CN104300375A - 晶硅光伏电站大距离差直流汇流电缆差异化配置方法 - Google Patents
晶硅光伏电站大距离差直流汇流电缆差异化配置方法 Download PDFInfo
- Publication number
- CN104300375A CN104300375A CN201410510212.4A CN201410510212A CN104300375A CN 104300375 A CN104300375 A CN 104300375A CN 201410510212 A CN201410510212 A CN 201410510212A CN 104300375 A CN104300375 A CN 104300375A
- Authority
- CN
- China
- Prior art keywords
- cable
- group
- photovoltaic
- header box
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000004069 differentiation Effects 0.000 title claims abstract description 17
- 229910021419 crystalline silicon Inorganic materials 0.000 title abstract 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000013078 crystal Substances 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 239000010703 silicon Substances 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims description 3
- 238000004088 simulation Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 102220067365 rs143592561 Human genes 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/20—Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
晶硅光伏电站大距离差直流汇流电缆差异化配置方法,提出光伏串列(1)至直流配电柜(5)间线路压降应趋于一致的配置原则,包括:根据光伏串列(1)与汇流箱(3)间距离的不同选用不同截面汇流电缆,距离汇流箱近的组件串使用小截面电缆,距离汇流箱远的光伏串列(1)使用大截面电缆;根据汇流箱(3)与直流配电柜(5)之间距离的不同选用不同截面汇流电缆,距离直流配电柜(5)近的使用小截面电缆,距离直流配电柜(5)远的使用大截面电缆。本发明能够改善最大功率跟踪的效率,降低接至同一个汇流箱或直流配电柜进线端的电缆上的压降差,使光伏串列的输出电压尽可能一致,有利于逆变器进行最大功率跟踪控制,显著提高光伏阵列输出功率。
Description
技术领域
本发明涉及光伏发电系统中汇流电缆接线技术和直流系统技术领域,特别涉及晶硅光伏电站大距离差直流汇流电缆差异化配置方法。
背景技术
光伏电站的发电环节包括光电转换、电缆汇流、逆变器直交变换、交流升压、送出等。每个环节设计都与光伏电站发电量息息相关。光伏电站的经济性也取决于电缆、逆变器等设备部件。光伏电站电缆用量较大,如果未采用合适的电缆,不仅浪费资金,也会降低整个系统的使用寿命以及发电效率。
大型光伏电站直流系统接线方式相对比较简单,但汇流电缆用量非常大(根据工程实际情况统计,每个1MW的光伏方阵各型号直流电缆用量合计在10km左右)。常规设计中,通常晶硅电池光伏电站中的光伏串列至汇流箱、汇流箱至逆变器的汇流电缆分别采用统一规格,即不论电缆长短,分别采用4mm2、50mm2截面的电缆。
采用晶硅电池的光伏电站中,太阳电池组件经串联形成串列、再并联接入汇流箱,然后接入逆变器。中大型光伏电站,占地面积大,设备相距远,以汇流箱至逆变器之间的汇流电缆举例,接至同一逆变器的汇流电缆距离差别大,如采用同一截面电缆将会导致线路压降严重不一致,从而影响逆变器最大功率跟踪,使得部分光伏组件难以运行在最佳工作点。
发明内容
本发明的目的在于克服上述现有背景技术的不足之处,而提供一种晶硅光伏电站大距离差直流汇流电缆差异化配置方法。
本发明的目的是通过以下技术方案实现的,晶硅光伏电站大距离差直流汇流电缆差异化配置方法,其特征在于:提出光伏串列至直流配电柜间线路压降应趋于一致的配置原则,包括:第一,根据光伏串列与汇流箱间距离的不同选用不同截面汇流电缆(即一级电缆),距离汇流箱近的组件串使用小截面电缆,距离汇流箱远的光伏串列使用大截面电缆;第二,根据汇流箱与直流配电柜之间距离的不同选用不同截面汇流电缆(即二级电缆),距离直流配电柜近的使用小截面电缆,距离直流配电柜远的使用大截面电缆。
在上述技术方案中,所述晶硅光伏电站中电缆差异化配置方法包括以下步骤:
(一)定义光伏串列输出功率达到峰值功率时,输出电压为Vmpp,输出电流为Impp,同一个汇流箱输入侧并联的光伏串列数量个为m,同一个直流配电柜输入侧并联的汇流箱数量为n,光伏串列至汇流箱的电缆电阻为R1i(i=1、2、…、m),汇流箱至直流配电柜之间的电缆电阻为R2j(j=1、2、…、n);将光伏串列与同一汇流箱之间的一级电缆分为第11组、第12组、第13组、第14组,其中各组电缆长度的排列为第11组<第12组<第13组<第14组;汇流箱与同一直流配电柜之间的二级电缆分为第21组、第22组、第23组、第24组,其中各组电缆长度的排列为第21组<第22组<第23组<第24组,其中n、m为正整数;
(二)按照上述方式分组后,同一组光伏串列采用相同截面的一级电缆,同一组汇流箱采用相同截面的二级电缆;
(三)定义第21组二级电缆中,阻值最大的电缆电阻为R2y(y∈[1,n]),该电缆编号为2y电缆,2y电缆连接的汇流箱编号为2y汇流箱;在2y汇流箱的输入侧,令第11组一级电缆中,阻值最大的电缆电阻R1x(x∈[1,m]),该电缆编号为1x电缆;
(四)令1x电缆和2y电缆组成的支路上的电压降小于光伏串列(1)出口电压的2%,据此得到回路电压降计算公式:
Impp×R1x+m×Impp×R2y<0.02×Vmpp (Ⅰ)
根据公式(Ⅰ)得到关于电阻R1x和R2y的不等式,采用试凑法选择合适截面的光伏串列至汇流箱电缆和汇流箱至直流配电柜电缆以使不等式(Ⅰ)成立;则可确定该光伏串列至汇流箱电缆和汇流箱至直流配电柜电缆截面;
(五)由第四步确定第21组二级电缆的截面后,固定第21组二级电缆的电缆截面,再利用公式(Ⅰ)计算接入这些汇流箱的第12组、第13组、第14组一级电缆截面;据此将该组汇流箱所接的所有光伏串列至汇流箱电缆的截面全部计算出来,最后根据光伏串列至汇流箱的电缆按电缆截面大小选择二-四组不同截面的电缆;
(六)令第22组二级电缆中的电缆截面比第21组二级电缆截面大,按照第三-五步的过程确定该组汇流箱所接的光伏串列至汇流箱电缆截面,直至该组光伏串列的压降满足公式(Ⅰ);
(七)重复步骤三-六,直至确定所有光伏串列至汇流箱、汇流箱至直流配电柜的汇流电缆截面。
本发明方法能够改善最大功率跟踪的效率,降低接至同一个汇流箱或直流配电柜进线端的电缆上的压降差,使光伏串列的输出电压尽可能一致,有利于逆变器进行最大功率跟踪控制,显著提高光伏阵列输出功率;同时采用差异化电缆配置技术,减少了线路总损耗,提高了输电效率,最终提高光伏方阵的能量利用率。采用大距离差直流汇流电缆差异化配置技术,不同组件最终接至同一台逆变器直流电缆压降趋于一致,提高了逆变器最大功率跟踪效果,减少了附加(发热或环流)损耗,使得各光伏组件工作于最大功率点,提高了光伏组件的输出功率。
附图说明
图1为本发明晶硅光伏电站中的电缆差异化配置方法原理图。
图2为图1中第21组一级电缆及其所接光伏串列接线原理图。
图3为光伏组件MPPT功率曲线图。
图4线路阻抗对输出功率影响模型。
图5-1为图4中光伏串列和逆变器之间采用相同截面的电缆逆变器输出功率曲线图。
图5-2为图4中光伏串列和逆变器之间采用相同截面的电缆光伏组件输出总功率曲线图。
图6-1为图4中采用相同截面的电缆光伏串列输出电压曲线图。
图6-2为图4中采用相同截面的电缆光伏串列输出电流曲线图。
图7-1为图4中采用不同截面电缆对逆变器输出功率的影响。
图7-2为图4中采用不同截面电缆对光伏组件输出总功率的影响。
图8-1为图4中采用不同截面电缆光伏串列输出电压曲线图。
图8-2图4中采用不同截面电缆光伏串列输出电流曲线图。
1.光伏串列,2.光伏串列与汇流箱间电缆(简称一级电缆),3.汇流箱,4.汇流箱与直流配电柜间电缆(简称二级电缆),5.直流配电柜,6.直流电缆,7.逆变器,8.变压器,9.模拟电网,A1.第一光伏串列,A6.第六光伏串列,A10.第十光伏串列。
具体实施方式
下面结合附图详细说明本发明的实施情况,但它们并不构成对本发明的限定,仅作举例而已。同时通过说明本发明的优点将变得更加清楚和容易理解。
参阅附图可知:本发明晶硅光伏电站大距离差直流汇流电缆差异化配置方法,包括晶硅光伏电站中电缆差异化配置方法,其特征在于:提出光伏串列1至直流配电柜5间线路压降应趋于一致的配置原则,包括:第一,根据光伏串列1与汇流箱3间距离的不同选用不同截面汇流电缆(一级电缆),距离汇流箱近的组件串使用小截面电缆,距离汇流箱远的光伏串列1使用大截面电缆;第二,根据汇流箱3与直流配电柜5之间距离的不同选用不同截面汇流电缆(二级电缆),距离直流配电柜5近的使用小截面电缆,距离直流配电柜5远的使用大截面电缆。
所述晶硅光伏电站中电缆差异化配置方法包括以下步骤:
(一)定义光伏串列1输出功率达到峰值功率时,输出电压为Vmpp,输出电流为Impp,同一个汇流箱3输入侧并联的光伏串列1数量个为m,同一个直流配电柜5输入侧并联的汇流箱3数量为n,光伏串列1至汇流箱3的电缆电阻为R1i(i=1、2、…、m),汇流箱3至直流配电柜5之间的电缆电阻为R2j(j=1、2、…、n);将光伏串列1与同一汇流箱3之间的一级电缆2分为第11组、第12组、第13组、第14组,其中各组间电缆长度的排列为第11组<第12组<第13组<第14组;汇流箱3与同一直流配电柜5之间的二级电缆4分为第21组、第22组、第23组、第24组,其中各组间电缆长度的排列为第21组<第22组<第23组<第24组,其中n、m为正整数;
(二)按照上述方式分组后,同一组光伏串列1采用相同截面的一级电缆2,同一组汇流箱3采用相同截面的二级电缆4;
(三)定义第21组二级电缆4中,阻值最大的电缆电阻为R2y(y∈[1,n]),该电缆编号为2y电缆,2y电缆连接的汇流箱3编号为2y汇流箱;在2y汇流箱的输入侧,令第11组一级电缆2中,阻值最大的电缆电阻R1x(x∈[1,m]),该电缆编号为1x电缆;
(四)令1x电缆和2y电缆组成的支路上的电压降小于光伏串列(1)出口电压的2%,据此得到回路电压降计算公式:
Impp×R1x+m×Impp×R2y<0.02×Vmpp (Ⅰ)
根据公式(Ⅰ)得到关于电阻R1x和R2y的不等式,采用试凑法选择合适截面的光伏串列1至汇流箱3电缆和汇流箱3至直流配电柜5电缆以使不等式(Ⅰ)成立;则可确定该光伏串列1至汇流箱3电缆和汇流箱3至直流配电柜5电缆截面;
(五)由第四步确定第21组二级电缆4的截面后,固定第21组二级电缆4的电缆截面,再利用公式(Ⅰ)计算接入这些汇流箱3的第12组、第13组、第14组一级电缆2截面;据此将该组汇流箱3所接的所有光伏串列1至汇流箱3电缆的截面全部计算出来,最后将光伏串列1至汇流箱3的电缆按电缆截面大小选择二-四组不同截面的电缆;
(六)令第22组二级电缆4中的电缆截面比第21组二级电缆4截面增大,按照第三-五步的过程确定该组汇流箱3所接的光伏串列1至汇流箱3电缆截面,直至该组光伏串列的压降满足公式(Ⅰ);
(七)重复步骤三-六,直至确定所有光伏串列1至汇流箱3、汇流箱3至直流配电柜5的汇流电缆截面。
参阅附图1、图2可知:本发明光伏电站的布置机构,包括多组光伏串列1,光伏串列1通过一级电缆2与汇流箱3连接,汇流箱3的另一端通过二级电缆4与直流配电柜5连接,直流配电柜5的另一端通过直流电缆6与逆变器7连接。若干组光伏串列1经由汇流电缆2输入至一个汇流箱3,若干个汇流箱3经由汇流电缆4输入至一台直流配电柜5(如图1、图2所示)。
因一级电缆2和二级电缆4的主要电气作用体现在其阻值上,且两种汇流电缆选型的原理相同,因此在仿真中仅用一个线路电阻代表这两组汇流电缆的等效电阻。
光伏串列1如果不能运行在最大功率跟踪点上,将会浪费光伏串列1的输出能力,降低光伏电站的发电量。因为最大功率跟踪的核心控制思想是通过对直流电压的扰动,判断直流功率的变化,从而搜索到最大功率点。电压只有达到MPPT的范围内,才能够达到最大效率,MPPT功率曲线见图3。
由于接至一台逆变器的光伏串列有若干组,而逆变器7的MPPT控制决定了只能有一个工作点,因此光伏串列1至逆变器7的电缆长度不同决定了线路压降不同,这必然导致部分光伏串列1未工作在最大功率跟踪点上。
以光伏发电单元的模型(如图4所示)进行分析,其中逆变器7采用MPPT控制方式,光伏串列共10组,每组峰值53.46kWp,共5534.6kWp。光伏串列1距离逆变器7分别为5m、15m、25m、…、95m。线路电阻用Ri(i=1、2、…、10)表示,其中,第一光伏串列A1距离逆变器7最近,对应R1最小,第十光伏串列A10距离逆变器7最远,对应R10最大。参考现场环境分析,光伏串列1距离逆变器7的距离从5m至95m左右。
1.光伏串列和逆变器之间采用相同截面的电缆
假设10个光伏串列均采用截面为4mm2的电缆连接至逆变器,电阻值分布从0.05Ω至1.018Ω均有。通过逆变器向电网输送功率P1和光伏串列总输出功率P2仿真波形错误!未找到引用源。所示,其中P1约为478kW,P2约为513kW。
通过仿真可以看到,线路电阻越大,对应的光伏串列输出功率越小,说明线路电阻的确影响了光伏串列的输出性能。选择线路电阻最小(R1=0.05Ω)的第一光伏串列A1和线路电阻最大(R10=1.018Ω)的第十光伏串列A10,测量其输出电压和输出电流,得到仿真波形图(如图5-1、图5-2所示)。
从图6-1、图6-2所示可以看到,第一光伏串列A1的输出电压690V小于第十光伏串列A10的输出电压750V,但输出电流76A大于第十光伏串列A10的65A,最终第一光伏串列A1的输出功率大于第十光伏串列A10最大输出电压差达到了60V。
2.光伏串列和逆变器之间采用不同截面电缆
采用大截面的电缆可以有效降低线路电阻,从而减小线路上的压降,使光伏串列尽可能工作在最大功率输出点附近。但是,如果所有线路均采用大截面电缆,光伏电站的成本将大幅度增加。因此,采用“按距离选电缆截面”的设计思路,使不同距离的光伏串列所接电缆的线路电阻差值尽可能小,从而确保光伏串列尽可能工作在最大功率输出点附近。
对于本模型图4中的第十光伏串列A10,离逆变器7最近的4组光伏串列采用4mm2截面的电缆,中间2组采用6mm2截面的电缆,最远的4组采用10mm2截面的电缆,则线路电阻分布在0.05Ω至0.37Ω之间,最大电阻和最小电阻的差小于全采用4mm2截面的布线方案。通过逆变器向电网输送功率P1和光伏组件总输出功率P2仿真波形所示,其中P1约为487kW,P2约为520kW。
对比图4和图7-1、图7-2可以看到,相同规模的光伏阵列和逆变器,均采用4mm2截面的线缆时,其逆变器输出功率478kW,仅为采用不同截面电缆时逆变器输出功率487kW的98.2%。可见均采用4mm2截面电缆的常规方法比采用不同截面电缆的方法输出功率损失2%左右。
选择线路电阻最小(R1=0.05Ω)的第一光伏串列A1和线路电阻最大(R6=0.3729Ω)的第六光伏串列A6,测量其输出电压和输出电流,得到仿真波形(如图8-1、图8-2所示)。
从图8-1、8-2所示可以看到,第一光伏串列A1的输出电压692V小于第六光伏串列A6的输出电压707V,但输出电流77A大于第六光伏串列A6的70A。两者之间的电压差小于采用全4mm2布线方案时电压差,也反映出10组光伏串列基本上都能工作在最大功率输出点附近。最大输出电压差只有15V,远小于采用相同截面电缆的情况。
综合以上分析,当有多组光伏串列1并联至一台逆变器7时,不论是一级电缆2还是二级电缆4选型,都要考虑光伏串列至逆变器的距离。对于距离较远的光伏组件,需要采用截面积较大的电缆。
其它未详细说明的部分均为现有技术。
Claims (2)
1.晶硅光伏电站大距离差直流汇流电缆差异化配置方法,包括晶硅光伏电站中电缆差异化配置方法,其特征在于:提出光伏串列(1)至直流配电柜(5)间线路压降应趋于一致的配置原则,包括:第一,根据光伏串列(1)与汇流箱(3)间距离的不同选用不同截面汇流电缆,距离汇流箱近的组件串使用小截面电缆,距离汇流箱远的光伏串列(1)使用大截面电缆;第二,根据汇流箱(3)与直流配电柜(5)之间距离的不同选用不同截面汇流电缆,距离直流配电柜(5)近的使用小截面电缆,距离直流配电柜(5)远的使用大截面电缆。
2.根据权利要求1所述的晶硅光伏电站大距离差直流汇流电缆差异化配置方法,其特征在于所述晶硅光伏电站中电缆差异化配置方法包括以下步骤:
(一)定义光伏串列(1)输出功率达到峰值功率时,输出电压为Vmpp,输出电流为Impp,同一个汇流箱(3)输入侧并联的光伏串列(1)数量个为m,同一个直流配电柜(5)输入侧并联的汇流箱(3)数量为n,光伏串列(1)至汇流箱(3)的电缆电阻为R1i(i=1、2、…、m),汇流箱(3)至直流配电柜(5)之间的电缆电阻为R2j(j=1、2、…、n);将光伏串列(1)与同一汇流箱(3)之间的一级电缆(2)分为第11组、第12组、第13组、第14组,其中各组电缆长度的排列为第11组<第12组<第13组<第14组;汇流箱(3)与同一直流配电柜(5)之间的二级电缆(4)分为第21组、第22组、第23组、第24组,其中各组电缆长度的排列为第21组<第22组<第23组<第24组,其中n、m为正整数;
(二)按照上述方式分组后,同一组光伏串列(1)采用相同截面的一级电缆(2),同一组汇流箱(3)采用相同截面的二级电缆(4);
(三)定义第21组二级电缆(4)中,阻值最大的电缆电阻为R2y(y∈[1,n]),该电缆编号为2y电缆,2y电缆连接的汇流箱(3)编号为2y汇流箱;在2y汇流箱的输入侧,令第11组一级电缆(2)中,阻值最大的电缆电阻R1x(x∈[1,m]),该电缆编号为1x电缆;
(四)令1x电缆和2y电缆组成的支路上的电压降小于光伏串列(1)出口电压的2%,据此得到回路电压降计算公式:
Impp×R1x+m×Impp×R2y<0.02×Vmpp (Ⅰ)
根据公式(Ⅰ)得到关于电阻R1x和R2y的不等式,采用试凑法选择合适截面的光伏串列(1)至汇流箱(3)电缆和汇流箱(3)至直流配电柜(5)电缆以使不等式(Ⅰ)成立;则可确定该光伏串列(1)至汇流箱(3)电缆和汇流箱(3)至直流配电柜(5)电缆截面;
(五)由第四步确定第21组二级电缆(4)的截面后,固定第21组二级电缆(4)的电缆截面,再利用公式(Ⅰ)计算接入这些汇流箱(3)的第12组、第13组、第14组一级电缆(2)截面;据此将该组汇流箱(3)所接的所有光伏串列(1)至汇流箱(3)电缆的截面全部计算出来,最后根据光伏串列(1)至汇流箱(3)的电缆按电缆截面大小选择二-四组不同截面的电缆;
(六)令第22组二级电缆(4)中的电缆截面比第21组二级电缆(4)截面大,按照第三-五步的过程确定该组汇流箱(3)所接的光伏串列(1)至汇流箱(3)电缆截面,直至该组光伏串列的压降满足公式(Ⅰ);
(七)重复步骤三-六,直至确定所有光伏串列(1)至汇流箱(3)、汇流箱(3)至直流配电柜(5)的汇流电缆截面。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410510212.4A CN104300375B (zh) | 2014-09-28 | 2014-09-28 | 晶硅光伏电站大距离差直流汇流电缆差异化配置方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410510212.4A CN104300375B (zh) | 2014-09-28 | 2014-09-28 | 晶硅光伏电站大距离差直流汇流电缆差异化配置方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104300375A true CN104300375A (zh) | 2015-01-21 |
CN104300375B CN104300375B (zh) | 2015-09-30 |
Family
ID=52320007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410510212.4A Active CN104300375B (zh) | 2014-09-28 | 2014-09-28 | 晶硅光伏电站大距离差直流汇流电缆差异化配置方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104300375B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870831A (zh) * | 2016-05-17 | 2016-08-17 | 利亚德光电股份有限公司 | 线缆选择方法 |
CN108988777A (zh) * | 2018-08-24 | 2018-12-11 | 天津六0九电缆有限公司 | 一种光伏电站用背靠背组件及制作方法 |
CN110266055A (zh) * | 2019-07-31 | 2019-09-20 | 合肥阳光新能源科技有限公司 | 一种光伏电站布置方法、装置及光伏电站 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5587890A (en) * | 1994-08-08 | 1996-12-24 | Cooper Industries, Inc. | Vehicle electric power distribution system |
CN101800401A (zh) * | 2009-02-10 | 2010-08-11 | 张兵 | 一种低压系统供配电方法 |
CN202135081U (zh) * | 2011-06-20 | 2012-02-01 | 大连艾珂光电技术有限公司 | 一种光伏电站 |
CN202712875U (zh) * | 2012-06-21 | 2013-01-30 | 上海市电力公司 | 一种分布式光伏并网发电系统 |
-
2014
- 2014-09-28 CN CN201410510212.4A patent/CN104300375B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5587890A (en) * | 1994-08-08 | 1996-12-24 | Cooper Industries, Inc. | Vehicle electric power distribution system |
CN101800401A (zh) * | 2009-02-10 | 2010-08-11 | 张兵 | 一种低压系统供配电方法 |
CN202135081U (zh) * | 2011-06-20 | 2012-02-01 | 大连艾珂光电技术有限公司 | 一种光伏电站 |
CN202712875U (zh) * | 2012-06-21 | 2013-01-30 | 上海市电力公司 | 一种分布式光伏并网发电系统 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870831A (zh) * | 2016-05-17 | 2016-08-17 | 利亚德光电股份有限公司 | 线缆选择方法 |
CN105870831B (zh) * | 2016-05-17 | 2018-06-12 | 利亚德光电股份有限公司 | 线缆选择方法 |
CN108988777A (zh) * | 2018-08-24 | 2018-12-11 | 天津六0九电缆有限公司 | 一种光伏电站用背靠背组件及制作方法 |
CN108988777B (zh) * | 2018-08-24 | 2024-03-15 | 天津六0九电缆有限公司 | 一种光伏电站用背靠背组件及制作方法 |
CN110266055A (zh) * | 2019-07-31 | 2019-09-20 | 合肥阳光新能源科技有限公司 | 一种光伏电站布置方法、装置及光伏电站 |
CN110266055B (zh) * | 2019-07-31 | 2021-09-14 | 合肥阳光新能源科技有限公司 | 一种光伏电站布置方法、装置及光伏电站 |
Also Published As
Publication number | Publication date |
---|---|
CN104300375B (zh) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103166239B (zh) | 集中-分布混合式新能源发电系统及最大功率点跟踪控制方法 | |
Yang | A review of supercapacitor-based energy storage systems for microgrid applications | |
Shah et al. | Damping performance analysis of battery energy storage system, ultracapacitor and shunt capacitor with large-scale photovoltaic plants | |
CN102611355B (zh) | 一种光伏阵列汇流箱 | |
CN105490298A (zh) | 一种包含电压动态补偿器的光伏高压直流串联并网系统 | |
CN206060577U (zh) | 一种多路mppt微型逆变器 | |
CN102044885A (zh) | 用于减小太阳能收集器系统损耗的系统和方法 | |
CN204578458U (zh) | 一种汇流箱电路结构及光伏发电系统 | |
CN204103503U (zh) | 一种基于中高压直流接入的光伏并网发电系统 | |
CN203800680U (zh) | 一种支持多组电池接入的大功率双向变流装置 | |
CN104300375B (zh) | 晶硅光伏电站大距离差直流汇流电缆差异化配置方法 | |
Magadum et al. | Optimal placement of unified power flow controller (upfc) using fuzzy logic | |
CN106845848A (zh) | 多馈入直流输电系统换流站间交互影响的评估方法及装置 | |
CN104393499B (zh) | 薄膜光伏电站大距离差直流汇流电缆差异化配置方法 | |
CN103558478B (zh) | 一种微电网变换器硬件在回路系统测试平台 | |
CN106291207A (zh) | 一种链式svg模块测试系统、平台及方法 | |
CN205304269U (zh) | 一种光伏并网发电的直流升压系统 | |
CN115864355B (zh) | 一种分布式光伏直流接入铝电解槽直流母线的供电装置 | |
CN108418209A (zh) | 一种基于逆解耦的微电网自抗扰控制方法 | |
EP3319195A1 (en) | Photovoltaic inverter system | |
Rekha | Novel MLI-based DVR and DSTATCOM with ANFIS control for enhanced power quality improvement | |
CN105140951A (zh) | 多种新能源电能汇集与微电网协调运行系统及方法 | |
CN106100571A (zh) | 一种组串式光伏逆变器交流并联接线结构及光伏并网单元 | |
CN207218630U (zh) | 一种应用于光伏组的并列直线式串接线结构 | |
Cornea et al. | Dual input hybrid buck LC converter for a mixed wind and PV array generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |