CN104332597A - 一种多酸/聚苯胺/碳纳米管电极材料及其制备方法和应用 - Google Patents

一种多酸/聚苯胺/碳纳米管电极材料及其制备方法和应用 Download PDF

Info

Publication number
CN104332597A
CN104332597A CN201410559462.7A CN201410559462A CN104332597A CN 104332597 A CN104332597 A CN 104332597A CN 201410559462 A CN201410559462 A CN 201410559462A CN 104332597 A CN104332597 A CN 104332597A
Authority
CN
China
Prior art keywords
carbon nano
polyaniline
polyacid
nano tube
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410559462.7A
Other languages
English (en)
Other versions
CN104332597B (zh
Inventor
宋宇飞
贾飞飞
陈伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201410559462.7A priority Critical patent/CN104332597B/zh
Publication of CN104332597A publication Critical patent/CN104332597A/zh
Application granted granted Critical
Publication of CN104332597B publication Critical patent/CN104332597B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一系列多酸与聚苯胺和碳纳米管电极材料的制备方法及其在锂离子电池和超级电容器中的应用。本发明的技术方案是:首先将多壁碳纳米管在盐酸中进行超声分散,然后将溶解在盐酸中的苯胺和过硫酸铵加入进行原位合成,实现聚苯胺在多壁碳纳米管上的均匀包裹,再利用静电结合将多酸组装在聚苯胺与碳纳米管复合材料上,最后形成基于多酸/聚苯胺/多壁碳纳米管的电极材料。相比于已报道的聚苯胺与碳纳米管复合材料和纯碳纳米管,本发明制备的电极材料作为锂离子电池的负极显著提高了其循环稳定性,放电比容量和速率容量也有明显的提高。

Description

一种多酸/聚苯胺/碳纳米管电极材料及其制备方法和应用
技术领域
本发明属于无机-有机电极材料制备技术领域,特别涉及一系列多酸与聚苯胺和碳纳米管电极材料的制备方法及其在锂离子电池和超级电容器中的应用。
背景技术
多酸化合物是一类含有V、Mo、W等金属的多金属氧化物。由同种含氧酸根离子缩合形成的叫同多阴离子,其酸叫同多酸。由不同种类的含氧酸根阴离子缩合形成的叫杂多阴离子,其酸叫杂多酸。目前已知有近70种元素的原子可作为杂多酸中的杂原子,包括全部的第一系列过渡元素,几乎全部的第二、三系列过渡元素,再加上B、Al、Ga、Si、Ge、Sn、P、As、Sb、Bi、Se、Te、I等。而每种杂原子又往往可以不同价态存在于杂多阴离子中,所以种类是相当繁多的。
多酸化学发展至今,逐渐由基础研究延伸至与国民经济发展紧密相连的诸多领域,其中最重要的研究领域是能源与环境,因为它们与人们的日常生活息息相关。前期研究表明,可以通过改变杂原子或配原子来调节多酸阴离子的氧化还原电势,而不影响其结构。取代型多酸盐中的过渡金属或稀土金属阳离子具有可变性,而且有可能发生多电子转移。杂多阴离子因具有上述一系列特性,而使其通过间接电化学过程作为氧化还原催化剂非常有优势。Keggin型多酸阴离子一般是由4个三金属簇构成的,对称性高,结构稳定,可接受电子,但是过量接受电子会造成一定程度的分解。一般,Keggin型钼系杂多酸盐的氧化还原电势要高于相应结构的钨系杂多酸盐系列。Keggin型多酸H3PMo12O40具有酸性和氧化还原性,可以使一些聚合物如聚苯胺等质子化和电化学性能提高。有报道显示H3PMo12O40可以达到超级还原态[PMo12O40]27-,存储24电子,具有较大的理论容量。
碳纳米管因其具有独特一维分子结构,有利于π电子沿管壁的方向流动,与共轭高分子和富勒烯相比较,碳纳米管的二阶超极化率有明显的提高,且随着碳纳米管长度、直径和结构的不同有明显的变化等优点而成为研究的热点。碳纳米管主要用于场发射、锂离子电池、氢存储、高密度数据存储等等。但碳纳米管的分散性较差(易团聚),有效解决多碳纳米管的分散性问题成为难点。在众多聚合物中聚苯胺由于合成简单、空气中稳定性好、价格便宜、具有电学和光伏性质等许多优异特性,所以在这一领域中表现出极大优势。通常共轭聚合物未掺杂时是处于半导体状态,如果受光的激发就表现出电子给体性质。
发明内容
本发明的目的是合成一种电极材料,并将其应用到锂离子电池中。
本发明的技术方案是:首先将多壁碳纳米管在盐酸中进行超声分散,然后将溶解在盐酸中的苯胺和过硫酸铵加入进行原位合成,实现聚苯胺在多壁碳纳米管上的均匀包裹,再利用静电结合将多酸组装在聚苯胺与碳纳米管复合材料上,最后形成基于多酸/聚苯胺/碳纳米管的电极材料。
本发明所述的纳米复合材料的制备步骤如下:
1)利用原位合成的方法制备聚苯胺与多壁碳纳米管的复合材料:
a、在60-80℃条件下,将1-2g多壁碳纳米管在150-200mL浓度为5-8mol/L的盐酸溶液中回流12-14h,然后洗涤、真空干燥后备用;
b、将100-200mg步骤a处理过的多壁碳纳米管在200-350mL浓度为0.8-2mol/L的盐酸溶液中超声分散1-6小时;然后加入700-1400μL苯胺继续超声分散2-3小时;最后逐滴加入50-100mL温度为0-5℃的过硫酸铵溶液,所述的过硫酸铵溶液的浓度为0.8-1mol/L,溶剂为0.8-2mol/L的盐酸溶液;
c、在0-5℃下继续反应5-7h,最后用甲醇或乙醇洗涤,真空干燥得到聚苯胺与多壁碳纳米管复合材料;
2)合成多酸/聚苯胺/碳纳米管的电极材料:
Ⅰ、取80-150mg步骤1)制备的聚苯胺与多壁碳纳米管复合材料在100-200mL浓度为0.8-2mol/L的盐酸溶液中超声分散3-5小时;
Ⅱ、取480-900mg的Keggin型多酸均匀分散在80-150mL浓度为0.8-2mol/L的盐酸溶液中;
Ⅲ、混合步骤Ⅰ和步骤Ⅱ的溶液,磁力搅拌反应5-6小时,然后静置12-18h,最后用甲醇或乙醇洗涤、真空干燥得到多酸/聚苯胺/碳纳米管的电极材料。
所述的Keggin型多酸化学式为H3PMo12O40、H4PMo11VO40、H5PMo10V2O40、或H6PMo9V3O40
将上述制备得到的电极材料作为锂离子电池材料组装成锂离子半电池的应用。
本发明的优点在于:首次成功合成的多酸/聚苯胺/碳纳米管的电极材料在锂离子电池中具有很好的性能。相比于已报道的聚苯胺与碳纳米管复合材料和纯碳纳米管,本发明制备的纳米复合材料作为锂离子电池的负极显著提高了其循环稳定性,放电比容量和速率容量也有明显的提高。
附图说明
图1是本发明实施例1得到的H3PMo12O40/聚苯胺/碳纳米管的电极材料的红外谱图(a)、TEM图(c),聚苯胺和多壁碳纳米管的TEM图(b)。
图2是本发明实施例1得到的H3PMo12O40/聚苯胺/碳纳米管的电极材料用于锂离子电池的性能测试图。
具体实施方式
【实施例1】
1)利用原位合成的方法制备聚苯胺与多壁碳纳米管的复合材料:
a、80℃条件下,将1g多壁碳纳米管在200mL浓度为6mol/L的盐酸溶液中回流12h,然后去离子水离心洗涤至滤液为中性,最后在120℃的真空干燥箱内干燥12小时备用;
b、将150mg步骤a处理过的多壁碳纳米管在200mL浓度为1mol/L的盐酸溶液中超声分散2小时;然后加入1050μL的苯胺继续超声分散3小时;最后逐滴加入75mL温度为0-5℃的过硫酸铵溶液,所述的过硫酸铵溶液的浓度为1mol/L,溶剂为1mol/L的盐酸溶液;
c、滴加完成后在0-5℃下继续反应5小时,过滤,用乙醇洗涤至滤液为无色,在60℃的真空干燥箱内干燥12小时,得到聚苯胺与多壁碳纳米管复合材料;
2)合成H3PMo12O40/聚苯胺/碳纳米管的电极材料:
Ⅰ、取100mg步骤1)制备的聚苯胺与多壁碳纳米管复合材料在200mL浓度为1mol/L的盐酸溶液中超声分散4小时;
Ⅱ、取600mg的H3PMo12O40均匀分散在80mL浓度为1mol/L的盐酸溶液中;
Ⅲ、混合步骤Ⅰ和步骤Ⅱ的溶液,磁力搅拌反应6小时,然后静置15小时,离心分离,用乙醇洗涤3次,在60℃的真空干燥箱内干燥12小时,得到H3PMo12O40/聚苯胺/碳纳米管的电极材料。
3)组装成锂离子半电池:
a、将合成的电极材料和炔黑在120℃干燥8小时,后按50:30质量比混合研磨30分钟;
b、将上述混合物在120℃下干燥一夜,后转移到小磨口瓶中,按混合物:聚四氟乙烯质量比为80:20加入3wt%的聚四氟乙烯乳液,后手动搅拌30分钟;
c、将上述物质转移至铜箔上,用25μm的涂膜制备器进行刮膜,在80℃干燥箱干燥一夜,取出后用切片机切为均匀圆片,继续在120℃下干燥12小时;
d、上述制的铜箔作为正极,金属锂箔作为反电极,1mol/L的LiPF6作为电解液,溶剂为体积比为1:1的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合液,在一充氩气的手套箱内组装成半电池。
【实施例2】
1)利用原位合成的方法制备聚苯胺与多壁碳纳米管的复合材料:
a、80℃条件下,将1g多壁碳纳米管在6mol/L的盐酸溶液中回流12h,然后去离子水离心洗涤至滤液为中性,最后在120℃的真空干燥箱内干燥12小时备用;
b、将150mg步骤a处理过的多壁碳纳米管在200mL浓度为1mol/L的盐酸溶液中超声分散2小时;然后加入1050μL的苯胺继续超声分散3小时;最后逐滴加入75mL温度为0-5℃的过硫酸铵溶液,所述的过硫酸铵溶液的浓度为1mol/L,溶剂为1mol/L的盐酸溶液;
c、滴加完成后在0-5℃下继续反应5小时,过滤,用乙醇洗涤至滤液为无色,在60℃的真空干燥箱内干燥12小时,得到聚苯胺与多壁碳纳米管复合材料;
2)合成多酸/聚苯胺/多壁碳纳米管的电极材料:
Ⅰ、取100mg步骤1)制备的聚苯胺与碳纳米管复合材料在200mL浓度为1mol/L的盐酸溶液中超声分散4小时;
Ⅱ、分别取600mg的H4PMo11VO40、H5PMo10V2O40、H6PMo9V3O40分别均匀分散在80mL浓度为1mol/L的盐酸溶液中;
Ⅲ、步骤Ⅱ的溶液分别与步骤Ⅰ的溶液混合,磁力搅拌反应6小时,然后静置15小时,离心分离,用甲醇洗涤2次,在60℃的真空干燥箱内干燥12小时,分别得到H4PMo11VO40/聚苯胺/碳纳米管的电极材料、H5PMo10V2O40/聚苯胺/碳纳米管的电极材料、H6PMo9V3O40/聚苯胺/碳纳米管的电极材料。
3)组装成锂离子半电池:
a、将合成的电极材料分别和炔黑在120℃干燥8小时,后按50:30质量比混合研磨30分钟;
b、将上述混合物在120℃下干燥一夜,后转移到小磨口瓶中,按混合物:聚四氟乙烯质量比为80:20加入3wt%的聚四氟乙烯乳液,后手动搅拌30分钟;
c、将上述物质转移至铜箔上,用25μm的涂膜制备器进行刮膜,在80℃干燥箱干燥一夜,取出后用切片机切为均匀圆片,继续在120℃下干燥12小时;
d、上述制的铜箔作为正极,金属锂箔作为反电极,1mol/L的LiPF6作为电解液,溶剂为体积比为1:1的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合液,在一充氩气的手套箱内组装成半电池。

Claims (3)

1.一种电极材料的制备方法,其特征在于,其具体操作步骤如下:
1)利用原位合成的方法制备聚苯胺与多壁碳纳米管的复合材料:
a、在60-80℃条件下,将1-2g多壁碳纳米管在150-200mL浓度为5-8mol/L的盐酸溶液中回流12-14h,然后洗涤、真空干燥后备用;
b、将100-200mg步骤a处理过的多壁碳纳米管在200-350mL浓度为0.8-2mol/L的盐酸溶液中超声分散1-6小时;然后加入700-1400μL苯胺继续超声分散2-3小时;最后逐滴加入50-100mL温度为0-5℃的过硫酸铵溶液,所述的过硫酸铵溶液的浓度为0.8-1mol/L,溶剂为0.8-2mol/L的盐酸溶液;
c、在0-5℃下继续反应5-7h,最后用甲醇或乙醇洗涤,真空干燥得到聚苯胺与多壁碳纳米管复合材料;
2)合成多酸/聚苯胺/碳纳米管的电极材料:
Ⅰ、取80-150mg步骤1)制备的聚苯胺与多壁碳纳米管复合材料在100-200mL浓度为0.8-2mol/L的盐酸溶液中超声分散3-5小时;
Ⅱ、取480-900mg的Keggin型多酸均匀分散在80-150mL浓度为0.8-2mol/L的盐酸溶液中;
Ⅲ、混合步骤Ⅰ和步骤Ⅱ的溶液,磁力搅拌反应5-6小时,然后静置12-18h,最后用甲醇或乙醇洗涤、真空干燥得到多酸/聚苯胺/碳纳米管的电极材料。
2.根据权利要求1所述的制备方法,其特征在于,所述的Keggin型多酸化学式为H3PMo12O40、H4PMo11VO40、H5PMo10V2O40、或H6PMo9V3O40
3.根据权利要求1或2所述的方法制备得到的电极材料作为锂离子电池材料组装成锂离子半电池的应用。
CN201410559462.7A 2014-10-20 2014-10-20 一种多酸/聚苯胺/碳纳米管电极材料及其制备方法和应用 Active CN104332597B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410559462.7A CN104332597B (zh) 2014-10-20 2014-10-20 一种多酸/聚苯胺/碳纳米管电极材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410559462.7A CN104332597B (zh) 2014-10-20 2014-10-20 一种多酸/聚苯胺/碳纳米管电极材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104332597A true CN104332597A (zh) 2015-02-04
CN104332597B CN104332597B (zh) 2016-10-05

Family

ID=52407285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410559462.7A Active CN104332597B (zh) 2014-10-20 2014-10-20 一种多酸/聚苯胺/碳纳米管电极材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104332597B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304900A (zh) * 2015-09-24 2016-02-03 扬州大学 一种制备聚苯胺包覆铯磷钨酸盐微球的方法
CN105801850A (zh) * 2016-03-30 2016-07-27 重庆金固特新材料科技有限公司 一种导电聚苯胺-碳纳米管复合物的合成方法
CN106356555A (zh) * 2016-11-02 2017-01-25 武汉理工大学 碳纳米管/导电聚合物双重修饰的硫复合正极材料的制备方法
CN106847540A (zh) * 2017-01-16 2017-06-13 哈尔滨工业大学 一种石墨烯/导电聚合物复合电极材料的制备方法
CN108963227A (zh) * 2018-07-19 2018-12-07 周鲁中 导电高分子包覆硅复合碳纳米管负极材料及其制法和应用
CN110931790A (zh) * 2019-10-25 2020-03-27 合肥国轩高科动力能源有限公司 共轭梯形聚合物-碳纳米管复合材料及其制备方法、应用
CN111933897A (zh) * 2019-05-13 2020-11-13 北京新能源汽车股份有限公司 一种复合材料、其制备方法及应用
CN112531152A (zh) * 2020-11-11 2021-03-19 张叶芳 一种锂电池用电极材料及其制备方法
US11014083B2 (en) 2019-03-21 2021-05-25 Jiangxi University Of Science And Technology Method for preparing a rare-earth modified Keggin-type heteropolyacid-supported catalyst and method for preparing a biodiesel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693207A (zh) * 2009-10-22 2010-04-14 浙江大学 导电聚合物修饰的碳载铁基复合物催化剂的一步合成方法
US20120136136A1 (en) * 2009-06-01 2012-05-31 Universite Du Quebec A Montreal Process to induce polymerization of an organic electronically conductive polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120136136A1 (en) * 2009-06-01 2012-05-31 Universite Du Quebec A Montreal Process to induce polymerization of an organic electronically conductive polymer
CN101693207A (zh) * 2009-10-22 2010-04-14 浙江大学 导电聚合物修饰的碳载铁基复合物催化剂的一步合成方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304900A (zh) * 2015-09-24 2016-02-03 扬州大学 一种制备聚苯胺包覆铯磷钨酸盐微球的方法
CN105801850A (zh) * 2016-03-30 2016-07-27 重庆金固特新材料科技有限公司 一种导电聚苯胺-碳纳米管复合物的合成方法
CN106356555B (zh) * 2016-11-02 2019-09-10 武汉理工大学 碳纳米管/导电聚合物双重修饰的硫复合正极材料的制备方法
CN106356555A (zh) * 2016-11-02 2017-01-25 武汉理工大学 碳纳米管/导电聚合物双重修饰的硫复合正极材料的制备方法
CN106847540A (zh) * 2017-01-16 2017-06-13 哈尔滨工业大学 一种石墨烯/导电聚合物复合电极材料的制备方法
CN106847540B (zh) * 2017-01-16 2018-05-22 哈尔滨工业大学 一种石墨烯/导电聚合物复合电极材料的制备方法
CN108963227A (zh) * 2018-07-19 2018-12-07 周鲁中 导电高分子包覆硅复合碳纳米管负极材料及其制法和应用
CN108963227B (zh) * 2018-07-19 2021-02-19 周鲁中 导电高分子包覆硅复合碳纳米管负极材料及其制法和应用
US11014083B2 (en) 2019-03-21 2021-05-25 Jiangxi University Of Science And Technology Method for preparing a rare-earth modified Keggin-type heteropolyacid-supported catalyst and method for preparing a biodiesel
CN111933897A (zh) * 2019-05-13 2020-11-13 北京新能源汽车股份有限公司 一种复合材料、其制备方法及应用
CN111933897B (zh) * 2019-05-13 2022-03-08 北京新能源汽车股份有限公司 一种复合材料、其制备方法及应用
CN110931790A (zh) * 2019-10-25 2020-03-27 合肥国轩高科动力能源有限公司 共轭梯形聚合物-碳纳米管复合材料及其制备方法、应用
CN110931790B (zh) * 2019-10-25 2022-05-06 合肥国轩高科动力能源有限公司 共轭梯形聚合物-碳纳米管复合材料及其制备方法、应用
CN112531152A (zh) * 2020-11-11 2021-03-19 张叶芳 一种锂电池用电极材料及其制备方法

Also Published As

Publication number Publication date
CN104332597B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
CN104332597A (zh) 一种多酸/聚苯胺/碳纳米管电极材料及其制备方法和应用
Wu et al. MoS2‐Nanosheet‐Decorated 2D Titanium Carbide (MXene) as High‐Performance Anodes for Sodium‐Ion Batteries
Liu et al. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries
Xiao et al. Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium–sulfur batteries
Zhang et al. Single-atom coated separator for robust lithium–sulfur batteries
Ma et al. Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage
Wang et al. Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li–S batteries
Hu et al. Rational design of a polyimide cathode for a stable and high-rate potassium-ion battery
Shen et al. Prussian blues as a cathode material for lithium ion batteries
Cai et al. Boosting Zn-ion storage performance of bronze-type VO2 via Ni-mediated electronic structure engineering
Kundu et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
Yu et al. Na2S–Carbon Nanotube Fabric Electrodes for Room‐Temperature Sodium–Sulfur Batteries
Ren et al. Three-dimensional tubular MoS2/PANI hybrid electrode for high rate performance supercapacitor
Ji et al. Polyoxometalate‐based bottom‐up fabrication of graphene quantum dot/manganese vanadate composites as lithium ion battery anodes
Li et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability
CN104900856B (zh) 一种基于纳米硫的锂硫电池用正极复合材料及制备方法
Ruan et al. Carbon-encapsulated Sn@ N-doped carbon nanotubes as anode materials for application in SIBs
Huang et al. Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode
Tang et al. Highly Stable and High Rate‐Performance Na‐Ion Batteries Using Polyanionic Anthraquinone as the Organic Cathode
Chen et al. Lithium–organic nanocomposite suspension for high-energy-density redox flow batteries
Oskueyan et al. Fabrication of polyaniline–carrot derived carbon dots/polypyrrole–graphene nanocomposite for wide potential window supercapacitor
O’Meara et al. Nickel–salen-type polymer as conducting agent and binder for carbon-free cathodes in lithium-ion batteries
Elkholy et al. Stable α-MoO3 electrode with a widened electrochemical potential window for aqueous electrochemical capacitors
Jin et al. Amorphous Transition Metal Sulfides Anchored on Amorphous Carbon‐Coated Multiwalled Carbon Nanotubes for Enhanced Lithium‐Ion Storage
Zhao et al. Bimetallic carbides embedded in heteroatom-doped carbon nanotubes for efficient electrocatalytic hydrogen evolution reaction and high-performance lithium storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant