CN104301899A - 具有多个同构无线电设备的共存的无线传感器基站 - Google Patents

具有多个同构无线电设备的共存的无线传感器基站 Download PDF

Info

Publication number
CN104301899A
CN104301899A CN201410268279.1A CN201410268279A CN104301899A CN 104301899 A CN104301899 A CN 104301899A CN 201410268279 A CN201410268279 A CN 201410268279A CN 104301899 A CN104301899 A CN 104301899A
Authority
CN
China
Prior art keywords
network
circuit
wireless
network circuit
coexist controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410268279.1A
Other languages
English (en)
Other versions
CN104301899B (zh
Inventor
佩曼·阿米尼
阿姆斯·杨育斯
史蒂夫·斯考奇
约瑟夫·阿麦兰·劳尔·伊曼纽尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netgear Inc
Original Assignee
Netgear Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netgear Inc filed Critical Netgear Inc
Priority to CN201910056992.2A priority Critical patent/CN110062344A/zh
Publication of CN104301899A publication Critical patent/CN104301899A/zh
Application granted granted Critical
Publication of CN104301899B publication Critical patent/CN104301899B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • H04L49/9005Buffering arrangements using dynamic buffer space allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/386TPC being performed in particular situations centralized, e.g. when the radio network controller or equivalent takes part in the power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/28Timers or timing mechanisms used in protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了用于在相同或类似的频带以及接近的物理距离中操作的多个无线电电路之间、在网络设备中减少干扰的技术。在一些实施例中,网络设备包括;第一和第二无线网络电路。网络电路在相同的无线电频带工作且被并置。第二网络电路被分配的优先级高于第一网络电路被分配的优先级。设备进一步包括共存控制器,该共存控制器通过通信总线被耦合到网络电路并被配置为选择性地抑制在接收第二网络电路的操作期间的第一网络电路的传输操作。除了其他优点,本实施例可以提高无线网络带宽并通过提供无线电电路之间的协调,减少移动设备的功耗,以使得传输和接收操作以不会干扰各自相应的天线的方式被进行。

Description

具有多个同构无线电设备的共存的无线传感器基站
相关申请和有效申请日权益的交叉引用
本申请享有以下申请的权益和优先权:2013年6月14日提交的美国临时专利申请号61/835,488,标题为“WLAN SENSOR GATEWAY WITHCOEXISTENCE SOLUTION”(代理人案号:110729-8025.US00)的申请;2013年6月18日提交的美国临时专利申请号61/836,571,标题为“COEXISTENCE AND TRAFFIC MANAGEMENT FOR USINGMULTIPLE WLAN RADIOS IN A SYSTEM”(代理人案号:110729-8026.US00)的申请;以及2013年8月27日提交的美国临时专利申请号61/870,762,标题为“COEXISTENCE AND TRAFFICMANAGEMENT WITH ALIGNMENT OF PACKETS AND CHANNELSTEERING”(代理人案号为:110729-8028.US00)的申请;所有这些申请都通过参考方式被整体合并于此。因此,此申请有权要求2013年6月14日的有效申请日。
本申请涉及以下申请:2013年11月25日提交的共同待决的美国专利申请号14/089,671,标题为“METHOD AND APPARATUS FORIMPLEMENTING COEXISTENCE OF MULTIPLE HOMOGENEOUSRADIOS AND TRAFFIC MANAGEMENT THEREIN”(代理人案号:110729-8026.US01)的申请;11月25日提交的美国专利申请号14/089,674,标题为“ALIGNMENT OF PACKETS FOR IMPLEMENTINGCOEXISTENCE OF MULTIPLE HOMOGENEOUS RADIOS”(代理人案号:110729-8028.US01)的申请;以及2013年11月25日提交的美国专利申请号14/089,680,标题为“CHANNEL STEERING FOR IMPLEMENTINGCOEXISTENCE OF MULTIPLE HOMOGENEOUS RADIOS”(代理人案号:110729-8028.US02)的申请;所有这些申请都通过参考方式被整体合并于此。
技术领域
本公开一般涉及电子通信,并且更具体地,涉及在无线计算机网络系统控制多个无线电电路。
背景技术
随着无线网络、嵌入式系统,以及互联网的新兴技术的发展,从计算和管理数据到网上购物和社交网络都存在着来自在各种场合中使用的电子设备的对更大的网络带宽和更高的网络速度的日益增长的需求。相比传统的独立的个人计算机和移动设备,这与已成为在共享的、网络化环境中广泛使用的电子和数字内容特别相关。其结果是,数据流量,特别是无线数据流量,已经经历了巨大的增长。
在此同时,在这些电子设备中使用的越来越多的无线技术占据相同或类似无线电频带(例如,2.4GHz、3.6GHz、5GHz、或60GHz),其可以建立彼此的干扰,对网络传输以及机载电子设备上的无线网络电路的接收产生不利影响。此外,许多这些电子设备是依赖于有限的功率资源来操作的移动或便携式设备,并且典型地发送或接收在噪声环境中的数据流量可以对功率消耗产生负面影响。
因此,想要的是提供能够提高无线网络的带宽,减少无线网络中的干扰,并减少移动设备的功耗的方法和设备。
附图说明
本实施例是通过示例的方式示出且不旨在由附图中的附图所限制。在附图中:
图1是一些实施例在其中可以被实现的代表计算机网络环境;
图2A是根据一些实施例的抽象的功能性框图,示出了装配有共存控制器的无线基站;
图2B是示出了共存控制器可提供改进的示例情况的表;
图2C是示出了在典型的2.4GHz频带中的不同的无线局域网(WLAN)信道的较高、中间、和较低的频率的表;
图2D是示出了在典型的5GHz频带中可用的(例如,在美国)不同的无线局域网(WLAN)信道的示例频率的表;
图3是根据一些实施例的功能性框图,示出了图2A的共存控制器的特定实施例的某些实现细节;
图4A和图4B是使用用于说明图2A的基站中的共存控制器和其他组件之间的示例分层关系的分层模型的抽象图;
图5A是根据一些实施例的时序图,其示出了如由共存控制器协调的多个无线电电路的同步操作的示例;
图5B-5D根据一些实施例进一步说明了图5A的同步操作的更多细节;
图6是根据一些实施例的时序图,其示出了如由共存控制器协调的多个无线电电路的不同步操作的示例;
图7A是根据一些实施例的功能性框图,其示出了本实施例中可以在其中操作的另外的模式;
图7B-7D是功能性框图,其示出了一些具体的示例场景,图7A的WLAN接入点和WLAN站点可以在该场景中被操作;
图8是根据一些实施例的示出了在优选信道上的探测请求程序的图示,优选信道可以被共存控制器执行;
图9根据一些实施例的示出了在非优选信道上的探测请求程序的图示,非优选信道可以被共存控制器执行;
图10是根据一些实施例的抽象功能框图,其示出了装配有在具有多个无线传感器的环境中被实施的共存控制器的无线基站;
图11是根据一些实施例的用于处理从基站到图10的无线传感器的下行链路流量的时序;
图12是根据一些实施例的用于处理从基站到图10的无线传感器的上行链路流量的时序;
图13是根据一些实施例的抽象图,其示出了不对称的缓存结构或机制,其可以由共存控制器所采用或控制;
图14是根据一些实施例的流程图,其示出了用于控制和协调多个无线电电路的方法,该方法可以由共存控制器来实现;以及
图15是根据一些实施例的流程图,其示出了用于减少在多个无线电电路之间的干扰的方法,其可以由共存控制器实现。
相似的附图标记指示在整个附图和说明书中相应的部分。
具体实施例
本文公开用于在网络设备中,在以相同或类似的频带和在接近的物理距离中操作的多个无线电电路之间减少干扰的技术。在一些实施例中,网络设备包括第一和第二无线网络电路。网络电路以相同的无线电频带操作且被并置。第二网络电路被分配相对于第一网络电路更高的或相等的优先级。设备还包括共存控制器,其通过通信总线耦合到所述网络电路并被配置为选择性地抑制在接收第二网络电路的操作期间的第一网络电路的传输操作。
除了其他优点,本文公开的实施例可以通过提供无线电电路之间的协调来提高无线网络带宽并减少移动设备的功耗,以使得传射和接收操作以它们不会干扰它们相应的天线的方式进行。
在下面的说明中,许多具体细节被提出,例如特定组件、电路和程序的例子,以提供全面本公开内容的全面理解。另外,在下面的说明中以及为了解释的目的,特定的术语被阐述以提供本实施例的彻底理解。然而,本领域技术人员将显而易见的是,这些特定的细节可以不要求实施本实施例。在其他实例中,众所周知的电路和设备以框图的形式被示出以免模糊本发明。
本文所用的术语“耦合”是指直接连接至或通过一个或多个中间元件或电路的连接。经由本文描述的各种总线提供的任何信号可以是与其他信号时间复用的并通过一个或多个公共总线被提供。此外,电路元件或软件模型之间的互连可以被显示为总线或单信号线。每个总线也可以是一个单个的信号线,以及各单信号线也可以是总线,且单个线或总线可以表示任何一个或多个的在组件之间的通信(例如,网络)的无数的物理或逻辑机制。本实施例不应当被解释为限于在此描述的具体示例而是包括在由所附权利要求定义的所有实施例的范围内。
出于本文所讨论的目的,“异构无线电设备”指的是多个不同的网络技术的无线电设备或无线网络电路;例如IEEE802.11无线局域网(例如,WiFi),蓝牙,2G,3G,长期演进(LTE)和全球导航卫星系统(GNSS)是彼此完全不同的网络技术。相反,“同构无线电设备”指的是多个相同的网络技术的无线电或无线网络电路;例如,多个无线局域网(WLAN)电路(虽然一个可以在2.4GHz频带的信道1上操作并使用IEEE802.11n协议,而另一个则可能在2.4GHz频带的信道6上操作并使用IEEE802.11g协议)是同一系列的WLAN技术,且因此是同构无线电设备。在2.4GHz的频带上的的常见无线电设备的示例可包括IEEE802.11b,IEEE802.11g或IEEE802.11n。
系统概述
图1是一些实施例可以在其中被实现的典型的计算机网络环境100。环境100包括基站110,网络120,和多个客户端设备130a-130n。
基站110(其被示为在“接入点(AP)”模式下操作)被与网络120耦合在一起,使得基站110可以使客户端设备130与网络120进行数据交换。例如,基站110和网络120可以经由双绞线电缆网络,同轴电缆网络,电话网络,或任何适当类型的连接网络进行连接。在一些实施例中,基站110和网络120可以无线地连接(例如,其可以包括使用IEEE802.11无线网络或基于无线的电话服务(例如3G,3.5G,4G LTE等等的数据流量网络)。支持基站110和网络120之间的通信的技术可以包括以太网(例如,如在IEEE802.3系列标准中描述的)和/或其它合适类型的区域网络技术。在IEEE802.11系列标准中的不同的无线协议的示例可以包括IEEE802.11a,IEEE802.11b,IEEE802.11n,IEEE802.11ac,IEEE802.11af,IEEE802.11ah和IEEE802.11ad。
虽然为简单起见未在图中显示,基站110可包括一个或多个处理器,其可以是通用处理器,或者可以是提供运算和控制功能以实现本文所公开的基站110上的技术的应用特定的集成电路。处理器可以包括高速缓冲存储器(为简单起见未示出)以及其他存储器(例如,主存储器和/或非易失性存储器,如硬盘驱动器或固态驱动器)。在一些实施例中,高速缓冲存储器是使用SRAM进行实施的,主存储器是使用DRAM进行实施的,以及非易失性存储器是使用闪存或一个或多个磁盘驱动器进行实施的。根据一些实施例,存储器可以包括一个或多个存储器芯片或模型,以及基站110上的处理器可以执行多个存储在其存储器中的指令或程序代码。
客户端设备130可以连接到基站110并与基站110无线地通信(包括,例如,使用IEEE802.11系列标准(例如,无线LAN))并且可以包括任何合适的中间无线网络设备,包括例如,基站,路由器,网关,集线器,或类似物。取决于实施例,客户端设备130和基站110之间的网络技术连接可以包括其他合适的无线标准,如众所周知的蓝牙通信协议或近场通信(NFC)协议。在一些实施例中,客户端设备130和基站110之间的网络技术可以包括WLAN的定制版本,蓝牙,或其他合适的无线技术的定制版本。客户端设备130可以是任何适当的计算或移动设备,包括,例如,智能电话,平板电脑,笔记本电脑,个人数字助理(PDA),或类似物。客户端设备110通常包括显示器,并且可包括适当的输入设备(为简单起见未示出),例如键盘,鼠标,或触摸板。在一些实施例中,显示器可以是包括输入功能的触敏屏幕。该设备130的其他例子包括网络连接相机(或“IP相机”),家庭传感器和其它家电产品(例如,“智能冰箱”,它可以连接到因特网)。
值得注意的是,本领域的普通技术人员将会理解,图1中的组件只是本实施例可以在其中被实现的计算机网络环境的一种实现方式,并且各种替代实施例是本发明实施例的范围之内。例如,环境100可进一步包括基站110之间的中间设备(例如,交换机,路由器,集线器等),网络120,以及客户端设备130,在一些实施例中,网络120包括因特网。
共存机制
图2A是根据一些实施例的抽象的功能性框图200,示出了配有共存控制器230的无线基站210。基站210是图1中的基站110的一个例子。如图2A所示,无线基站210包括多个无线网络电路220a-220c和共存控制器230。根据一个或多个实施例,共存控制器230通过共存总线240被耦合到网络电路220a-220c中的每一个。
正如前面提到的,在电子设备中使用的许多无线网络技术占据相同或类似的频带。这个频带的一个例子是众所周知的工业,科学和医疗(ISM)无线电频带。采取一种最常用的ISM频带,2.4GHz频带,例如,为各种用途使用此频带的技术可以包括无线LAN和蓝牙。其他一些常见的无线通信技术也以相似的频带操作(例如,从2.3GHz到2.7GHz);它们包括LTE频带40(TDD-LTE),LTE UL频带7(FDD-LTE),LTE频带38(TDD-LTE)和LTE DL频带7(FDD-LTE),在此仅举几例而已。
出于本文所讨论的目的,假设无线网络电路220a-220c是在2.4GHz的主频带操作的无线局域网电路。
图2C是表204,示出了在典型的2.4GHz频带中的不同的无线局域网信道的较高,中间,和较低的频率。图2D是表206,示出了在典型的5GHz频带中可用的(例如,在美国)不同的无线局域网(WLAN)信道的示例频率。如图2C所示,在美国和加拿大,还有11个信道可供在由IEEE802.11系列标准定义的2.4GHz无线局域网频带中使用。特别是,3种非重叠信道(例如,信道1、6和11)可以被从在IEEE802.11标准(如IEEE802.11)中的11个信道中选择出来以作为位于彼此靠近的无线局域网接入点。通常建议的是,本领域的普通技术人员应该为每一个无线网络电路使用上述非重叠信道,其在附近操作以最小化或减小干扰的不利影响。
然而,本实施例认识到典型的50dB的分隔可能需要完全地或有效地避免设备的共存干扰,当不同的无线网络电路的操作频率只由小于20MHz所分隔时。移动手持机应用中特别情况是,设备是小形状因素;在这样的应用中设备一般只提供在不同的无线网络电路之间的10-30dB的分隔。因此,现实中,即使有在非重叠信道上的收发,以及在某些情况下,采用频谱掩码(例如,在由IEEE定义的2.4GHz频带中的20MHz的传输发送频谱掩码),噪声以及其他因素仍然可能导致共存无线网络电路相互干扰,特别是小形状因素设备上,诸如移动电话或无线基站。
对于一个实施例,本发明公开中观察到的是,至少在LTE2.4G的ISM频带中,ISM频带的较低部分是非常接近LTE TDD频带40。因此,在具有LTE,WLAN和蓝牙的共存的单个移动设备的情况中,LTE发送机可能会导致WLAN和/或BT接收机的干扰;同样,BT/WLAN发送机可能引起LTE接收器的干扰。对于另一个例子,在LTE电话和全球导航卫星系统(GNSS)接收机电路共存的设备中,LTE频带13(例如777-787MHz)和带14(例如,788-798MHz)的上行链路传输的设备可以破坏使用L1频率(例如,1575.42MHz)GNSS接收机的工作。引起的原因之一是带13(例如,1554至1574MHz)的二次谐波和带14(例如,1576-1596MHz)的二次谐波接近L1频率。
此外,本实施例认识到,当两个或多个无线电电路在物理上接近的相同或类似的频带同时工作时,有下列几种情况可以导致干扰。图2B是表202,示出了共存控制器可以提供改进的示例情况。如表202中所示,当一个无线电传输时,其他无线电的接收性能被脱敏。为了在此讨论的目的,无线电电路被位于物理非常接近的或被“并置”的,意味着无线电电路位于彼此接近以足以使在一个电路上的传输操作可以对另一个电路的接收操作产生不利影响;对于一些典型的例子,位于相同物理设备(例如,基站)或者在相同的印刷电路板(PCB)上的两个无线电电路是位于物理非常接近的。
值得注意的是,图2B是可能由并置的无线电设备的并发操作引起的干扰现象的一般表示;在一些实施例中,适当的滤波也可由本领域的普通技术人员来应用,以便可以止由处于或接近相同时间的不同的并置的无线电发送(TX)和接收器(RX)所引起的灵敏度损耗被减少。特别是,根据正在被使用的信道的频带和过滤的类型,在图2B中所描绘的灵敏度损耗的实际严重程度可能改变。
因此,本实施例提供了有效机制以协调网络电路220的发送和接收操作,以减轻在设备中的由在相同或类似的频带操作的无线网络电路共存引起的干扰。根据一些实施例,当两个或多个无线收发器可以在相同的设备上在相同的频带(例如,2.4GHz频带或5GHz频段)中使用,设备可以采用共存机制(硬件(HW)和/或软件(SW)),从而使无线电设备可以在同一频带中操作而不脱敏彼此的接收操作。共存的HW机制可以包括在一些实施例中的数字硬件总线,并且可以包括其他实施例中的无线电射频(RF)电路;在一些其它实施例中,并且HW机制可以采用的数字和RF机制的组合。进一步,取决于不同的实施例,数字HW机制可以包括连接两个芯片组的访问机制的直接的硬件线路,或者其可以是连接芯片组内的两个硬件模型的访问机制的硬件线路。RF机制可以包括RF滤波,RF切换,或其它合适的RF滤波器。
更具体地,在一个或多个实施例中,每个网络电路220a-220c可被分配一个优先级,并且共存控制器230通过共存总线240被耦合到网络电路220a-220c以控制网络线路220a-220c之间(或之中)的操作。值得注意的是,在一些实施例中,网络电路220a-220c的一个或多个都有可能被分配有相同的优先级。
根据包括相比较于其他电路优先级的网络电路220a的优先级的多个操作标准,共存控制器230可以有选择地调节各自的网络电路(例如,电路220a)的一个或多个传输操作参数。每个网络电路(例如,电路220a)的优先级可以是预定的(例如,由基站210的制造商)或者可以根据某个优先级分配的标准被动态地分配(例如,通过共存控制器230)。优先级分配标准可包括流量的量,流量类型(例如,数据,语音,视频,传感器应用等),每个电路的经历的无线信道条件,和/或其他合适的因素。
操作标准可以反映各种因素,如每个网络电路处理的客户端设备(例如,图1,设备130)的数目,每个网络电路看到的数据流量的量,每个网络电路支持的数据传输速率,每个网络的电路被分配的流量类型,每个网络电路经历的无线信道的状态或噪声(例如,如由RSSI或已知矩阵秩测定的)等等。根据本实施例,操作标准被选择为使共存控制器以减少网络电路220a-220c脱敏彼此的可能性的方式来控制操作。在一些实施例中,操作标准被以一种方式进行选择以使得共存控制器230可以执行,例如,负载平衡和/或使用在基站210上的多个无线网络电路(例如电路220a-220c)的频率规划。
值得注意的是,在无线网络电路的优先级被动态分配的实施例中,优先级分配标准可以以与操作标准的确定相同的或类似的方式由共存控制器230确定。
无线网络电路的传输操作参数是网络电路使用来传输数据的配置。例如,在一些实施例中,共存控制器230可以减少在无线网络电路(例如,电路220a)上的传输功率,当另一个无线网络电路(例如,电路220b)正在接收时。如前面提到的,共存控制器230选择性地调节电路220a的传输操作参数,例如,由于电路220b具有更高的优先级。在另一个例子中,电路220a的操作参数接收来自控制器230的调节,因为作为由控制器230确定的操作标准指示电路220b被连接(例如,并从接收)有限的功率设备,例如移动电话。操作标准也可以反映电路220b当前正在处理高优先级类型的流量(例如,如从防盗摄像机传感器传送的图像),因此,控制器230调节(例如,抑制)电路220a的传输操作参数,以使电路220a不干扰电路220b的接收。
在另外的或可选择的实施例中,其它的可以由共存控制器230进行调整的传输操作参数可以包括各自的网络电路进行操作的数据速率(例如,11Mbit/s或54Mbit/s)和/或网络协议(例如,IEEE802.11a,IEEE802.11n,IEEE802.11b,IEEE802.11ac,IEEE802.11ah,等等)。在一些实例中,传输操作参数还可以包括各自的网络电路在其上进行操作的信道(例如,在WLAN的2.4GHz频带中的信道1,信道6,或信道11)。作为额外的例子,在WLAN5GHz频带中的可用信道可以包括信道36,信道100或信道161。一些实施例中,传输操作参数还可以包括各自的网络电路在其中进行操作的频带(例如,2.4GHz,5GHz,等等)。其它已知的配置调整,比如调制或相位调节,也可以被包括共存控制器230可以调节的传输操作参数的列表之中。在一些实施例中,适当的RF滤波可应用于减少干扰的影响。在一些实施例中,当RF滤波被应用时,适当的信道选择可以通过共存机制的软件部分进行,以便更好地利用RF滤波。
共存总线240可由共存控制器230使用以安排或协调发送和接收,以避免接收脱敏(reception desensitization)。共存总线240可以以串行总线、多个专用总线,或其它合适的形式(例如,网络)来实现。具体地,根据不同的实施例,共存机制可以是纯软件,纯硬件,或两者的组合。基于硬件的共存机制的例子可包括硬件总线,修改的射频(RF)前端,和/或其他合适的实现。基于软件的共存机制的例子可以位于网络的不同层,包括,例如,PHY层,MAC层和/或IP层。
在一些具体实施例中,与共存控制器230一起的共存总线240可以采用共存机制,该共存机制类似于用来实施/协调在同一或类似频带内操作的同构无线电设备的共存(例如,WLAN-WLAN)的IEEE802.15.2无线局域网(WLAN)—蓝牙(其是异构无线电设备(例如,操作))共存机制;然而,应当注意的是,标准IEEE802.15.2共存机制是特定于WLAN—蓝牙共存应用,并且该合适的修改(例如,如本文所述的那些)可能是同构无线电设备应用所必要的。图3是根据一些实施例的功能性方框图,示出了采用了修改的IEEE802.15.2共存机制的图2A的共存控制器的特定实施例的某些实现细节。
根据不同的实施例,无论是协同或非协同机制(如在IEEE802.15.2标准中指定的),或两者都可以适合于与共存控制器230使用。如图3所示,IEEE802.15.2的协同共存机制被修改(例如,这可以由共存控制器230被实现,图2A)以为同构无线电(例如WLAN-WLAN)应用的共存执行数据包流量仲裁。值得注意的是,数据包流量仲裁(PTA)机制的更多细节可在该802.15.2建议措施的第6条中找到。
当然,本领域的普通技术人员会知道,其它标准的或非标准的共存机制(例如,开发被开发用于异构无线技术共存诸如WLAN,蓝牙,和LTE)还可以以如本文所公开的类似的方式被修改并被应用至同构无线电共存(例如,WLAN到WLAN)。
图4A和图4B是使用用于说明图2A的基站210中的共存控制器230和其他部件之间的分层关系的分层模型400的抽象图。模型400一般遵循著名的开放系统互连(OSI)模型的命名约定,如在国际标准化组织(ISO)标准化的ISO/IEC7498-1。为了在此讨论的目的,网络层(OSI模型的第3层)和物理(PHY)层(第1层)之间的介质访问(MAC)层是数据链路层(第2层)的子层,其提供寻址,信道访问控制,以及其它合适的功能。值得注意的是,模型400在本文中被提供以使能进一步理解本发明的实施例的;以及其他模型(例如,TCP/IP模型)可用于和/或被修改用于实现本实施例。
如图4A-4B所示,根据一个或多个实施例,共存控制器230(图2A)可以作为在现有无线网络电路MAC层的顶部的额外的层(标记为MAC2),以使得容易被设计并在目前市场上能构获得的无线电电路可以被采用(例如,到基站210,图2A)作为模型以增加可重用性和节省成本。值得注意的是,图4A示出了一个模型,其采用共存总线来协调在MAC层的无线电设备;相比较而言,在图2中示出的模型4B不采用共存总线,但它采用RF滤波器以帮助位于MAC2层上的共存机制。在一些实施例中,MAC2层可以包括链路聚合机制以聚集在较低层(例如,如图4B中所示的两个MAC层)的链路。
共存总线240(图2A)可以用作耦合到网络电路的MAC层的协调机制。总线240可以由共存控制器230采用以进行通信并控制每个网络电路420。因此,网络电路可各自包括单个介质访问控制(MAC)层和物理(PHY)层电路,如在图4所示的MAC和PHY层420。换言之,在基站210的一些实施例中,可以存在具有共存总线230的网络电路220a-220c(图2A)的单独的和独立的MAC引擎和用于管理的以上的MAC2层(例如,共存控制器240所在的位置)。在一些实施例中,无论是在MAC或MAC2层或者两个一起都可以执行聚合,加密,解密,和/或其他时序关键任务。在一些实施例中,共存控制器230可以管理来自选定数量的网络电路220a-220c的网络数据流量以便聚集所选定数量的网络电路(将在下面详细讨论)的带宽。聚合的例子可以包括MAC协议数据单元聚合(AMPDU),以及MAC服务数据单元聚合(AMSDU)。加密例子可以包括高级加密标准(AES),有线等效保密(WEP),临时密钥完整性协议(TKIP),等等。
继续参考图2A,在一些实施例中,共存控制器230的操作控制(例如,操作参数调整)被独立于各网络电路220a-220c进行,以使各电路(例如,电路220a)的操作参数可以是由共存控制器230单独地进行微调且无需一定影响耦合到同一共存总线240的其他网络电路。
在上述的组合中,共存控制器230中的一个或多个实施例可以实施可以降低干扰的技术,如减少传输功率,改变信道,或基于工作负载禁用所选的网络电路,流量的类型,网络电路及其连接的客户端的优先级(例如,它们是否是功耗敏感的),数据流量类型,由无线电天线所观察到的信道噪声,或由网络电路220a-220c经历的其它合适的因素。在一些实施方式中,网络电路220a-220c之间的操作由共存控制器230以网络电路220a-220c可以在相同时间或接近相同的时间发送和接收数据的方式进行控制。例如,无线网络的电路220a可以被在2.4GHz的频带信道6上以减弱功率电平被传输,而无线网络电路220b的和220C可以分别在2.4GHz频带的信道1和11上接收。在一些实施例中,特别是那些装备在5GHz频带中操作的无线电设备的实施例中,适当的过滤也可以通过共存机制所适应。共存机制的一些实施例可适应RF滤波或其它前端技术以帮助在减少从一个无线电到另一个的干扰和离散化中的共存机制。
图2A中所示的基站210和图4中所示的分层模型410仅仅是例子。基站210可包括任何合适数量的网络电路220a-220c,一个以上的共存控制器230和/或耦合到总线共存240以执行协调/控制操作的附加处理单元。此外,共存控制器230可以被集成到其它合适类型的计算设备,包括,例如,加速处理单元(APU),现场可编程门阵列(FPGA),数字信号处理器(DSP),或其它具有微处理器的设备。
数据包的调准
图5A是根据一些实施例的时序图500,示出了作为由共存控制器协调的多个无线电电路的同步操作的一个例子。图6是根据一些实施例的时序图600,示出了作为由共存控制器协调的多个无线电电路的不同步操作的一个例子。共存机制(其可以由图2A的共存控制器230(例如,与共存总线240合作的)所采用,以用于实现本文公开的各种同构无线电共存功能)将在下文更全面详细地并继续参考图2A进行讨论。
正如前面提到的,根据一些实施例,连接较低MAC层(以及一些实施例中,较高的层)和在MAC2层中的管理共存控制器(例如,控制器230)的共存总线(例如,总线240)的组合可以被部署来实现本公开的实施例。取决于实现,一个无线电电路(例如,电路220a)或一组无线电路可被给予最高的优先级并作为主电路,或者所有的无线电电路(例如,电路220a-220c)可以具有类似的优先级。另外或替代地,无线电设备的优先级可以动态改变(例如,根据工作量和其他操作标准),或可以随时间而改变(例如,使用时间共享机制,循环或其它适当的多址接入协议)。取决于实施例,共存机制可涉及仅MAC2层,仅较高MAC层,或者是两者的适当组合。
虽然本实施方案的一个好处是避免接收脱敏,其他操作标准(如流量类型,或公平)可考虑共存控制器230。在一个示例中,共存机制(例如,作为由共存控制器230和共存总线240实现的)可以保证所有的无线网络电路接收至少一个机会来传输;其他操作标准包括所有传输的无线电之间的公平性,或操作标准可以包括饥饿策略。在一些实施例中,服务质量(QoS)可以被考虑,当共存机制决定了哪些无线电电路得到发送和接收时。在一些实施例中,即使当在无线电电路被由共存机制抑制或禁止的期间,某些确认(ACK)数据包的短传输可以被允许;这种技术在信道编码被使用的某些情况下可以是有用。
此外,应该注意的是在某些机制中,传输抑制或暂停用于所使用的其它合适的软件和硬件技术可以不被需要。
因此,根据一些实施例,共存机制可以同步发送和接收操作,以增加或最大化总的无线网络的吞吐量(TPUT)或带宽。这种同步操作被示于图500。在图500中,所有的发送操作和接收操作被在所有无线网络电路220a-220c之间进行同步,使得电路220a-220c仅在任何给定的时刻进行发送或接收。这种技术可以防止因不同的同构无线电在同时发送和接收所造成的脱敏,如在图2B中的表202所示。值得注意的是,AMPDU,AMSDU,或两者的组合可以在下行链路数据分组中被使用。对于示于图500的例子,下行链路(DL)数据包被示为包括下行链路AMPDU和单MPDU。任选地,请求发送(RTS)和清除发送(CTS)的握手报文可以在数据发送/接收操作之前在发送方(例如,客户端设备130,图1)和基站210之间进行交换。此外或作为替代地为提高吞吐量,共存机制可被用于协调无线电设备,以达到一个或多个无线电设备的更好的延迟要求或其他服务质量(QoS)的指标。
更具体地,如图5A中所示,共存机制可以调准一些选择的无线网络(例如,WLAN)电路在用于同步操作的相同频带中的不同的信道上运行的下行链路分组传输(或接收操作)。在一些实施例中,由不同的无线电电路接收的数据包需要具有在下行链路中相同的持续时间,并且在这种实施例中,帧的填充可以通过共存控制器230进行以使得在无线电电路220a-220c之间的数据分组(例如,在下行链路上接收到的)变得大小相同。
图5B-5D根据一些实施例的进一步说明了图5A的同步操作的更多详细信息,包括能够由共存机制所利用的填充技术的一些例子。
继续参考图5A的例子,其中AMPDU用于下行链路(DL)数据包,图5B的图502示出了AMPDU子帧的典型结构。根据一个或多个实施例,每个AMPDU子帧可以包括MPDU分隔符,它可以任选地被MPDU跟随。此外,零长度分隔符也可以被使用。虽然为简单起见在图5B中未示出,MPDU分隔符的“长度”字段可以基于作为正在被使用的网络技术的IEEE802.11数据包或其它合适的要求而包括不同的比特数。
在图5C的框图504所示的例子中,一个或多个零长度的分隔符被添加以使不同同构无线电电路(例如,IEEE802.11n与IEEE802.11ac,如图5C所示)的AMPDUs的大小相同以便调准数据包。值得注意的是,在框图504中,分隔符被添加在帧的末尾;然而,其它合适的位置也可以被使用。例如,在图5D的图506中,零长度的分隔符被显示为被使用在数据包的中间。
进一步地,共存机制也可以同时或几乎同时发送上行链路响应数据包(例如,作为由IEEE802.11规范所定义的误差),例如图5A的框图500中所示。为了发送和/或接收在不同信道上的不同的数据包,共存机制的一些实施例还可以采用不同的调制和/或可包括PHY或MAC有效载荷中的不同数目的字节。
作为同步发送和接收操作的另外的或替代实施例,共存机制也可以采用非同步操作。在非同步操作中,发送或接收不同的网络电路上的操作(且优选地每个在不同的信道之上)可以通过共存控制器230使用上述的操作标准(例如,基于数据流量的本质,公平,饥饿避免策略(例如,其可根据付款计划的不同层次结构),等等)以上面所讨论的方式进行优化。例如,在图6的框图600中所示,无线电电路2的传输被延迟或延期,因为无线电电路1已经接收(例如,因为无线电电路1具有更高的优先级)。特别是在示例框图600中,无线电1仍然可以在无线电3的接收操作期间发送ACK包。这可能是因为共存控制器230确定ACK数据包的传输所造成的的干扰可能是被容忍的(例如,因为传输是短暂的,因为传输可以成功地在衰减功率电平下进行,或者因为其他合适的原因,例如以上讨论的那些),或仅仅是因为无线电1具有比无线电3更高的优先级。
图7A是根据一些实施例的功能性框图700,示出了附加的模型,其中共存控制器210(图2A)可以操作。如框图700中所示,共存控制器210(例如,作为在基站(例如基站110,图1)中实现的)可以在网络设备上的相应的网络电路与使用唯一指定信道的客户端上的对应的网络电路进行通信的方式,与具有另外多个无线网络电路的客户端协调(例如,客户端设备130a-130n)。
例如,如果无线LAN接入点被配备3个无线网络电路,并且如果客户端设备还配备有3个无线网络的电路,则共存控制器230可以与客户端设备协调(例如,使用适当的标准或定制协议),以便在接入点上的每个无线电电路可以与在不同于其他的信道上的客户端设备上的相应的无线电电路进行通信,以便增加带宽的同时可以减小干扰。换句话说,在接入点上的第一无线网络电路可以使用信道A与客户端设备上的第一无线网络电路交换数据,在接入点上的第二无线网络电路可以使用信道B与客户端设备上的第二无线网络电路交换数据,等等。
值得注意的是,为了执行基站的这种信道协调/带宽聚合/干扰抑制技术,客户端可能还需要执行在此公开的共存机制。
此外,在具有多个无线电设备并实施本文所公开的共存机制的客户端设备被连接到基站210的一些实施例中,除了上面已经提到的功能之外,共存控制器230可以重排来自各个连接的客户端设备的所接收的帧,并将在序列中的它们递送到更高的层(例如,IP层)。在一些实施例中,共存控制器230可以耦合到重排缓存器(为简单起见未示出)用于执行重排序的工作。
此外,由于共存控制器230的实施例可以分别控制多个无线局域网无线电电路,在一些实施方式中,选定数量的无线电电路可以被操作以充当接入点(AP),而另一选定数量的无线电电路可以被操作以充当客户端。这种技术可以用于范围扩展或其他合适的用途。
可选地,共存控制器230可以实现无线网络直接,点对点,或任何其他的IEEE802.11或者使用一个或多个配备在基站210上的无线电路的WiFi可选功能。
图7B-7D是功能性框图,其示出了一些具体的示例场景,图7A的WLAN接入点和WLAN站点可以在该场景中被操作。在图7B-7D中,连接到WLANAP的WLAN站点可以自身充当其他无线站点的AP的功能。
信道引导
此外或作为上述的功能的替代,共存控制器230的一些实施例可以动态地确定(例如,在基站210正常操作期间并基于操作标准)并分配所连接的客户端设备130到不同的无线网络电路220a-220c和/或不同的信道之上。为在本节中进行讨论的目的,假定每个无线电电路在相同频带的不同的信道之上操作;然而,交换网络的电路和/或信道的不同组合可以由本文所公开的共存机制来实施或执行。
更具体地,共存机制(例如,如由共存控制器230和共存总线240所实现的)可将客户端站点关联至基站210到不同的信道之上。因为基站230包括多个无线网络电路,每个能工作在不同的信道之上,在一个或多个实施中,多信道基站210可以采用共存控制器230以基于操作标准(例如,如上面提到的那些)将客户端设备引导到不同的信道上。换句话说,共存控制器230可以基于操作标准决定哪个客户端站点被连接到哪个网络电路(和其相关联的信道)。
此外或作为那些上述操作标准的替代,操作标准的一些例子可以包括:信道间的负载分配和平衡,任何吞吐量要求,任何QoS要求(例如,延迟,抖动,数据包错误率,吞吐量规格等),来自每个信道中的其他无线电的干扰,来自其他无线局域网或其它无线电(例如,由附近其他基站或具有重叠基本服务集标识(BSSID)的客户端进行操作的)的任何干扰,任何来自非WLAN相关设备(如微波炉)的干扰,等等。
在一些实施例中,共存控制器230位于MAC层的顶部(例如,作为MAC2层,如在图4A和图4B中所述的),用于无线电电路的管理,其中每一个都可以包括其自己的MAC和PHY电路。值得注意的是,在网络协议栈的其它层(例如,OSI模型中的其它层)也可以被用于多个无线网络(例如,WLAN)电路的管理。
根据一个或多个实施例,共存控制器230还可以通过确保客户端设备不能在任何其他未经授权的信道上关联本身来执行选择。在一些另外的实施例中,共存控制器230可以以一种方式起作用,以使得较高层(例如,OSI模型中的网络层或IP层)的通信接口是一样的。值得注意的是,在客户端设备被关联到基站210之后,共存控制器230可能需要传递为客户端设备指定的数据包给相应的无线电电路的MAC层,该相应的无线电电路服务于客户端设备被关联或被分配至的信道。
此外,在客户端设备连接到网络电路并与信道相关联之后,共存控制器230可以将客户端设备从一个信道移动到另一信道,当这样的移动变得合乎需要时。例如,如果从连接到一个网络电路的所有客户端设备聚合的数据流量负载超过或即将超过网络电路的服务能力,则共存控制器230可以有选择地将一些连接的客户端移至另一个无线网络电路。对于另一个例子,如果信道上的干扰(例如,通过信道上操作的网络电路所观察到的)增大到超过最大阈值的水平(例如,使当前连接的客户端设备可能无法被准确地服务),则共存控制器230可以有选择地将一些连接的客户端移至另一个无线网络电路。对于一些实施例,如果在另一信道上的信道条件变得比当前信道更好(例如,因为除去了干扰源),则共存控制器230可以有选择地将一些连接的客户端移至另一个无线网络电路。在一些实施例中,典型的信道切换公告可被用于将客户端设备从一个信道移至另一信道。具体地,在一些实施例中,信道切换公告或在IEEE802.11h中的其他方法可被用于将站点从一个信道移至另一个信道。值得注意的是,类似于在IEEE802.11h中描述的那些的技术可以通过本发明公开的一些实施例适用于解决在某些位置中由IEEE802.11a/n/ac的使用所引入的干扰问题,特别是用于军事,天气雷达系统或其它合适的设备,例如医疗器械。
此外,在一些其它实施例中,AP可以取消在信道上的所选的客户端的关联或解除在信道上的所选的客户端的认证,而无需使用信道切换公告。不使用信道切换公告的理由可以是,例如,缺乏客户端一侧上的支持。在其他一些例子中,AP可以决定由于缺乏时间而不使用信道切换公告,因为AP可能需要尽快地将一些客户端从某个信道移除。
此外,基站210的一些实施例可以为客户端设备保留/迁移所有的状态信息(例如,网络设置,硬件配置信息等),当客户端设备从一个信道切换到另一个信道以尽量减少切换时间的时候。
图8是根据一些实施例的框图800,示出了在优选信道上的探测请求程序,优选信道可以由共存控制器执行。图9是根据一些实施例的框图900,示出了在非优选信道上的探测请求程序,非优选信道可以被共存控制器执行。
继续参考图2A,用于实现信道的引导技术的一些具体示例现在将被讨论。在这些实施例中,其中无线网络是电路是IEEE802.11无线局域网电路,下面的管理帧是在帧之间的一些示例,所述帧是可由共存控制器230用于信道引导技术:探测请求,探测响应,认证,解除认证,关联请求,关联响应,重新关联请求,重新关联响应,和取消关联。下列实施例被使用IEEE802.11术语进行描述;然而,应当指出,本文中提供这些实施例是为了提供对共存机制的更好的理解,而IEEE802.11管理帧和IEEE802.11的WLAN电路在实施本实施例中都不是必要的。
如上文所述,本文所公开的共存机制可以在相关联的时间引导一个连接客户端到特定的信道/网络电路,并且还可以在设备已经连接之后引导客户端至另一特定的信道/网络电路。
因此,在一些实施例中,当客户端设备尝试与基站210连接时,共存机制可以选择不响应来自非优选信道上的客户端设备的探测请求,认证请求,或关联请求。更具体地,假设信道B是优选信道,而信道A是非优选信道,当客户端设备发送探测请求给非优选信道A上的基站210时,共存控制器230可以作出判定从而忽略非优选信道A的探测请求。与此相反,当客户端设备发送优选信道B上的探测请求时,共存控制器230可以响应该探测请求,以使客户端设备可以连接到在优选信道B上的基站230。此外,共存控制器230可以选择使基站210不广播已在其最大容量的信道上的服务集标识(SSID),以避免客户端设备请求关联到非优选信道。值得注意的是,在图8-9中描绘的类似的机制可应用于认证请求,关联请求,或者其他形式的已知的预关联或后关联请求。
此外或可选地,在本发明中应被认识到的是,客户端设备可能仍然试图与非优选信道上的无线基站210相关联,而不是切换到其他信道,即使当客户端设备没有接收到响应时。这样,无线基站210的一些实施例可以选择以忽略最大数目的请求;例如,基站210可以忽略非优选信道上的前M关联请求,但如果客户端设备继续并尝试在相同的非优选信道上的第(M+1)次的关联,那么基站210可以关联在非优选信道上的客户端设备,以避免完全否定到客户端设备的服务。在这个特定示例中,在连接之后,共存控制器230可以选择稍后将客户端设备从相关联的非优选信道移至优选的信道。
示例关联过程被在描绘在框图800中,该示例关联过程之中的客户端设备通过在优选通信信道上的无线信号(例如,诸如探测请求)与基站210相关联。在正常操作期间,客户端设备可以在时刻t0发起在基站210的优选信道上的探测请求。然后,探测请求由基站210在时间t1接收。
在时刻t1接收到探测请求之后,基站210确定探测请求是否在优选信道上被接收。在图800的图示例子中,因为该探测请求被在基站210的优选通信信道上接收(例如,作为由共存控制器230确定的),基站210在时刻t2发送优选通信信道上的响应信号(例如,探测响应)。优选信道上的探测响应在时间t3由客户端设备接收到。其后,位于基站210上的无线LAN电路成为客户端设备用于关联的候选并可用于数据通信。
示例关联过程被在描绘在框图900中,该示例关联过程之中的客户端设备通过在非优选通信信道上的无线信号(例如,诸如探测请求)与基站210相关联。在正常操作期间,客户端设备可以在时刻t0发送在基站210的非优选信道上的探测请求。基站210在时刻t1接收来自于客户端设备的非优选通信信道上的探测请求。
然后,根据一些实施例,基站210可以选择忽略该探测请求,从而触发客户端设备发送另一通信信道(其可以是基站210的优选信道)上的另一个探测请求。值得注意的是,虽然许多目前市场上可用的无线LAN客户端可以尝试感应在另一个信道上的探测请求,当它们没有听到在一个信道上探测请求时,在此公开的客户端设备的一些实施例还可以实现共存机制,以便客户端设备基于先验信息将切换其在之上发送探测请求的信道。在一些实施例中,基站210也可以选择使用适当的通信方法来通知基站210的客户端设备的目前优选的信道。
在框图900所示的例子中,客户端设备两次切换信道,并在时间t4发送在基站210的优选通信信道上的探测请求。这个探测请求由基站210在时间t5接收。作为响应,在时间t6,基站210发送在优选通信信道上的探测响应到客户端设备,以及该探测响应在时间t7由客户端设备接收。其后,位于基站210上的无线LAN电路成为客户端设备用于关联的候选且可用于数据通信。
此外,当客户端设备已经被连接至的通信信道变为非优选信道时,共存控制器230可以引导客户端至另一特定的信道/网络电路。更具体地,在一些实施例中,基站210可以在适当的时候发送解除认证信息(例如,当时间关键流量存在或被预计时),并且当客户机设备尝试重新认证时,基站210不会响应客户端设备的探测请求访问基站210。以这种方式,客户端设备可以被触发以试图在其他信道(其可以是基站210的优选信道)上的重新认证。
在另外的或替代实施例中,共存控制器还可以使用一个或多个合适的通信协议(例如,作为在IEEE802.11h和/或IEEE802.11v定向漫游协议中指定的信道切换程序)将客户端设备从非优选信道移至优选信道。此外,在一些实施例中,在客户端设备和基站210之间的电流连接可以被维持(例如,无需终止),并且客户端设备可以被移动到优选频道,当下一次连接到基站210时。
下面是共存控制器230可如何分组客户端设备的一些例子。在所有实施例中,基站210被配备有三个无线网络电路,在信道A上的操作,在另外一个信道B上的操作,以及在信道C上的第三个操作。此外,在这些实施例中的所有的无线网络电路都在同一频带操作。
在一个实例中,信道C具有最佳条件,而信道B具有最差条件。因此,由于信道B遇到了很大的噪音,共存控制器230可以选择移动所有的没有延迟或性能要求的客户端设备到信道B。信道C是最好的渠道,以及共存控制器230可以将具有最严格的性能要求的流量类型(例如,VoIP或视频会议应用)移至信道C。根据信道A的条件,信道A也能维持具有严格性能要求的一些设备。
在另一个例子中,共存控制器230可根据他们的流量类型(例如,如VoIP,视频点播,或其他应用程序只要求尽力而为)的客户端设备。
在又一个示例中,如果所有的信道具有类似的能力,以及类似的条件下,则共存控制部230可以结合和混合具有不同类型的通信的客户端设备上的每个信道进行负载平衡。
在另一个例子中,共存控制器230能够小组根据各自的功率要求,让它们在电力资源(例如,电池运行)限制那些客户端设备可以传输在不同功率水平的客户端设备(如,在较低的数据速率)比那些是无限的动力资源(例如,插入电源插座)的设备。
在其它实例中,基于它们的功能相似性的共存控制器230可以将客户端设备。例如,具有多用户多输入和多输出(MU-MIMO)功能的设备,可以一起在比其他装置不同的信道分组。
家庭无线传感器中的应用
图10是根据一些实施例的抽象的功能性框图1000,示出了配备有在具有多个无线传感器1070a-1070n的的环境中实施的共存控制器1030的无线基站1010。基站1010包括无线网络电路1020a和1020b,其均经由共存总线1040耦合到共存控制器1030。在一些实施例中,无线电路1020a和1020b可以是不同的离散组件,或者它们可以被集成到一个或多个芯片组。
住宅网关1050被耦合到基站1010以提供数据通信服务(例如,到因特网)到基站1010及其客户端(例如,传感器1070)。网关1050可以经由,例如,网关1050的无线网络电路1060被耦合到基站1010。为了在此讨论的目的,假设网络电路1060经由网络电路1020a被连接到基站1010。住宅网关1050的示例可以包括电缆调制解调器,数字用户线(DSL)调制解调器,卫星调制解调器,等等。虽然为了简单起见未在图中示出,网关1050也可在向基站1010提供数据服务之中基于无线电话服务(例如,诸如3G,3.5G,4G LTE,等等)被耦合到数据流量网络。
无线传感器1070a-1070n是通常被安装在住宅或办公室环境中的传感器。传感器1070a-1070n包括用于耦合到基站1010并与基站1010通信的无线网络能力。为了在此讨论的目的,假定无线传感器1070a-1070n通过网络电路1020b被分别连接到基站1010。无线传感器1070a-1070n的一些例子包括门传感器,运动传感器,监控摄像头,火/烟雾探测器,一氧化碳(CO)检测器,车库门开启器,温控器,有线电视控制箱,煤气表,等等。尽管不是必须地,传感器1070a-1070n中的一个或多个传感器可以通常只有有限的功率资源(例如,仅在电池供电下运行)。
基站1010类似于图2A的基站210,并在这个特定的设置中,可以是为无线传感器指定的基站,包括,例如,家庭安全控制台设备,如由Comcast公司,ADT公司,或AT&T公司提供的。如图1000中所示,基站1010包括至少两个无线网络电路1020a和1020b,电路1020a被耦合到网关1050以及电路1020b被耦合到无线传感器1070a-1070n。在一个或多个实施例中,基站1010起到中继器的作用,其可以转发从网关1050接收到的数据流量(例如,控制命令)到无线传感器1070a-1070n,并且可以转发从无线传感器1070a-1070n接收到的数据流量(例如,拍摄的图像,或报警信号)到网关1050。除其他原因外,由于功率限制和其他特定于无线传感器1070a-1070n的特性,将传感器1070a-1070n分别连接到单独的无线网络电路有益于被用于连接住宅网关1050。
然而,如前面提到的,应认识到的是干扰和脱敏可以在一个以上的无线网络电路,在同一频带以及在物理上接近中发送和接收的设置中发生。具体而言,当基站1010使用电路1020b发送数据到无线传感器1070a-1070n时,这会导致电路1020a的接收变得脱敏,如果网关1050尝试在电路1020b的传输过程中与基站1010进行通信,基站1010可以错过从网关1050发送的数据,并因此在网关1050可能不得不重发。幸运的是,网关1050通常没有电力资源的担忧。
类似的情况可以发生在当基站1010使用电路1020a发送数据到网关1050之时,这可能会导致电路1020b的接收变得脱敏,并且如果网关1050试图在电路1020a的传输过程中与基站1010进行通信,基站1010可以错过从无线传感器1070a-1070n发送的数据,因此,无线传感器1070a-1070n可能不得不重发。然而,这可能是不可取的,因为无线传感器1070a-1070n可能会有功率资源的担忧,以及重发可以不利地影响传感器1070a-1070n的工作寿命。
现有的解决方案可以包括使用分段式天线和在无线电电路之间创造足够的屏蔽。然而,由于无线传感器可以部署在物理环境周围的任何位置,理想的是具有全向天线,以使基站的无线通信覆盖可以被最大化。
因此,在一些实施例中,共存控制器1030可以导致无线电路1020a和1020b以不引起彼此的干扰或脱敏的方式进行操作。更具体地,共存控制器1030可以利用上述的共存机制,例如,通过选择性地抑制在无线网络电路1020b的接收操作的过程中的无线网络的电路1020a的发送操作来给予那些来自各种无线传感器1070a-1070n的数据通信优先级。例如,共存控制器1030可以通过禁用,延迟,衰减在降低了传输操作的传输速率中或在应用在此所讨论到的任何其他操作参数调节技术至传输操作中所使用的功率电平来抑制传输的通信。在这种方式中,共存控制器1010能够以保持接收网络电路1020b的操作完整性的方式(例如,以使接收不被中断或损坏)来抑制网络电路1020a的传输操作。值得注意的是,无线网络电路1020a-1020b的一些实施例在不同的信道(例如,信道1和6)上进行操作。
在一些另外的实施例中,在抑制过程中,共存控制器1030被配置为允许网络电路被抑制,以在每一个预定的时间周期之后响应高优先级通信。例如,被抑制的无线LAN电路可能仍然能够对管理数据包做出响应。
在一些实施例中,共存控制器1030也可以以降低无线传感器1070a-1070n的功耗的方式操作无线网络电路1020b。例如,当无线网络电路1020a的操作保持不受影响的同时(例如,其可以被优化以用于高速性能或其他方面的考虑),无线网络电路1020b的操作可以利用可用在IEEE802.11标准中以节省传感器1070a-1070n的电源的各种参数和选项。
具体而言,存在在IEEE802.11系列标准中的两个示例性的省电技术,其以由共存控制器1030采用以用于降低在无线传感器1070a-1070n上的功率消耗。一个例子是被称为省电轮询(PS-轮询);另一个例子是被称为非排程自动省电模式(UAPSD)。
在其它实施例中,为了在降低功耗中协助传感器1070a-1070n,共存控制器1030还可以利用定制协议或标准协议的修改版本以与无线传感器1070a-1070n通信。例如,共存控制器1030可导致无线网络电路1020b在具有放宽链路维持标准(如放宽ACK数据包的响应时间从1毫秒到2秒)的无线网络协议的修改版本上操作。
在另外的例子中,连接到无线传感器1070a-1070n的无线网络电路(例如,电路1020b)可以使用如在不同频段(如2.4GHz,5GHz,或其他频带)中的IEEE802.11ah标准中描述的省电机制。一个或多个实施例可以支持可以发送流量指示图(TIM)的客户端设备或传感器,以及共存控制器1030可以安排流量调度,并基于所接收到的TIM信息给予各自的无线电路优先级。
此外,对于客户端设备或不具有TIM性能的客户端,当基站1010为没有TIM能力客户端安排或保留目标唤醒时间(TWT)之时,共存控制器1030还可以保护没有TIM能力的客户端的已被安排的TWT不被有TIM能力的客户端抢占。特别是,为了实施该技术,共存控制器1030可以指示有TIM能力的客户有限制的访问窗口(RAW)的信息,在这期间没有有TIM能力的客户端可以占据无线网络电路。在一些实施例中,RAW信息被包括在从基站1030发送的信标中的RPS元素中。在一些实施例中,如果RPS元素指示RAW仅分配给没有TIM能力的客户端,那么任何检查信标的有TIM-功能的客户端不应该访问无线网络电路的持续时间,该持续时间由RPS元素之内的RAW信息中提交“RAW持续时间”所指示。在另一实例中,如果没有TIM能力的客户端的预定的TWT是周期性的,则基站1030可以设置周期性的RAW操作,如在IEEE802.11标准第9.19.4a.6中被限定的。
在一些实施例中,共存控制器1030在管理无线网络电路1020a-1020b中可以采用公知的时分多路复用(TDM)技术,以及在一些实施例中,一定时间的持续时间可以被分配给特定类型的数据流量。
图11是根据一些实施例的时序框图1100,其用于处理从基站到图10的无线传感器1070a-1070n的下行链路流量。如在图1100中所示,一旦基站1010知道无线传感器(例如,传感器1070a)被唤醒,基站1010中的共存机制可以向无线传感器1070a的下行链路流量给予优先级。无线传感器1070a的睡眠时间表可以使用一种或多种合适的方法包括,例如,利用信标发送IEEE802.11标准中描述的流量指示图(TIM)被传送或广播。因此,在一些实施例中,共存控制器1030可以基于从一个或多个无线传感器接收的状态信号在选择性地抑制传输操作中以确定预约时间表。
图12是根据一些实施例的时序框图1200,其用于处理从基站到图10的无线传感器1070a-1070n的上行链路流量。类似于图1100,一旦基站1010知道无线传感器(例如,传感器1070a)开始发送数据,基站1010中的共存机制可以向来自无线传感器1070a的上行链路流量给予优先级。
图13是根据一些实施例的抽象框图1300,示出了不对称的缓存结构或机制,其可以由共存控制器所采用或控制。更具体地,除了其它原因之外,因为无线网络电路的抑制,而且由于一些比其他的无线网络电路具有更高的优先级的无线网络电路,一种或多种缓存器可被包括在基站1010(图10)之中以及不耦合到无线网络电路1020a-1020b以用于暂时存储数据。在一些这样的实施例中,共存控制器1030(图10)可以被配置为分配在缓存器中的更多资源给具有较高优先级的网络电路(例如,电路1020b)。这样的例子示于图1300。在一些实施例中,共存控制器1030还可以基于网络电路1020a-1020b的工作量调整缓存器的缓存率。
在一些实施例中,共存控制器1030也可以在无线传感器1070a-1070n之间进行调整,以便使无线传感器1070a-1070n不会干扰彼此的数据传输。在一些实施例中,无线传感器1070a-1070n可传送到共存控制器1030有关于其各自的电池或其它电源状态,以及共存控制器1030可基于它们各自的电源状态优先化一个或多个无线传感器1070a-1070n之中的通信。例如,共存控制器1030可以选择性地发送确认(ACK)数据包到传感器1070a-1070n之间的那些无线传感器,其是电源中是较低的,以避免它们重新传输数据。
方法
图14是根据一些实施例的流程图1400,其示出了用于控制和协调多个无线电电路的方法1400,该方法可以由共存控制器(例如,控制器230,图2)来实施。例如,该方法1400被在基站(例如,基站210,图2)之中执行。
在一个或多个实施例中,位于站点210上的每一个的多个网络电路(例如,电路220a-220c)可以被分配(1410)一个优先级。在一些实施例中,共存控制器230通过共存总线(例如,总线240,图2)被耦合到网络电路220a-220c以控制网络线路220a-220c之间的操作。更具体地,优先级的每个网络电路可以通过基站210的生产商被预定,或优先级可任选地和/或动态地被共存控制器230基于某些优先级分配标准进行分配(1410)。优先级分配标准可包括流量的量,流量的类型(例如,数据,语音,视频,传感器应用等),每个电路所经历的无线信道条件,和/或其他合适的因素。如上面所解释的,优先级分配标准可以类似于操作标准。
然后,共存控制器230可以基于分配给每个网络电路的优先级以及其它因素判断(1420)多个操作标准。操作标准可以反映各种因素,如每个网络电路处理的客户端设备的数量(例如,设备130,图1),每个网络电路看到的数据流量的量,每个网络电路支持的数据速率,每个网络电路被分配的流量类型,每个网络电路所经历的无线信道状态或噪声(例如,作为由RSSI或已知矩阵秩所测定的),等等。根据本实施例,操作标准被选择为使共存控制器以降低了网络电路220a-220c彼此脱敏的可能性的方式来控制操作。在一些实施例中,操作标准以一种方式被选择,以使得共存控制器230可以使用基站210上的多个无线网络电路(例如,电路220a-220c)执行,例如,负载平衡和/或频率规划。
接下来,共存控制器230可以通过基于包括相比于其它电路的优先级的网络电路220a的优先级的多个操作标准选择性地调节各自网络电路(例如,电路220a)的一个或多个传输操作参数来控制(1430)网络电路之间的操作。
无线网络电路的传输操作参数是网络电路在其中使用以传输数据的配置。例如,在一些实施例中,共存控制器230可以减少在无线网络电路(例如,电路220a)上的传输功率,当另一个无线网络电路(例如,电路220b)正在接收时。在附加或替代实施例中,其它的可以由共存控制器230进行调整的传输操作参数可以包括数据速率(例如,11Mbit/s或54Mbit/s)和/或各自的网络电路进行操作的网络协议(例如,IEEE802.11a,IEEE802.11n,等等)。在一些实例中,传输操作参数还可以包括各自的网络电路在其上进行操作的信道(例如,在WLAN2.4GHz频带中的信道1、信道6、或信道11;或在WLAN5GHz频带中的信道36、信道100、或信道161)上其中工作。在一些实施例中,传输操作参数还可以包括各自的网络电路在其中进行操作的频带(例如,2.4GHz、5GHz,等等)。其它已知的配置调整,比如调制或相位调节,也可以被包括在共存控制器230可以调节的传输操作参数的列表之中。
图15是根据一些实施例的流程图,其示出了用于减少在多个无线电电路之间的干扰的方法1500,该方法其可以由共存控制器(例如,控制器1030,图10)进行实施。例如,方法1500被在基站(例如,基站1010,图10)中执行。
首先,在一些可选的实施例中,控制器1030可以支持可以发送流量指示图(TIM)的客户端设备或传感器,以及共存控制器1030可以安排或确定(1510)流量时间表且基于所接收的TIM信息向各自的无线电路给予优先级。对于不具有TIM能力的客户端设备或无线传感器,当基站1010为没有TIM能力的客户端安排或保留目标唤醒时间(TWT)时,共存控制器1030还可以保护没有TIM能力的客户端的预定的TWT不被有TIM能力的客户端抢占。具体言之,为了实施该技术,共存控制器1030可以指示有TIM能力的客户端一个限制的访问窗口(RAW)信息,在这期间没有TIM能力的客户端可以占据无线网络电路。
根据一些实施例,共存控制器1030可以使耦合到站点1030的无线电路(例如,1020a和1020b)以不会造成彼此干扰或脱敏的方式进行操作。更具体地,共存控制器1030可通过在无线网络电路1020b的接收操作过程中选择性地抑制(1520)无线网络电路1020a的传输操作来利用共存机制(例如,如上所述)向来自各种无线传感器1070a-1070n的那些数据通信给予优先级,当网络电路1020b被分配(1524)的优先级高于网络电路1020a时。多个网络电路在相同的无线电频带中操作(1522)且被并置(1522)。
例如,共存控制器1030可以通过禁用,延迟,衰减在降低了传输操作的传输速率中或应用在此所讨论到的任何其他操作参数调节技术至传输操作中所使用的功率电平,来抑制传输的通信。在这种方式中,共存控制器1010能够以保持接收网络电路1020b的操作完整性的方式(例如,以使接收不被中断或损坏)来抑制(1520)网络电路1020a的传输操作。值得注意的是,无线网络电路1020a-1020b的一些实施例在不同的信道(例如,信道1和6)上进行操作。
结论
在上述说明书中,本实施例被参照在其中的具体示例性实施例进行了描述。然而,显而易见的是,各种修改和改变可以在不脱离如所附权利要求中阐述的本发明的更广泛的范围之内被作出。因此,本说明书和附图,也可以认为是说明性的而不是限制性的。
还应当理解的是,在附图中的所有框图仅用于说明目的,且不应排除在本发明的范围之外以包括任何的逻辑等价物或它们的组合,包括移除,替换,或添加实现本发明的与本发明的特征相一致的相同或类似的功能的其他逻辑门。
此外,还应当注意的是,本文公开的各种电路可以使用计算机辅助设计工具和表达(或表示)来描述,如在包含在各种计算机可读介质中的数据和/或指令,在他们的行为方面,寄存器传输,逻辑组件,晶体管,布局几何,和/或其他特性。这样的电路在其中被实现的文件和其他对象的格式包括但不限于,支持行为语言(如C、Verilog和VHDL)的格式;支持寄存器级描述语言(如RTL)的格式,和支持几何描述语言(如GDSII、GDSIII、GDSIV、CIF、MEBES)的格式和任何其他合适的格式和语言。这样的格式化的数据和/或指令可被包含在其中的计算机可读介质包括,但不限于各种形式中的非易失性存储介质(例如,光学、磁性或半导体存储介质)。

Claims (25)

1.一种网络设备,包括:
第一和第二无线网络电路,每一个所述无线网络电路在相同的无线电频带中进行操作,其中所述第二网络电路被分配的优先级高于所述第一网络电路被分配的优先级;以及
共存控制器,所述共存控制器通过通信总线被耦合到所述网络电路并被配置为选择性地抑制在接收所述第二网络电路的操作期间的所述第一网络电路的传输操作。
2.如权利要求1所述的网络设备,其中所述共存控制器是以维护接收所述第二网络电路的操作的完整性的方式,进行抑制所述第一网络电路的所述传输操作。
3.如权利要求1所述的网络设备,进一步包括:
耦合到所述第一和第二网络电路的用于存储数据的一个或多个缓存器,
其中所述共存控制器被进一步配置来调节在抑制期间的所述第一和第二网络电路之间的所述缓存器的资源分配。
4.如权利要求3所述的网络设备,其中所述共存控制器被进一步配置为基于所述网络电路的工作负载调节所述缓存器的缓存率。
5.如权利要求1所述的网络设备,其中所述共存控制器被进一步配置为选择性地抑制所述传输操作,基于从一个或多个所述第二网络电路被配置为耦合至的无线传感器接收到的状态信号以确定预约时间表。
6.如权利要求1所述的网络设备,其中所述共存控制器被进一步配置为与一个或多个所述第二网络电路被配置为耦合至的无线传感器进行通信,以便使所述无线传感器不干扰彼此的数据传输。
7.如权利要求1所述的网络设备,其中所述共存控制器被进一步配置为,决定在一个或多个所述第二网络电路被配置为耦合至的无线传感器之间的通信的优先顺序,基于所述无线传感器的相应的供电状态。
8.如权利要求1所述的网络设备,其中所述共存控制器被进一步配置为在抑制期间选择性地允许所述第一网络电路在每个预定的时间周期之后响应高优先级通信。
9.如权利要求1所述的网络设备,其中所述共存控制器通过禁用所述第一网络电路抑制所述传输操作。
10.如权利要求1所述的网络设备,其中所述共存控制器通过衰减所述第一网络电路的所述传输功率抑制所述传输操作。
11.如权利要求1所述的网络设备,其中所述共存控制器通过减小所述第一网络电路的传输速率抑制所述传输操作。
12.如权利要求1所述的网络设备,其中所述第二网络电路运行具有放宽链路的维持标准的无线网络协议的修改版本。
13.如权利要求1所述的网络设备,其中所述第一和第二网络电路的每一个都包括独立的媒体接入控制(MAC)层和物理(PHY)层电路。
14.如权利要求1所述的网络设备,其中所述网络电路被并置在所述网络设备上。
15.如权利要求1所述的网络设备,其中所述第二电路被配置为被耦合到一个或多个电池供电的无线传感器。
16.一种用于减少多个无线网络电路的干扰的方法,所述方法包括:
使用被耦合到所述多个网络电路的共存控制器以选择性地抑制在接收第二网络电路的操作期间的第一网络电路的传输操作;
其中所述多个网络电路在相同的无线电频带进行操作且被并置;以及
其中所述第二网络电路被分配的优先级高于所述第一网络电路被分配的优先级。
17.如权利要求16所述的方法,进一步包括:
以维护接收所述第二网络电路的操作的完整性的方式,进行抑制所述第一网络电路的所述传输操作。
18.如权利要求16所述的方法,其中一个或多个缓存器被耦合到所述第一和第二网络电路以用于存储数据,所述方法进一步包括:
在抑制期间调节所述第一和第二网络电路之间的缓存器的资源分配。
19.如权利要求16所述的方法,进一步包括:
基于所述网络电路的工作负荷调节所述缓存器的缓存率。
20.如权利要求16所述的方法,还包括:
为所述选择性地抑制,基于从一个或多个所述第二网络电路被配置为耦合至的无线传感器接收到的状态信号以确定预约时间表。
21.如权利要求16所述的方法,进一步包括:
与一个或多个所述第二网络电路被配置为耦合至的无线传感器进行通信,以便使所述无线传感器不干扰彼此的数据传输。
22.如权利要求16所述的方法,还包括:
决定在一个或多个所述第二网络电路被配置为耦合至的无线传感器之间的通信的优先顺序,基于所述无线传感器的相应的供电状态。
23.如权利要求16所述的方法,还包括:
在抑制期间选择性地允许所述第一网络电路在每个预定的时间周期之后响应高优先级通信。
24.如权利要求16所述的方法,其中所述抑制包括一个或多个的:(ⅰ)禁用所述第一网络电路;(ⅱ)衰减所述第一网络电路的所述传输功率;或(iii)减小所述第一网络电路的传输速率。
25.如权利要求16所述的方法,所述第二网络电路运行具有放宽链路的维持标准的无线网络协议的修改版本。
CN201410268279.1A 2013-06-14 2014-06-16 具有多个同构无线电设备的共存的无线传感器基站 Expired - Fee Related CN104301899B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910056992.2A CN110062344A (zh) 2013-06-14 2014-06-16 具有多个同构无线电设备的共存的无线传感器基站

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361835488P 2013-06-14 2013-06-14
US61/835,488 2013-06-14
US201361836571P 2013-06-18 2013-06-18
US61/836,571 2013-06-18
US201361870762P 2013-08-27 2013-08-27
US61/870,762 2013-08-27
US14/089,651 US9232566B2 (en) 2013-06-14 2013-11-25 Wireless sensor base station with coexistence of multiple homogeneous radios
US14/089,651 2013-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910056992.2A Division CN110062344A (zh) 2013-06-14 2014-06-16 具有多个同构无线电设备的共存的无线传感器基站

Publications (2)

Publication Number Publication Date
CN104301899A true CN104301899A (zh) 2015-01-21
CN104301899B CN104301899B (zh) 2019-02-19

Family

ID=52019156

Family Applications (6)

Application Number Title Priority Date Filing Date
CN201410267780.6A Expired - Fee Related CN104301943B (zh) 2013-06-14 2014-06-16 用于实现多个同构无线电设备的共存及其流量管理的方法和设备
CN201910056992.2A Pending CN110062344A (zh) 2013-06-14 2014-06-16 具有多个同构无线电设备的共存的无线传感器基站
CN201410267563.7A Expired - Fee Related CN104244377B (zh) 2013-06-14 2014-06-16 一种用于实现多个同构无线电设备的共存的数据包的调准的网络设备
CN201811030019.5A Pending CN109121111A (zh) 2013-06-14 2014-06-16 用于实现多个同构无线电设备的共存及其流量管理的方法和设备
CN201410268279.1A Expired - Fee Related CN104301899B (zh) 2013-06-14 2014-06-16 具有多个同构无线电设备的共存的无线传感器基站
CN201810207971.1A Pending CN108366433A (zh) 2013-06-14 2014-06-16 用于实现多个同构无线电设备的共存的数据包的调准

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CN201410267780.6A Expired - Fee Related CN104301943B (zh) 2013-06-14 2014-06-16 用于实现多个同构无线电设备的共存及其流量管理的方法和设备
CN201910056992.2A Pending CN110062344A (zh) 2013-06-14 2014-06-16 具有多个同构无线电设备的共存的无线传感器基站
CN201410267563.7A Expired - Fee Related CN104244377B (zh) 2013-06-14 2014-06-16 一种用于实现多个同构无线电设备的共存的数据包的调准的网络设备
CN201811030019.5A Pending CN109121111A (zh) 2013-06-14 2014-06-16 用于实现多个同构无线电设备的共存及其流量管理的方法和设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810207971.1A Pending CN108366433A (zh) 2013-06-14 2014-06-16 用于实现多个同构无线电设备的共存的数据包的调准

Country Status (3)

Country Link
US (14) US9241370B2 (zh)
CN (6) CN104301943B (zh)
TW (4) TWI610591B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453762A (zh) * 2016-05-31 2017-12-08 联发科技股份有限公司 无线模块及减少无线天线之间的干扰的方法
CN110012452A (zh) * 2018-01-04 2019-07-12 恩智浦有限公司 无线通信装置
WO2019178712A1 (en) * 2018-03-19 2019-09-26 Qualcomm Incorporated Coexistence based on traffic type prioritization
CN114145067A (zh) * 2019-07-24 2022-03-04 赛普拉斯半导体公司 用于缓解无线网络中的干扰的设备、系统和方法

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9997830B2 (en) 2012-05-13 2018-06-12 Amir Keyvan Khandani Antenna system and method for full duplex wireless transmission with channel phase-based encryption
WO2013173252A1 (en) 2012-05-13 2013-11-21 Invention Mine Llc Full duplex wireless transmission with channel phase-based encryption
US10177896B2 (en) 2013-05-13 2019-01-08 Amir Keyvan Khandani Methods for training of full-duplex wireless systems
US9241370B2 (en) 2013-06-14 2016-01-19 Netgear, Inc. Method and apparatus for implementing coexistence of multiple homogeneous radios and traffic management therein
US10034179B2 (en) 2013-10-30 2018-07-24 Sai C. Manapragada System and method for extending range and coverage of bandwidth intensive wireless data streams
US9236996B2 (en) 2013-11-30 2016-01-12 Amir Keyvan Khandani Wireless full-duplex system and method using sideband test signals
US9820311B2 (en) 2014-01-30 2017-11-14 Amir Keyvan Khandani Adapter and associated method for full-duplex wireless communication
US9876539B2 (en) * 2014-06-16 2018-01-23 Ntt Docomo, Inc. Method and apparatus for scalable load balancing across wireless heterogeneous MIMO networks
US9998501B2 (en) 2014-12-02 2018-06-12 Netgear, Inc. Sensor gateway
CN105848231B (zh) * 2015-01-14 2019-05-24 中兴通讯股份有限公司 Wifi设备及其中wifi芯片的工作方法、装置
US10063292B2 (en) 2015-02-02 2018-08-28 Qualcomm Incorporated Multi-user operation management
US20160227563A1 (en) * 2015-02-03 2016-08-04 Telefonaktiebolaget L M Ericsson (Publ) Traffic indication map association mechanism for low-energy devices
US10341014B2 (en) * 2015-04-15 2019-07-02 RF DSP Inc. Hybrid beamforming multi-antenna wireless systems
US9781686B2 (en) 2015-07-23 2017-10-03 Google Inc. Reducing wireless communication to conserve energy and increase security
US20170093745A1 (en) * 2015-09-24 2017-03-30 Qualcomm Incorporated Scheduling of shared hardware for dual network operation
US11696216B2 (en) * 2016-02-18 2023-07-04 Comcast Cable Communications, Llc SSID broadcast management to support priority of broadcast
US10778295B2 (en) 2016-05-02 2020-09-15 Amir Keyvan Khandani Instantaneous beamforming exploiting user physical signatures
US10694390B2 (en) 2016-07-28 2020-06-23 Hewlett-Packard Development Company, L.P. Regulating assignment of a wireless local area network communication channel
US10194438B2 (en) 2016-09-29 2019-01-29 The Mitre Corporation Systems and methods for radio frequency spectrum sharing
US10609647B2 (en) * 2016-09-29 2020-03-31 Intel IP Corporation Multi-band link-aggregation pre-negotiated power save modes
US9929753B1 (en) 2016-10-11 2018-03-27 Amazon Technologies, Inc. Next packet protection for communications in overlapping frequencies
US9943229B1 (en) 2016-12-08 2018-04-17 General Electric Copany Systems and methods for monitoring patient health
US10568031B2 (en) * 2017-02-23 2020-02-18 Futurewei Technologies, Inc. System and method for recovering a communications station in sleep mode
CN108738039B (zh) * 2017-04-19 2021-06-04 北京小米移动软件有限公司 通讯频段的配置方法及装置、电子设备、可读存储介质
US10700766B2 (en) 2017-04-19 2020-06-30 Amir Keyvan Khandani Noise cancelling amplify-and-forward (in-band) relay with self-interference cancellation
JP6541715B2 (ja) * 2017-05-12 2019-07-10 キヤノン株式会社 情報処理装置、制御方法及びプログラム
US10772052B2 (en) * 2017-06-16 2020-09-08 Qualcomm Incorporated Controlling coexistent radio systems in a wireless device
CN107835514B (zh) * 2017-08-31 2021-05-18 南京邮电大学 一种多宿主业务场景下无线网络资源匹配的建模方法
US11212089B2 (en) 2017-10-04 2021-12-28 Amir Keyvan Khandani Methods for secure data storage
CN107707495B (zh) * 2017-10-27 2020-05-05 京信通信系统(中国)有限公司 多频段数字预失真处理的方法、装置和系统
US10779342B2 (en) * 2017-11-27 2020-09-15 Cypress Semiconductor Corporation Load balance for dual interface automotive wi-fi controllers for P2P devices
US11026175B2 (en) 2017-12-04 2021-06-01 Cypress Semiconductor Corporation Implementation of traffic coexistence for collocated transceivers including Bluetooth transceivers
US11012144B2 (en) 2018-01-16 2021-05-18 Amir Keyvan Khandani System and methods for in-band relaying
EP3567867A1 (en) 2018-05-07 2019-11-13 Koninklijke Philips N.V. Communication device for wirelessly communicating with a sensor
CN108664812B (zh) * 2018-05-14 2023-03-10 创新先进技术有限公司 信息脱敏方法、装置及系统
US12047876B2 (en) * 2018-05-31 2024-07-23 Maxlinear, Inc. Multi-radio wireless transceiver power conservation
CN110557801B (zh) 2018-05-31 2021-11-16 睿生光电股份有限公司 无线装置的控制方法
US10694420B1 (en) * 2018-11-30 2020-06-23 T-Mobile Usa, Inc. Traffic deprioritization by using dynamically indicated invalid subframes
CN110050473B (zh) * 2019-02-25 2021-11-09 香港应用科技研究院有限公司 无线设备同步的系统和方法
US10869274B2 (en) * 2019-05-02 2020-12-15 Mediatek Singapore Pte. Ltd. Method and apparatus for avoiding interference between WiFi operation and microwave oven operation
CN112351411B (zh) * 2019-08-09 2024-06-25 荣耀终端有限公司 信息传输的方法和电子设备
CN111193663A (zh) * 2019-12-18 2020-05-22 苏州浪潮智能科技有限公司 一种动态计算链路聚合组切换路径所需延迟的方法及装置
US11917656B2 (en) * 2020-03-13 2024-02-27 Nxp Usa, Inc. Band steering of multi-band wireless clients
CN111585850B (zh) * 2020-04-09 2021-06-15 北京瀚诺半导体科技有限公司 一种hinoc信道绑定方法、芯片及设备
US11683819B2 (en) * 2020-06-02 2023-06-20 Hewlett Packard Enterprise Development Lp Dynamic configuration of multiple radios of an access point
CN111885602B (zh) * 2020-07-27 2021-04-27 西南交通大学 一种面向异构网络的批量切换认证及密钥协商方法
US11659487B2 (en) 2020-09-22 2023-05-23 Mediatek Inc. Wireless device and associated wireless communication method
US12089142B2 (en) 2021-09-23 2024-09-10 Hewlett Packard Enterprise Development Lp Maintaining reliable connection between an access point and a client device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007008981A1 (en) * 2005-07-11 2007-01-18 Qualcomm Incorporated Coordinating communication for multiple wireless communication protocols co-located in a single electronic device
CN101084650A (zh) * 2004-12-21 2007-12-05 英特尔公司 使多种无线通信技术具有更好共存能力的装置和方法
CN101253735A (zh) * 2005-07-11 2008-08-27 高通股份有限公司 针对并置于单个电子装置中的多个无线通信协议协调通信
CN101282566A (zh) * 2007-04-03 2008-10-08 中兴通讯股份有限公司 一种干扰抑制方法

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960344A (en) 1993-12-20 1999-09-28 Norand Corporation Local area network having multiple channel wireless access
US6822966B2 (en) 1999-03-01 2004-11-23 Enterasys Networks, Inc. Allocating buffers for data transmission in a network communication device
AU783921B2 (en) * 2000-11-16 2005-12-22 Symbol Technologies, Inc. Coexistence techniques in wireless networks
US20030123393A1 (en) * 2002-01-03 2003-07-03 Feuerstraeter Mark T. Method and apparatus for priority based flow control in an ethernet architecture
US7340236B2 (en) * 2002-08-07 2008-03-04 Texas Instruments Incorporated System for operational coexistence of wireless communication technologies
US7453844B1 (en) * 2002-10-22 2008-11-18 Hong Kong Applied Science and Technology Research Institute, Co., Ltd. Dynamic allocation of channels in a wireless network
US20040264394A1 (en) * 2003-06-30 2004-12-30 Boris Ginzburg Method and apparatus for multi-channel wireless LAN architecture
US8027326B2 (en) * 2004-01-12 2011-09-27 Xocyst Transfer Ag L.L.C. Method and system for high data rate multi-channel WLAN architecture
US7701913B2 (en) 2005-10-31 2010-04-20 Intel Corporation Methods and apparatus for providing a platform coexistence system of multiple wireless communication devices
US7664465B2 (en) * 2005-11-04 2010-02-16 Microsoft Corporation Robust coexistence service for mitigating wireless network interference
US8094631B2 (en) * 2005-12-09 2012-01-10 Marvell World Trade Ltd. Coexistence system and method for wireless network devices
US7664085B2 (en) * 2005-12-30 2010-02-16 Intel Corporation Wireless communication device and method for coordinating communications among wireless local area networks (WLANs) and broadband wireless access (BWA) networks
US7634232B2 (en) 2006-03-22 2009-12-15 Intel Corporation Device, system and method of coexistence mode switching among transceivers
US20080102845A1 (en) * 2006-10-26 2008-05-01 Hitachi, Ltd. System and method for dynamic channel selection in IEEE 802.11 WLANs
WO2008067505A2 (en) * 2006-11-30 2008-06-05 Conexant Systems, Inc. Systems and methods for coexistence of wlan and bluetooth networks
US8451809B2 (en) * 2007-04-13 2013-05-28 Hart Communication Foundation Wireless gateway in a process control environment supporting a wireless communication protocol
US7801099B2 (en) 2007-05-10 2010-09-21 Broadcom Corporation Cooperative transceiving between wireless interface devices of a host device with acknowledge priority
US8345584B2 (en) * 2007-09-26 2013-01-01 Lantiq Deutschland Gmbh Wireless local area network and access point for a wireless local area network
GB0804615D0 (en) 2008-03-12 2008-04-16 Cambridge Silicon Radio Ltd Protocol coexistence
KR101507786B1 (ko) * 2008-03-31 2015-04-03 엘지전자 주식회사 단말기 및 이것의 간섭 개선 방법
US8265017B2 (en) * 2008-04-11 2012-09-11 Apple Inc. Methods and apparatus for network capacity enhancement for wireless device coexistence
US8059622B2 (en) 2008-09-04 2011-11-15 Intel Corporation Multi-radio platform and method for coordinating activities between a broadband wireless access network transceiver and co-located transceiver
US8724649B2 (en) * 2008-12-01 2014-05-13 Texas Instruments Incorporated Distributed coexistence system for interference mitigation in a single chip radio or multi-radio communication device
US8095176B2 (en) * 2008-12-04 2012-01-10 Intel Corporation Method and apparatus of subchannelization of wireless communication system
US8412263B2 (en) * 2008-12-04 2013-04-02 Intel Corporation Coexistence interface for multiple radio modules using a reduced number of connections
US8625488B1 (en) 2009-05-05 2014-01-07 Marvell International Ltd. Embedded Access Point
JP5182218B2 (ja) * 2009-05-21 2013-04-17 富士通株式会社 移動通信システム及び無線基地局装置
US8886126B2 (en) * 2009-07-09 2014-11-11 Qualcomm Incorporated Resolution algorithms for multi-radio coexistence
GB2465650B (en) * 2009-07-27 2010-10-13 Cambridge Silicon Radio Ltd Wireless network protocol coexistence
US20110170424A1 (en) * 2010-01-08 2011-07-14 Saeid Safavi Apparatus and methods for interference mitigation and coordination in a wireless network
US8825860B2 (en) * 2010-03-30 2014-09-02 Qualcomm, Incorporated Method and apparatus to facilitate voice activity detection and coexistence manager decisions
US8838046B2 (en) 2010-06-18 2014-09-16 Mediatek Inc. System and method of hybrid FDM/TDM coexistence interference avoidance
TWI477090B (zh) * 2010-06-18 2015-03-11 Mediatek Inc 協調多重無線收發器之裝置及方法
US8923208B2 (en) * 2010-08-05 2014-12-30 Qualcomm Incorporated Multi-radio coexistence
CN103069911B (zh) * 2010-08-13 2016-12-21 交互数字专利控股公司 设备中的干扰缓解
US9237452B2 (en) 2010-08-16 2016-01-12 Lg Electronics Inc. Method of avoiding IDC interference in a wireless communication system and apparatus for same
CN102076023B (zh) 2010-10-08 2013-01-16 电信科学技术研究院 缓存空间的分配方法和设备
US8825680B2 (en) 2010-10-09 2014-09-02 Codonics, Inc. Method and apparatus for displaying non-standard-compliant images
US20120120944A1 (en) 2010-11-15 2012-05-17 Xue Yang Methods and apparatuses for multi-radio coexistence
US8358590B2 (en) * 2010-12-29 2013-01-22 General Electric Company System and method for dynamic data management in a wireless network
US8422463B2 (en) * 2010-12-29 2013-04-16 General Electric Company System and method for dynamic data management in a wireless network
US8537799B2 (en) 2010-12-31 2013-09-17 Qualcomm Incorporated Coexistence mechanism for collocated WLAN and WWAN communication devices
US8908656B2 (en) 2011-01-10 2014-12-09 Qualcomm Incorporated Support for multi-radio coexistence during connection setup
US8724492B2 (en) * 2011-04-08 2014-05-13 Motorola Mobility Llc Method and apparatus for multi-radio coexistence on adjacent frequency bands
WO2012145404A2 (en) 2011-04-18 2012-10-26 Marvell World Trade Ltd. Reducing power consumption in an wireless communication system
CN103493572B (zh) 2011-04-29 2017-05-10 马维尔国际贸易有限公司 用于ibss网络的多技术共存
TWI486084B (zh) * 2011-06-24 2015-05-21 Accton Technology Corp Wireless connection point and wireless mobile device connection control method
US9326238B2 (en) 2011-09-26 2016-04-26 Broadcom Corporation Smart meter media access control (MAC) for single user, multiple user, multiple access, and/or MIMO wireless communications
US8862060B2 (en) 2012-02-15 2014-10-14 Apple Inc. Methods for mitigating effects of radio-frequency interference
US20130324112A1 (en) 2012-05-30 2013-12-05 Intel Mobile Communications GmbH Radio communication device and method for operating a radio communication device
US9297697B2 (en) * 2012-06-05 2016-03-29 Apple Inc. In-device coexistence between radios
CN102710995B (zh) * 2012-06-11 2014-08-27 耿直 基于无线局域网的对讲及视频数据传输方法和对讲转接器
EP2759173B1 (en) 2012-09-26 2017-04-26 Apple Inc. Transmission power modulation to facilitate in-device coexistence between wireless communication technologies
US9037089B2 (en) * 2012-11-01 2015-05-19 Broadcom Corporation Multi-radio coexistence
US9788363B2 (en) 2012-12-27 2017-10-10 Avago Technologies General Ip (Singapore) Pte. Ltd. LTE and WLAN/bluetooth coexistence
US9144086B2 (en) * 2013-02-20 2015-09-22 Qualcomm Incorporated Systems and methods for wireless coexistence
US9119123B2 (en) 2013-03-13 2015-08-25 Motorola Solutions, Inc. Method and apparatus for performing Wi-Fi offload without interrupting service
US20140341098A1 (en) 2013-05-15 2014-11-20 Qualcomm Incorporated Access point response to ps-poll
US9241370B2 (en) 2013-06-14 2016-01-19 Netgear, Inc. Method and apparatus for implementing coexistence of multiple homogeneous radios and traffic management therein
US9271179B2 (en) * 2013-09-30 2016-02-23 Apple Inc. Customized coexistence management based on user behavior

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084650A (zh) * 2004-12-21 2007-12-05 英特尔公司 使多种无线通信技术具有更好共存能力的装置和方法
WO2007008981A1 (en) * 2005-07-11 2007-01-18 Qualcomm Incorporated Coordinating communication for multiple wireless communication protocols co-located in a single electronic device
CN101253735A (zh) * 2005-07-11 2008-08-27 高通股份有限公司 针对并置于单个电子装置中的多个无线通信协议协调通信
CN101282566A (zh) * 2007-04-03 2008-10-08 中兴通讯股份有限公司 一种干扰抑制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453762A (zh) * 2016-05-31 2017-12-08 联发科技股份有限公司 无线模块及减少无线天线之间的干扰的方法
CN110012452A (zh) * 2018-01-04 2019-07-12 恩智浦有限公司 无线通信装置
CN110012452B (zh) * 2018-01-04 2024-10-18 恩智浦有限公司 无线通信装置
WO2019178712A1 (en) * 2018-03-19 2019-09-26 Qualcomm Incorporated Coexistence based on traffic type prioritization
CN114145067A (zh) * 2019-07-24 2022-03-04 赛普拉斯半导体公司 用于缓解无线网络中的干扰的设备、系统和方法
US11503612B2 (en) 2019-07-24 2022-11-15 Cypress Semiconductor Corporation Microwave oven coexistence with Wi-Fi/BT
CN114145067B (zh) * 2019-07-24 2023-04-28 赛普拉斯半导体公司 用于缓解无线网络中的干扰的设备、系统和方法

Also Published As

Publication number Publication date
TW201513588A (zh) 2015-04-01
US20140369272A1 (en) 2014-12-18
US20140369273A1 (en) 2014-12-18
US20140370826A1 (en) 2014-12-18
US10499217B2 (en) 2019-12-03
TWI554124B (zh) 2016-10-11
US20160135209A1 (en) 2016-05-12
CN110062344A (zh) 2019-07-26
US9877142B2 (en) 2018-01-23
TW201519671A (zh) 2015-05-16
US9241370B2 (en) 2016-01-19
TW201521472A (zh) 2015-06-01
US9265090B2 (en) 2016-02-16
TWI610591B (zh) 2018-01-01
CN104244377A (zh) 2014-12-24
US10356578B2 (en) 2019-07-16
US10200835B2 (en) 2019-02-05
CN109121111A (zh) 2019-01-01
US9838827B2 (en) 2017-12-05
CN104244377B (zh) 2018-04-17
CN108366433A (zh) 2018-08-03
US20190174277A1 (en) 2019-06-06
US20170006409A1 (en) 2017-01-05
US20180109907A1 (en) 2018-04-19
US20140369271A1 (en) 2014-12-18
CN104301899B (zh) 2019-02-19
US9451626B2 (en) 2016-09-20
US20180035244A1 (en) 2018-02-01
US20160157109A1 (en) 2016-06-02
US20160135198A1 (en) 2016-05-12
US9232566B2 (en) 2016-01-05
CN104301943B (zh) 2018-10-09
TWI530204B (zh) 2016-04-11
US9277591B2 (en) 2016-03-01
US9924296B2 (en) 2018-03-20
US10349244B2 (en) 2019-07-09
US20180027365A1 (en) 2018-01-25
TWI558119B (zh) 2016-11-11
US20160037360A1 (en) 2016-02-04
TW201639405A (zh) 2016-11-01
US20180020317A1 (en) 2018-01-18
CN104301943A (zh) 2015-01-21
US9913075B2 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
CN104301899A (zh) 具有多个同构无线电设备的共存的无线传感器基站
CN104581899B (zh) 能够区分功率敏感的无线传感器并向其提供单独处理的无线路由器或住宅网关

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190219

Termination date: 20200616