=Kp*(err(t)-err(t-1)),其中,Kp为PI调节比例系数;接着,计算PI增量调节法积分部分b,b=Ki*err(t),其中Ki为PI调节积分系数;最后,计算变频器运行频率f,f=f_xs+a+b,其中,f_xs为频率系数参数。
如图7所示,所述的MPPT算法流程如下:首先,运行第k-1次太阳能组件功率Pk-1采样,CVT算法给定电压Vg减小一个步长,即Vg=Vg-step,其中,step为MPPT搜索步长,MPPT搜索次数N减一,即N=N-1,运行CVT算法,得出Vg-step电压下对应的太阳能功率;其次,运行第k次太阳能组件功率Pk采样,若Pk>Pk-1,返回到第k-1次太阳能组件功率Pk-1采样继续减低一个步长搜索,反之,若Pk<Pk-1,则运行第k次太阳能组件功率Pk采样;再次,在运行第k次太阳能组件功率Pk采样时,增大Vg步长搜索,即Vg=Vg+step,搜索次数加1,即N=N+1,运行CVT算法,得出Vg+step电压下对应的太阳能功率;接着,运行第k+1次太阳能组件功率Pk+1采样,若Pk+1>Pk,返回到第k次太阳能组件功率Pk采样继续增加一个步长搜索,反之,若Pk+1<Pk,则使Vg=Vg+(N-1)*step,得出最大功率点对应的电压Vg;最后,对Vg进行校正判断,若Vg超过上下限值则进行校正,使最大功率点对应的CVT算法给定电压Vg=Vg+(N-1)*step后返回CVT算法,反之,则使最大功率点对应的CVT算法给定电压Vg=Vg+(N-1)*step后返回CVT算法。
综上所述,控制器40实时采样太阳能光伏组件10输出电压、电流和功率,并通过内部MPPT最大功率跟踪算法计算通用变频器30应该运行在哪个频率会使太阳能板输出的太阳能得到最大的利用,即太阳能板输出多少直流电能,通用变频器30就将这部分能量最大效率转化为三相交流输出到水泵50,使得通用变频器30可以应用在太阳能光伏水泵系统中,降低了成本,增大了通用变频器30的使用范围。

Claims (8)

1.一种太阳能光伏水泵控制系统,其特征在于:包括太阳能光伏组件,其输出端通过汇流箱分别向控制器和通用变频器供电,通用变频器与控制器之间双向通讯,通用变频器的输出端与水泵的控制端相连,水泵的出水口通过水管与水源连通,控制器包括水位传感器,水位传感器安装在水源内;所述控制器由用于采集太阳能光伏组件电压信号的电压AD采样电路、用于采集太阳能光伏组件电流信号的电流AD采样电路、功率AD采样电路、基准电压电路、CPU最小系统、16位AD采样电路、485通信电路、电源转换电路和水位传感器组成,太阳能光伏组件的输出端通过汇流箱依次向电压AD采样电路、电流AD采样电路和通用变频器供电,通用变频器向电源转换电路供电,CPU最小系统通过485通信电路与通用变频器双向通讯;所述电压AD采样电路的输出端分别与功率AD采样电路、16位AD采样电路的输入端相连,电流AD采样电路的输出端与功率AD采样电路的输入端相连,功率AD采样电路的输出端与16位AD采样电路的输入端相连,16位AD采样电路的输出端与CPU最小系统的输入端相连,所述水位传感器、电源转换电路、基准电压电路的输出端均与CPU最小系统的输入端相连。
2.根据权利要求1所述的一种太阳能光伏水泵控制系统,其特征在于:所述CPU最小系统采用ATMEGA128-8AU单片机,其1、3、5、6、9脚分别与程序仿真接口JTAG1的57、55、56、20、54脚相连;其4、5脚分别与发光二极管H1、H2的阴极相连,发光二极管H1、H2的阳极分别与通过电阻R19、R20接+5V直流电;其22、63脚接地,其21、52脚接+5V直流电;其63、64脚上跨接电容C10,其63脚还与电感L3的一端相连,电容C10的另一端接地,电感L3的另一端接+5V直流电;其24、23脚分别与晶振N8的1、2脚相连,晶振N8的1脚与电容C19相连,晶振N8的2脚与电容C20相连。
3.根据权利要求1所述的一种太阳能光伏水泵控制系统,其特征在于:所述电压AD采样电路包括接线端子XS1,接线端子XS1的2脚即太阳能光伏组件输出电压正极与电阻R1的一端相连,电阻R1的另一端分别接二极管V1的阴极和光耦N2A的1脚;接线端子XS1的1脚即太阳能光伏组件输出电压负极与电阻R3的一端相连,电阻R3的另一端分别接二极管V1的阳极和光耦N2A的2脚;光耦N2A的8脚、比较器N3A的8脚、跟随器N2B的6脚均接+12V直流电,光耦N2A的7脚分别与电阻R4、比较器N3A的正相输入端相连,电阻R4的另一端接地,比较器N3A的反相输入端分别与电容C6和电阻R9的一端相连,电容C6的另一端接比较器N3A的输出端,比较器N3A的输出端与光耦N2B的3脚相连,光耦N2B的4脚分两路输出,一路通过电阻R8接地,另一路通过电阻R6接跟随器N3B的正相输入端,光耦N2B的5脚通过电阻R2接地,跟随器N3B的反相输入端与其输出端相连,跟随器N3B的输出端通过电阻R7分别与功率AD采样电路、16位AD采样电路的输入端相连。
4.根据权利要求1所述的一种太阳能光伏水泵控制系统,其特征在于:所述电流AD采样电路包括电流传感器T1,其1脚接+5V直流电,其2脚接地,其3脚通过分压电阻R10接运放N5A的正相输入端,运放N5A的正相输入端通过电阻R12接地,运放N5A的反相输入端与其输出端相连,运放N5A的输出端分别与电阻R11、电容C14的一端相连,电容C14的另一端接地,电阻R11的另一端与功率AD采样电路的输入端相连。
5.根据权利要求1所述的一种太阳能光伏水泵控制系统,其特征在于:所述功率AD采样电路包括可调电阻W1,其两端分别接+12V直流电、地,其可调端分别与分压电阻R21、R26相连,分压电阻R21的另一端与乘法器N10的1脚相连,分压电阻R26的另一端接地,乘法器N10的4、5、6脚接地,9脚接+12V直流电,7、8脚相连后接跟随器N5B的正相输入端,跟随器N5B的反相输入端与其输出端相连,跟随器N5B的输出端与电阻R27的一端相连,电阻R27通过电阻R29接地。
6.一种如权利要求1所述的太阳能光伏水泵控制系统的控制方法,其特征在于该方法包括下列顺序的步骤:
(1)上电初始化,控制器对太阳能组件开路电压进行采样,赋值CVT算法给定电压Vg=0.8*太阳能组件开路电压;
(2)控制器进行CVT计算,得出通用变频器的运行频率,并通过485通信电路发送至通用变频器;
(3)控制器进行MPPT计算,得出最大功率点对应的CVT算法给定电压Vg,并将该值返回CVT算法计算出最大功率点对应的通用变频器的运行频率,并通过485通信电路发送至通用变频器。
7.根据权利要求6所述的一种太阳能光伏水泵控制系统的控制方法,其特征在于:所述的CVT算法流程如下:先计算出太阳能组件电压Vpv与CVT算法给定电压Vg的差值err;再计算出PI增量调节法比例部分a,a=Kp*(err(t)-err(t-1)),其中,Kp为PI调节比例系数;接着,计算PI增量调节法积分部分b,b=Ki*err(t),其中Ki为PI调节积分系数;最后,计算变频器运行频率f,f=f_xs+a+b,其中,f_xs为频率系数参数。
8.根据权利要求6所述的太阳能光伏水泵控制系统的控制方法,其特征在于:所述的MPPT算法流程如下:首先,运行第k-1次太阳能组件功率Pk-1采样,CVT算法给定电压Vg减小一个步长,即Vg=Vg-step,其中,step为MPPT搜索步长,MPPT搜索次数N减一,即N=N-1,运行CVT算法,得出Vg-step电压下对应的太阳能功率;其次,运行第k次太阳能组件功率Pk采样,若Pk>Pk-1,返回到第k-1次太阳能组件功率Pk-1采样继续减低一个步长搜索,反之,若Pk<Pk-1,则运行第k次太阳能组件功率Pk采样;再次,在运行第k次太阳能组件功率Pk采样时,增大Vg步长搜索,即Vg=Vg+step,搜索次数加1,即N=N+1,运行CVT算法,得出Vg+step电压下对应的太阳能功率;接着,运行第k+1次太阳能组件功率Pk+1采样,若Pk+1>Pk,返回到第k次太阳能组件功率Pk采样继续增加一个步长搜索,反之,若Pk+1<Pk,则使Vg=Vg+(N-1)*step,得出最大功率点对应的电压Vg;最后,对Vg进行校正判断,若Vg超过上下限值则进行校正,使最大功率点对应的CVT算法给定电压Vg=Vg+(N-1)*step后返回CVT算法,反之,则使最大功率点对应的CVT算法给定电压Vg=Vg+(N-1)*step后返回CVT算法。
CN201410569591.4A 2014-10-23 2014-10-23 一种太阳能光伏水泵控制系统及其控制方法 Expired - Fee Related CN104333317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410569591.4A CN104333317B (zh) 2014-10-23 2014-10-23 一种太阳能光伏水泵控制系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410569591.4A CN104333317B (zh) 2014-10-23 2014-10-23 一种太阳能光伏水泵控制系统及其控制方法

Publications (2)

Publication Number Publication Date
CN104333317A CN104333317A (zh) 2015-02-04
CN104333317B true CN104333317B (zh) 2017-02-01

Family

ID=52407987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410569591.4A Expired - Fee Related CN104333317B (zh) 2014-10-23 2014-10-23 一种太阳能光伏水泵控制系统及其控制方法

Country Status (1)

Country Link
CN (1) CN104333317B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895774B (zh) * 2015-06-09 2016-08-17 合肥聚能新能源科技有限公司 一种光伏水泵集群系统的控制方法
CN105089965B (zh) * 2015-08-31 2018-08-10 上海禧龙科技股份有限公司 一种交流光伏水泵系统及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201474941U (zh) * 2009-08-10 2010-05-19 余海东 太阳能光伏智能控制变频水泵系统
CN203377793U (zh) * 2013-07-19 2014-01-01 孟州卓伦光电科技有限公司 具有光伏扬水系统控制功能的变频器
CN104079232A (zh) * 2014-07-14 2014-10-01 哈尔滨工业大学 一种单级式光伏水泵控制系统及其控制方法
CN204272011U (zh) * 2014-10-23 2015-04-15 安徽四创电子股份有限公司 一种太阳能光伏水泵控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636729B2 (ja) * 2010-04-28 2014-12-10 学校法人 東洋大学 太陽電池装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201474941U (zh) * 2009-08-10 2010-05-19 余海东 太阳能光伏智能控制变频水泵系统
CN203377793U (zh) * 2013-07-19 2014-01-01 孟州卓伦光电科技有限公司 具有光伏扬水系统控制功能的变频器
CN104079232A (zh) * 2014-07-14 2014-10-01 哈尔滨工业大学 一种单级式光伏水泵控制系统及其控制方法
CN204272011U (zh) * 2014-10-23 2015-04-15 安徽四创电子股份有限公司 一种太阳能光伏水泵控制系统

Also Published As

Publication number Publication date
CN104333317A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
CN104426473B (zh) 一种太阳能光伏系统控制方法及控制装置
CN204272011U (zh) 一种太阳能光伏水泵控制系统
CN103428969B (zh) 一种线性恒流led驱动电路及led灯具
CN106130434B (zh) 一种利用太阳能供电的水泵电机控制系统
CN204810224U (zh) 一种自给式光伏供电电源
CN103746436B (zh) 一种输出功率恒定的固体激光电源
CN104289489B (zh) 基于无刷直流电机的高压清洗机驱动系统及方法
CN103631293A (zh) 一种带功率因数校正的恒流控制电路及方法
CN201408996Y (zh) 一种带有功率因数校正的三相输入均流控制器
CN104333317B (zh) 一种太阳能光伏水泵控制系统及其控制方法
CN104269914A (zh) 一种风光互补控制逆变一体机
CN204442746U (zh) 一种基于单片机的光伏照明系统
CN206100534U (zh) 一种利用光伏mppt供电系统的led控制装置
CN103532409B (zh) 小型风力发电用三相反激式倍压单开关整流电路
CN201682294U (zh) 一种基于z源三相光伏并网逆变器
CN202424559U (zh) 一种高效率的高频开关电源
CN206180663U (zh) 一种电动汽车充电站
CN205491273U (zh) 一种供电线路中的led驱动电路
CN204482133U (zh) 一种led恒压恒流驱动电路
CN103475074B (zh) 空载低损耗电池充电电路
CN205986699U (zh) 一种利用太阳能供电的水泵电机控制系统
CN206301431U (zh) 通用型多功能计量数据采集器
CN205047381U (zh) 高扬程太阳能光伏提灌站
CN205844375U (zh) 一种用于电缆故障检测的高压脉冲发生装置
CN204068409U (zh) 一种光伏与通信电源组合使用的供电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170201