CN104319307B - PNIN型InGaAs红外探测器 - Google Patents

PNIN型InGaAs红外探测器 Download PDF

Info

Publication number
CN104319307B
CN104319307B CN201410508495.9A CN201410508495A CN104319307B CN 104319307 B CN104319307 B CN 104319307B CN 201410508495 A CN201410508495 A CN 201410508495A CN 104319307 B CN104319307 B CN 104319307B
Authority
CN
China
Prior art keywords
ingaas
pnin
infrared detectors
layer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410508495.9A
Other languages
English (en)
Other versions
CN104319307A (zh
Inventor
张志伟
缪国庆
宋航
蒋红
黎大兵
孙晓娟
陈仁
陈一仁
李志明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201410508495.9A priority Critical patent/CN104319307B/zh
Publication of CN104319307A publication Critical patent/CN104319307A/zh
Application granted granted Critical
Publication of CN104319307B publication Critical patent/CN104319307B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种PNIN型InGaAs红外探测器,涉及光电子材料与器件的应用领域。PNIN型InGaAs红外探测器,该探测器是依次包括衬底、缓冲层、扩展波长的InGaAs吸收层、n型插入层和盖层的PNIN型探测器结构;其中,所述的n型插入层的厚度为50nm~150nm,其组分与所述扩展波长的InGaAs吸收层的组分相同。本发明的红外探测器增加的n型插入层能够通过产生带阶,抑制载流子的输运,导致暗电流降低,进而提高红外探测器的光电性能。同时降低了对InGaAs材料外延生长的要求,并可在更广泛的波长范围工作。本发明的红外探测器适用于背面进光及倒扣封装结构,具有很好的通用性。

Description

PNIN型InGaAs红外探测器
技术领域
本发明涉及光电子材料与器件的应用领域,具体涉及一种PNIN型InGaAs红外探测器。
背景技术
目前在InGaAs红外探测器结构设计中,特别是半导体光伏型红外探测器中,都采用PIN结构。但随着材料制备工艺和器件结构设计的迅速发展,人们渴望发展新型红外探测器,以改善目前光电子器件的性能。特别是对于空间遥感用探测器来说,急需设计出可以有效抑制器件的暗电流噪声并提高探测范围的红外探测器件结构。
研究发现由于InGaAs材料为全组分直接带隙材料,通过提高In组分,可有效扩展探测器的应用范围。但提高In组分同时必然导致InGaAs材料与衬底产生晶格失配,而当失配较大时则就会引起位错缺陷,降低InGaAs外延材料的质量,导致探测器性能下降。因此,如果希望得到高质量的InGaAs材料,需要在衬底与吸收层间生长适当的缓冲层,以降低吸收层中的缺陷密度。
为了减少衬底与吸收层之间的晶格失配带来的位错缺陷,目前主要采用在两层间插入组分渐变(或跃变)的缓冲层的方法。采用该技术可有效抑制位错,改善吸收层的质量,从而使探测器性能得到改善,但该技术需要生长非常厚的缓冲层后才能生长所需要组分的吸收层。此外,由于InGaAs缓冲层是不透明的,对于常采用背面进光及倒扣封装方案的阵列及焦平面探测器而言,这种缓冲层结构就不适合。而当在衬底上生长InAsP缓冲层材料时,由于临界厚度较小,即在外延生长过程中,外延层内的应变释放很快,在较小厚度范围内即可以获得很高的弛豫度,这有望提高在其上生长的InGaAs吸收层材料质量,获得低缺陷密度的光吸收层材料。而InAlAs材料与InGaAs材料十分相似,具有增加In的组分值则其晶格常数相应增加并保持直接带隙的特点。InAlAs材料对于所探测的光波长透明,有助于提高量子效率,同时也有利于减小表面复合,改善暗电流特性。因此在正面进光时可采用宽禁带InAlAs材料作盖层。
发明内容
本发明的目的在于针对现有InGaAs红外探测器存在的缺陷,提供一种能够显著降低暗电流并扩展探测范围的PNIN型InGaAs红外探测器。
为了实现上述目的,本发明的技术方案具体如下:
一种PNIN型InGaAs红外探测器,该探测器是依次包括衬底、缓冲层、扩展波长的InGaAs吸收层、n型插入层和盖层的PNIN型探测器结构;
其中,所述的n型插入层的厚度为50nm~150nm,其组分与所述扩展波长的InGaAs吸收层的组分相同。
在上述技术方案中,所述衬底为高掺杂的n型InP或n型GaAs单晶衬底。
在上述技术方案中,所述缓冲层是线性渐变组分的掺Si的InAsP材料或与吸收层晶格匹配的固定组分的掺Si的InAsP材料。
在上述技术方案中,所述扩展波长的InGaAs吸收层的组分具体为InxGa1-xAs,其中x的范围为0.53<x<1。
在上述技术方案中,所述盖层是与扩展波长的InGaAs吸收层晶格匹配的掺Be的p型InAlAs或p型InAsP材料。
本发明的有益效果是:
本发明提供的PNIN型InGaAs红外探测器是在现有InGaAs红外探测器结构的吸收层和盖层之间增加了一层厚度为50nm~150nm的n型插入层,其组分与所述扩展波长的InGaAs吸收层的组分相同。增加的n型插入层能够通过产生带阶,抑制载流子的输运,导致暗电流降低,进而提高红外探测器的光电性能。同时降低了对InGaAs材料外延生长的要求,并可在更广泛的波长范围工作。
本发明提供的PNIN型InGaAs红外探测器既能满足正面进光要求,也能适用于背面进光及倒扣封装结构,具有很好的通用性。本发明实现了对InGaAs红外探测器的暗电流显著抑制及探测范围的扩展,从而实现对探测器性能的提高。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为本发明的PNIN型InGaAs红外探测器结构示意图。
具体实施方式
本发明的发明思想为:本发明是为提高InGaAs红外探测器的光电性能,提供一种既能够拓展探测器的应用范围,又能对器件的暗电流显著抑制并保持良好光电转换效率的新型探测器结构。采用高掺杂的n型InP或n型GaAs单晶衬底,扩展波长的InGaAs材料作为吸收层,n型InGaAs作为插入层,p型InAlAs或p型InAsP作为盖层。在n型InP或n型GaAs单晶衬底上利用两步法生长一层掺Si的InAsP材料作为缓冲层,然后生长一层低掺杂、扩展波长的InGaAs光吸收层材料,继续再生长一层n型高掺杂的InGaAs插入层材料,最后在其上生长一层掺Be的p型InAlAs或p型InAsP盖层材料,构成PNIN结构,这样可以减少由于晶格失配引起的缺陷。此外,利用n型插入层产生带阶来抑制载流子的输运,导致暗电流降低,进而提高红外探测器的光电性能。综上所述,采用该结构制备的InGaAs红外探测器性能将明显改善。
下面结合附图对本发明做以详细说明。
实施例1
结合图1说明本实施例,一种截止波长为2.6μm的PNIN型InGaAs红外探测器,其结构为:在n型InP衬底上依次生长厚度约为1μm、掺杂浓度为2×1018cm-3的n型InAs0.60P0.40缓冲层,继续生长厚度为3μm、掺杂浓度为8×1016cm-3的n型In0.82Ga0.18As吸收层,再生长厚度为100nm、掺杂浓度为5×1017cm-3的n型In0.82Ga0.18As插入层,最后生长厚度为1μm、掺杂浓度为2×1018cm-3的p型In0.82Al0.18As盖层,形成PNIN探测器结构。
本实施例首先在n型InP衬底上采用MOCVD系统使用两步法生长掺Si的InAs0.60P0.40缓冲层,先在温度为450℃时生长一层约为1μm的InAs0.60P0.40,然后升高温度至580℃,在升温过程中缓冲层InAs0.60P0.40退火重结晶,释放由晶格失配所造成的应力,变成下一步生长的界面,在550℃恒温3~5分钟,然后继续生长一层3μm低掺杂n型扩展波长的In0.82Ga0.18As吸收层,再继续生长一层100nm高掺杂n型In0.82Ga0.18As插入层,最后通过生长1μm掺Be的In0.82Al0.18As盖层,形成PNIN探测器结构。
实施例2
一种截止波长为2.6μm的PNIN型InGaAs红外探测器,其结构为:在n型GaAs衬底上依次生长厚度约为1μm、掺杂浓度为2×1018cm-3的n型InAs0.60P0.40缓冲层,继续生长厚度为3μm、掺杂浓度为8×1016cm-3的n型In0.82Ga0.18As吸收层,再生长厚度为150nm、掺杂浓度为5×1017cm-3的n型In0.82Ga0.18As插入层,最后生长厚度为1μm、掺杂浓度为2×1018cm-3的p型In0.82Al0.18As盖层,形成PNIN探测器结构。
本实施例首先在n型GaAs衬底上采用MOCVD系统使用两步法生长掺Si的InAs0.60P0.40缓冲层,先在温度为450℃时生长一层约为1μm的InAs0.60P0.40,然后升高温度至580℃,在升温过程中缓冲层InAs0.60P0.40退火重结晶,释放由晶格失配所造成的应力,变成下一步生长的界面,在550℃恒温3~5分钟,然后继续生长一层3μm低掺杂n型扩展波长的In0.82Ga0.18As吸收层,再继续生长一层150nm高掺杂n型In0.82Ga0.18As插入层,最后通过生长1μm掺Be的In0.82Al0.18As盖层,形成PNIN探测器结构。
实施例3
一种截止波长为2.6μm的PNIN型InGaAs红外探测器,其结构为:在n型InP衬底上依次生长厚度约为1μm、掺杂浓度为2×1018cm-3的n型InAs0.60P0.40缓冲层,继续生长厚度为3μm、掺杂浓度为8×1016cm-3的n型In0.82Ga0.18As吸收层,再生长厚度为50nm、掺杂浓度为5×1017cm-3的n型In0.82Ga0.18As插入层,最后生长厚度为1μm、掺杂浓度为2×1018cm-3的p型In0.82Al0.18As盖层,形成PNIN探测器结构。
本实施例首先在n型InP衬底上采用MOCVD系统使用两步法生长掺Si的InAs0.60P0.40缓冲层,先在温度为450℃时生长一层约为1μm的InAs0.60P0.40,然后升高温度至580℃,在升温过程中缓冲层InAs0.60P0.40退火重结晶,释放由晶格失配所造成的应力,变成下一步生长的界面,在550℃恒温3~5分钟,然后继续生长一层3μm低掺杂n型扩展波长的In0.82Ga0.18As吸收层,再继续生长一层50nm高掺杂n型In0.82Ga0.18As插入层,最后通过生长1μm掺Be的In0.82Al0.18As盖层,形成PNIN探测器结构。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (4)

1.一种PNIN型InGaAs红外探测器,其特征在于,该探测器是依次包括衬底、缓冲层、扩展波长的InGaAs吸收层、n型插入层和盖层的PNIN型探测器结构;
其中,所述的n型插入层的厚度为50nm~150nm,其组分与所述扩展波长的InGaAs吸收层的组分相同;所述盖层是与扩展波长的InGaAs吸收层晶格匹配的掺Be的p型InAlAs或p型InAsP材料。
2.根据权利要求1所述的PNIN型InGaAs红外探测器,其特征在于,所述衬底为高掺杂的n型InP或n型GaAs单晶衬底。
3.根据权利要求1所述的PNIN型InGaAs红外探测器,其特征在于,所述缓冲层是线性渐变组分的掺Si的InAsP材料或与吸收层晶格匹配的固定组分的掺Si的InAsP材料。
4.根据权利要求1所述的PNIN型InGaAs红外探测器,其特征在于,所述扩展波长的InGaAs吸收层的组分具体为InxGa1-xAs,其中x的范围为0.53<x<1。
CN201410508495.9A 2014-09-26 2014-09-26 PNIN型InGaAs红外探测器 Expired - Fee Related CN104319307B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410508495.9A CN104319307B (zh) 2014-09-26 2014-09-26 PNIN型InGaAs红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410508495.9A CN104319307B (zh) 2014-09-26 2014-09-26 PNIN型InGaAs红外探测器

Publications (2)

Publication Number Publication Date
CN104319307A CN104319307A (zh) 2015-01-28
CN104319307B true CN104319307B (zh) 2017-04-05

Family

ID=52374514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410508495.9A Expired - Fee Related CN104319307B (zh) 2014-09-26 2014-09-26 PNIN型InGaAs红外探测器

Country Status (1)

Country Link
CN (1) CN104319307B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185846B (zh) * 2015-08-26 2017-01-25 中国科学院长春光学精密机械与物理研究所 PBN型InGaAs红外探测器
CN110896114B (zh) * 2019-11-11 2021-10-01 中国科学院上海技术物理研究所 PIIN型高In组分InGaAs探测器材料结构和制备方法
CN110896120A (zh) * 2019-11-11 2020-03-20 中国科学院上海技术物理研究所 一种多层InGaAs探测器材料结构和制备方法
CN113594290B (zh) * 2020-04-30 2023-09-08 成都英飞睿技术有限公司 一种延伸波长响应截止探测器及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164809A (en) * 1989-04-21 1992-11-17 The Regents Of The University Of Calif. Amorphous silicon radiation detectors
CN103383977A (zh) * 2013-07-23 2013-11-06 中国科学院长春光学精密机械与物理研究所 宽探测波段的InGaAs/GaAs红外探测器
TW201432346A (zh) * 2012-12-21 2014-08-16 Alcatel Lucent Usa Inc 用於光子積體電路器件的混合光學調變器
CN104051961A (zh) * 2014-06-26 2014-09-17 南京青辰光电科技有限公司 一种PNiN结构晶闸管激光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164809A (en) * 1989-04-21 1992-11-17 The Regents Of The University Of Calif. Amorphous silicon radiation detectors
TW201432346A (zh) * 2012-12-21 2014-08-16 Alcatel Lucent Usa Inc 用於光子積體電路器件的混合光學調變器
CN103383977A (zh) * 2013-07-23 2013-11-06 中国科学院长春光学精密机械与物理研究所 宽探测波段的InGaAs/GaAs红外探测器
CN104051961A (zh) * 2014-06-26 2014-09-17 南京青辰光电科技有限公司 一种PNiN结构晶闸管激光器

Also Published As

Publication number Publication date
CN104319307A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
TWI285436B (en) Solar cell with superlattice structure and fabricating method thereof
CN104319307B (zh) PNIN型InGaAs红外探测器
CN102820368B (zh) 三族氮化物基光电晶体管探测器件及其制作方法
CN106067493B (zh) 一种微晶格失配量子阱太阳能电池及其制备方法
CN105742399B (zh) 一种三族氮化物基双异质结光电晶体管
CN105097977B (zh) 多结太阳能电池外延结构
CN102534764A (zh) Ⅱ类超晶格窄光谱红外光电探测器材料的外延生长方法
Garcia et al. Metamorphic III–V solar cells: recent progress and potential
CN102176489A (zh) 晶格匹配体系上裁剪带隙波长提高光电探测器性能的方法
CN100492670C (zh) 波长扩展InGaAs探测器及阵列宽带缓冲层和窗口层及制作方法
CN103383976B (zh) 石墨烯增强型InGaAs红外探测器
CN103383977B (zh) 宽探测波段的InGaAs/GaAs红外探测器
Dupuis et al. Growth and fabrication of high-performance GaN-based ultraviolet avalanche photodiodes
CN109755340A (zh) 一种正向晶格失配三结太阳电池
CN105185846B (zh) PBN型InGaAs红外探测器
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN109473496B (zh) 一种雪崩探测器过渡层结构及制备方法
CN103337556A (zh) 晶格匹配体系上裁剪带隙波长提高光电探测器性能的方法
CN102214721A (zh) 一种iii族氮化物双异质结太阳能光伏电池
CN103077979A (zh) 一种GaAs衬底上扩展波长InGaAs探测器结构
Dong et al. Back-illuminated GaN/AlGaN solar-blind avalanche photodiodes
CN102290458A (zh) 一种InGaN太阳能电池外延片及其制备方法
CN101976696B (zh) 用于拓展In0.53Ga0.47As探测器及其阵列短波响应的材料体系及其制备
CN110993709B (zh) 应变补偿型量子级联探测器
CN109742187A (zh) 一种多节太阳能电池制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170405

Termination date: 20180926

CF01 Termination of patent right due to non-payment of annual fee