CN104314618A - 一种低压涡轮叶片结构及降低叶片损失的方法 - Google Patents

一种低压涡轮叶片结构及降低叶片损失的方法 Download PDF

Info

Publication number
CN104314618A
CN104314618A CN201410528718.8A CN201410528718A CN104314618A CN 104314618 A CN104314618 A CN 104314618A CN 201410528718 A CN201410528718 A CN 201410528718A CN 104314618 A CN104314618 A CN 104314618A
Authority
CN
China
Prior art keywords
blade
height
low
pressure turbine
rough zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410528718.8A
Other languages
English (en)
Other versions
CN104314618B (zh
Inventor
孙爽
雷志军
卢新根
吕建波
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Engineering Thermophysics of CAS
Original Assignee
Institute of Engineering Thermophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Engineering Thermophysics of CAS filed Critical Institute of Engineering Thermophysics of CAS
Priority to CN201410528718.8A priority Critical patent/CN104314618B/zh
Publication of CN104314618A publication Critical patent/CN104314618A/zh
Application granted granted Critical
Publication of CN104314618B publication Critical patent/CN104314618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明公开了一种低压涡轮叶片结构及降低叶片气动损失的方法,可抑制航空发动机高负荷及超高负荷低压涡轮叶片气流分离,提高涡轮效率,针对在航空发动机巡航状态下,低压涡轮叶片吸力面易于分离、涡轮效率较低的问题,通过在叶片吸力面分离点上游增加叶片表面的粗糙度,该粗糙度随流向逐渐变化,在加速叶片表面低能流体转捩的同时最大限度地降低了额外的摩擦损失,从而提高低压涡轮工作效率,扩大低压涡轮工作裕度。

Description

一种低压涡轮叶片结构及降低叶片损失的方法
技术领域
本发明涉及一种适用于航空发动机的具有吸力面表面粗糙度的涡轮叶片,该种结构的叶片可有效地降低涡轮叶片的分离损失,提高航空发动机效率。
背景技术
当前大涵道比涡扇发动机由于其出色的耗油率及推力特性而被广泛地应用于民用航空。低压涡轮因级数较多,其重量可占整台发动机的20%~30%,降低低压涡轮重量是发动机减重的有效途径之一,同时也可提高发动机推重比、降低制造和运营维护成本。目前研究较多的减重方案是通过提高叶型的负荷来进行减重。高负荷叶片设计就是通过减小叶片稠度来提高单个叶片的气动负荷,从而在保持原有级载荷水平的基础上减小单级叶片数目。提高叶片载荷意味着涡轮叶型要经历比低载荷更大的逆压梯度,导致了附面层易于分离,叶型损失增加。另外,对于民用大涵道比涡扇发动机,其设计状态(巡航状态)下的低压涡轮始终处于低Re数工作状态,这进一步导致了低压涡轮叶片吸力面附面层的流动分离,从而大幅增加叶型损失,影响低压涡轮的气动效率。
对于低压涡轮,特别是末级叶片通常较长,展弦比较大(一般处于3:1—7:1),在这在种情况下,叶片两端区的三维流动损失在总损失中占比较小,二维叶型损失则占比较高,而二维叶型损失主要由分离损失造成,因此如何降低吸力面附面层分离成为涡轮设计的焦点之一。本发明在原有涡轮叶片的基础上,通过在指定位置布置粗糙条带,可有效地抑制分离,提高涡轮效率。
传统的粗糙度被动控制方案通常是在某一区域布置一段固定高度的粗糙条带,该方法可以在低Re数下有效地降低分离损失,但在高Re数状态却会带来额外的损失使得控制效果下降,甚至直接导致控制方案的失败。本发明对原有的粗糙度被动控制方案进行了改进,目的是降低高Re状态下的额外损失,使分离控制更加精确、有效。
发明内容
针对现有技术的缺点和不足,本发明旨在提供一种低压涡轮叶片结构及降低叶片气动损失的方法,通过在低压涡轮叶片的适当区域布置高度变化的粗糙条带,不仅可以在低Re数下有效地降低分离损失,还可以有效地降低高Re数下的额外损失,使分离控制更加精确、有效,从而提高涡轮效率。
为解决其技术问题,根据本发明的一方面,提供了一种低压涡轮叶片结构,特别适用于降低航空发动机高负荷及超高负荷低压涡轮叶片叶型损失,所述低压涡轮叶片包括叶片前缘、叶片吸力侧、叶片压力侧和叶片尾缘,其特征在于,在所述叶片吸力侧的表面上设置粗糙带,根据叶高中部的二维叶型来确定所述粗糙带的起始、终止位置:
--以所述叶高中部二维叶型吸力侧表面的速度峰值点至叶片前缘1/2处作为基点,沿叶片展向向叶根及叶尖两侧延伸形成一条曲线,以该曲线作为所述粗糙带布置位置的起始点;
--以所述叶高中部二维叶型在吸力侧表面未设置粗糙带时的气流分离点作为基点,沿叶片展向向叶根及叶尖两侧延伸形成整个叶片的分离线,以该分离线作为所述粗糙带布置位置的终止点;
其中,所述叶高中部为40~60%的叶片展向位置。
本发明的低压涡轮叶片结构中,所述粗糙带上的粗糙高度为恒定粗糙高度或变粗糙高度。
本发明的低压涡轮叶片结构中,所述恒定粗糙高度按照如下方式进行设定:对布置粗糙带的区域内的光洁叶型下的附面层高度进行积分,选取该积分值的10%作为所述恒定粗糙高度。
本发明的低压涡轮叶片结构中,所述变粗糙高度按照如下方式进行设定:细化布置粗糙带的区域内的光洁叶型下的附面层,对光洁叶型下的附面层高度变化较大的区域进行分割,对细化后的区域的附面层高度进行积分,选取该积分值的10%作为该区域的粗糙高度。可根据不同叶片的附面层变化规律得出不同的划分方式。这种细化后的变粗糙高度布置方式效果较好的原因在于使每一部分的粗糙高度刚好起到扰动附面层的作用,在促进转捩的同时又不产生额外的阻力。
根据本发明的另一方面,还提供了一种降低涡轮叶片气动损失的方法,所述低压涡轮叶片包括叶片前缘、叶片吸力侧、叶片压力侧和叶片尾缘,其特征在于,在所述叶片吸力侧的表面上设置粗糙带,根据叶高中部的二维叶型来确定所述粗糙带的起始、终止位置:
--以所述叶高中部二维叶型吸力侧表面的速度峰值点至叶片前缘1/2处作为基点,沿叶片展向向叶根及叶尖两侧延伸形成一条曲线,以该曲线作为所述粗糙带布置位置的起始点;
--以所述叶高中部二维叶型在吸力侧表面未设置粗糙带时的气流分离点作为基点,沿叶片展向向叶根及叶尖两侧延伸形成整个叶片的分离线,以该分离线作为所述粗糙带布置位置的终止点;
其中,所述叶高中部为40~60%的叶片展向位置。
优选地,所述粗糙带上的粗糙高度为恒定粗糙高度或变粗糙高度。
进一步地,所述恒定粗糙高度按照如下方式进行设定:对布置粗糙带的区域内的光洁叶型下的附面层高度进行积分,选取该积分值的10%作为所述恒定粗糙高度。
进一步地,所述变粗糙高度按照如下方式进行设定:细化布置粗糙带的区域内的光洁叶型下的附面层,对光洁叶型下的附面层高度变化较大的区域进行分割,对细化后的区域的附面层高度进行积分,选取该积分值的10%作为该区域的粗糙高度。
同现有技术相比,本发明的低压涡轮叶片结构及降低叶片气动损失的方法具有显著的技术效果:对于涡轮叶片分离控制的方法很多,根据控制方式的不同可将其分为主动控制与被动控制。主动控制方法控制精确可调,但其结构复杂、实现较困难;被动控制不可调节,在不需要施加控制时不可移除,但其结构简单,工程应用性较强。本发明属于一种被动控制手段,该控制手段通过促进附面层气流转捩,使吸力面表面二维层流低能流体通过转捩后形成的三维涡系获取主流内部能量,达到抑制分离,提高效率的目的。这种促进转捩的方式与球涡、凸台、拌线等被动控制手段的作用机理是一致的,但粗糙度控制手段具有结构简单、成本低、无需改变叶型、不影响叶片结构强度等优势。变粗糙高度被动控制方案兼具了恒定粗糙高度控制方案在低Re数工况下的低分离损失及高工作裕度特性,同时还具有高Re数工况下低损失的特性。
附图说明
图1二维低压涡轮叶片粗糙度布置位置示意图;
图2粗糙高度示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。
如图1所示,本发明的低压涡轮叶片结构,包括叶片前缘1、叶片吸力侧2、叶片压力侧3和叶片尾缘4,在叶片吸力侧2的表面上设置粗糙带5,根据叶高中部的二维叶型来确定所述粗糙带的起始、终止位置。
1.粗糙度的起始、终止位置的确定
本发明使用叶高中部二维叶型来确定粗糙度的起始、终止位置,以该叶型在吸力侧表面未设置粗糙带时的气流分离点作为基点,沿叶片展向(轮盘径向)向叶根及叶尖两侧延伸形成整个叶片的分离线,以该分离线作为粗糙带布置位置的终点52。选择叶高中部二维叶型吸力侧表面的速度峰值点至叶片前缘1/2处作为基点,沿叶片展向(轮盘径向)向叶根及叶尖两侧延伸形成一条曲线,以该曲线作为粗糙带布置位置的起始点51。
对于高负荷或者超高负荷低压涡轮叶型,其分离点通常不随来流条件的变化而改变。在对叶型进行粗糙度布置前需对叶型进行风洞试验,以此来确定叶型的分离线。由于叶型的端区二次流影响,涡轮叶片沿叶高的分离线变化较大,但本发明的设计初衷是为了降低二维叶型损失,因此忽略端区分离线与粗糙度尾缘不符的影响。
2.变粗糙高度的确定
图2中标出了恒定粗糙高度与变粗糙高度的示意图,横坐标为流向位置,左侧纵坐标为附面层高度,右侧纵坐标为粗糙高度。对所布置粗糙度区域(本叶片为17.5%Cx-62%Cx)内的光洁叶型下的附面层高度进行积分,恒定粗糙高度一般选取为该值的10%;变粗糙高度通过细化粗糙条带区域内的附面层,对光洁叶型下的附面层高度变化较大的区域进行分割,对细化后的区域的附面层高度进行积分,选取该积分值的10%作为该区域的粗糙高度,图中将粗糙区域划分为3部分,可根据不同叶片的附面层变化规律得出不同的划分方式。这种细化后的变粗糙高度布置方式效果较好的原因在于使每一部分的粗糙高度刚好起到扰动附面层的作用,在促进转捩的同时又不产生额外的阻力。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的范围之内。

Claims (9)

1.一种低压涡轮叶片结构,特别适用于降低航空发动机高负荷及超高负荷低压涡轮叶片叶型损失,所述低压涡轮叶片包括叶片前缘、叶片吸力侧、叶片压力侧和叶片尾缘,其特征在于,在所述叶片吸力侧的表面上设置粗糙带,根据叶高中部的二维叶型来确定所述粗糙带的起始、终止位置:
--以所述叶高中部二维叶型吸力侧表面的速度峰值点至叶片前缘1/2处作为基点,沿叶片展向向叶根及叶尖两侧延伸形成一条曲线,以该曲线作为所述粗糙带布置位置的起始点;
--以所述叶高中部二维叶型在吸力侧表面未设置粗糙带时的气流分离点作为基点,沿叶片展向向叶根及叶尖两侧延伸形成整个叶片的分离线,以该分离线作为所述粗糙带布置位置的终止点;
其中,所述叶高中部为40~60%的叶片展向位置。
2.根据权利要求1所述的低压涡轮叶片结构,其特征在于,所述粗糙带上的粗糙高度为恒定粗糙高度或变粗糙高度。
3.根据权利要求1和2所述的低压涡轮叶片结构,其特征在于,所述恒定粗糙高度按照如下方式进行设定:对布置粗糙带的区域内的光洁叶型下的附面层高度进行积分,选取该积分值的10%作为所述恒定粗糙高度。
4.根据权利要求2所述的低压涡轮叶片结构,其特征在于,所述变粗糙高度时,粗糙高度沿着流向逐渐变化,其变化规律基于附面层沿流向的变化规律。
5.根据权利要求4所述的低压涡轮叶片结构,其特征在于,所述变粗糙高度按照如下方式进行设定:细化布置粗糙带的区域内的光洁叶型下的附面层,对光洁叶型下的附面层高度变化较大的区域进行分割,对细化后的区域的附面层高度进行积分,选取该积分值的10%作为该区域的粗糙高度。
6.一种降低涡轮叶片气动损失的方法,所述低压涡轮叶片包括叶片前缘1、叶片吸力侧2、叶片压力侧3和叶片尾缘4,其特征在于,在所述叶片吸力侧的表面上设置粗糙带,根据叶高中部的二维叶型来确定所述粗糙带的起始、终止位置:
--以所述叶高中部二维叶型吸力侧表面的速度峰值点至叶片前缘1/2处作为基点,沿叶片展向向叶根及叶尖两侧延伸形成一条曲线,以该曲线作为所述粗糙带布置位置的起始点;
--以所述叶高中部二维叶型在吸力侧表面未设置粗糙带时的气流分离点作为基点,沿叶片展向向叶根及叶尖两侧延伸形成整个叶片的分离线,以该分离线作为所述粗糙带布置位置的终止点;
其中,所述叶高中部为40~60%的叶片展向位置。
7.根据权利要求6所述的方法,其特征在于,所述粗糙带上的粗糙高度为恒定粗糙高度或变粗糙高度。
8.根据权利要求6和7所述的方法,其特征在于,所述恒定粗糙高度按照如下方式进行设定:对布置粗糙带的区域内的光洁叶型下的附面层高度进行积分,选取该积分值的10%作为所述恒定粗糙高度。
9.根据权利要求7所述的方法,其特征在于,所述变粗糙高度按照如下方式进行设定:细化布置粗糙带的区域内的光洁叶型下的附面层,对光洁叶型下的附面层高度变化较大的区域进行分割,对细化后的区域的附面层高度进行积分,选取该积分值的10%作为该区域的粗糙高度。
CN201410528718.8A 2014-10-09 2014-10-09 一种低压涡轮叶片结构及降低叶片损失的方法 Active CN104314618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410528718.8A CN104314618B (zh) 2014-10-09 2014-10-09 一种低压涡轮叶片结构及降低叶片损失的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410528718.8A CN104314618B (zh) 2014-10-09 2014-10-09 一种低压涡轮叶片结构及降低叶片损失的方法

Publications (2)

Publication Number Publication Date
CN104314618A true CN104314618A (zh) 2015-01-28
CN104314618B CN104314618B (zh) 2015-08-19

Family

ID=52369912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410528718.8A Active CN104314618B (zh) 2014-10-09 2014-10-09 一种低压涡轮叶片结构及降低叶片损失的方法

Country Status (1)

Country Link
CN (1) CN104314618B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020548A (zh) * 2017-05-19 2017-08-08 西北工业大学 一种提高压气机叶片气动性能的抛光方法
CN109539307A (zh) * 2018-11-08 2019-03-29 西北工业大学 一种表面做凹坑处理的旋流器叶片
CN110145370A (zh) * 2019-04-30 2019-08-20 浙江大学 一种吸力面波浪形的低压涡轮叶片
CN112800554A (zh) * 2021-01-14 2021-05-14 中国人民解放军空军工程大学 一种叶片表面粗糙度变化影响压气机稳定性的仿真方法
US11608745B2 (en) 2021-10-15 2023-03-21 Shanghai Jiao Tong University Structure for improving aerodynamic efficiency of low-pressure turbine blade and working method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2032048A (en) * 1978-07-15 1980-04-30 English Electric Co Ltd Boundary layer control device
US4822249A (en) * 1983-07-15 1989-04-18 Mtu Motoren-Und Turbinen-Union Munich Gmbh Axial flow blade wheel of a gas or steam driven turbine
JPH08247093A (ja) * 1995-03-06 1996-09-24 Takasago Thermal Eng Co Ltd 遠心送風機のファンブレード
US20030035968A1 (en) * 2001-08-14 2003-02-20 Gordon Anderson Process for treating a coated gas turbine part, and coated gas turbine part
EP1813686A1 (en) * 2006-01-27 2007-08-01 General Electric Company Preparation of an article surface having a surface compressive texture
DE102006038060A1 (de) * 2006-08-16 2008-02-21 Hoffer, Otto, Dipl.-Ing. Schaufel für Turbomaschinen
CN101225752A (zh) * 2008-02-02 2008-07-23 吴志清 一种汽轮机叶片
EP2019186A1 (en) * 2006-04-17 2009-01-28 IHI Corporation Blade
WO2009062159A1 (en) * 2007-11-08 2009-05-14 Alliance For Sustainable Energy, Llc Quiet airfoils for small and large wind turbines
CN102099546A (zh) * 2008-07-19 2011-06-15 Mtu飞机发动机有限公司 具有涡流发生器的涡轮机的叶片
CN102587998A (zh) * 2012-02-24 2012-07-18 西北工业大学 一种用于控制气流分离的叶片吸力面凹槽设计方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2032048A (en) * 1978-07-15 1980-04-30 English Electric Co Ltd Boundary layer control device
US4822249A (en) * 1983-07-15 1989-04-18 Mtu Motoren-Und Turbinen-Union Munich Gmbh Axial flow blade wheel of a gas or steam driven turbine
JPH08247093A (ja) * 1995-03-06 1996-09-24 Takasago Thermal Eng Co Ltd 遠心送風機のファンブレード
US20030035968A1 (en) * 2001-08-14 2003-02-20 Gordon Anderson Process for treating a coated gas turbine part, and coated gas turbine part
EP1813686A1 (en) * 2006-01-27 2007-08-01 General Electric Company Preparation of an article surface having a surface compressive texture
EP2019186A1 (en) * 2006-04-17 2009-01-28 IHI Corporation Blade
DE102006038060A1 (de) * 2006-08-16 2008-02-21 Hoffer, Otto, Dipl.-Ing. Schaufel für Turbomaschinen
WO2009062159A1 (en) * 2007-11-08 2009-05-14 Alliance For Sustainable Energy, Llc Quiet airfoils for small and large wind turbines
CN101225752A (zh) * 2008-02-02 2008-07-23 吴志清 一种汽轮机叶片
CN102099546A (zh) * 2008-07-19 2011-06-15 Mtu飞机发动机有限公司 具有涡流发生器的涡轮机的叶片
CN102587998A (zh) * 2012-02-24 2012-07-18 西北工业大学 一种用于控制气流分离的叶片吸力面凹槽设计方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020548A (zh) * 2017-05-19 2017-08-08 西北工业大学 一种提高压气机叶片气动性能的抛光方法
CN109539307A (zh) * 2018-11-08 2019-03-29 西北工业大学 一种表面做凹坑处理的旋流器叶片
CN110145370A (zh) * 2019-04-30 2019-08-20 浙江大学 一种吸力面波浪形的低压涡轮叶片
CN112800554A (zh) * 2021-01-14 2021-05-14 中国人民解放军空军工程大学 一种叶片表面粗糙度变化影响压气机稳定性的仿真方法
CN112800554B (zh) * 2021-01-14 2023-07-07 中国人民解放军空军工程大学 一种叶片表面粗糙度变化影响压气机稳定性的仿真方法
US11608745B2 (en) 2021-10-15 2023-03-21 Shanghai Jiao Tong University Structure for improving aerodynamic efficiency of low-pressure turbine blade and working method thereof

Also Published As

Publication number Publication date
CN104314618B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
CN104314618B (zh) 一种低压涡轮叶片结构及降低叶片损失的方法
CN103958833B (zh) 一种特别用于整体式叶片盘的涡轮发动机叶片
CN102852857B (zh) 一种高负荷超、跨音速轴流压气机气动设计方法
CN103422912B (zh) 一种包括叶顶带有孔窝的动叶片的涡轮
CN107269583A (zh) 一种基于高次多项式的超/跨音速轴流风扇设计方法
CN103244459A (zh) 一种亚音速吸附式轴流压气机气动设计方法
CN104612758A (zh) 一种低损失的低压涡轮叶片
CN104791025B (zh) 一种用于降低低压涡轮叶片分离损失的控制结构及方法
CN106870465A (zh) 一种压气机、燃气轮机及压气机扩稳增效方法
CN103835810B (zh) 一种航空发动机进气短舱的声衬装置及航空发动机
CN201301751Y (zh) 基于任意激波形状的内乘波式高超声速进气道
CN108798788A (zh) 一种大子午扩张宽弦正交涡轮及提高涡轮性能的气动布局方法
CN108661947A (zh) 采用康达喷气的轴流压气机叶片及应用其的轴流压气机
CN203614229U (zh) 发动机融合外涵出口导叶支板结构以及航空发动机
CN205779470U (zh) 一种钝后缘风力机翼型环量控制装置
CN102889237B (zh) 一种应用带尖角前缘的大小叶片叶轮及压气机
CN204186429U (zh) 一种低压涡轮叶片结构
CN101149062A (zh) 改进端区堵塞的轮毂造型方法
CN105257590A (zh) 半串列叶片及其设计方法
CN105240322A (zh) 一种控制压气机静子角区分离的叶根开设s形槽道方法
CN100580258C (zh) 一种利用抽吸提高压气机叶栅负荷的方法
CN116451343B (zh) 考虑背负式进气道影响的飞翼布局飞机翼型设计方法
CN109386381A (zh) 分流环设计方法
CN109441554B (zh) 一种适用于航空发动机的涡轮叶片
CN208216978U (zh) 一种飞机平尾根部涡流发生器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant