CN104291618A - 密封槽封边和封口的真空玻璃及其制备方法 - Google Patents

密封槽封边和封口的真空玻璃及其制备方法 Download PDF

Info

Publication number
CN104291618A
CN104291618A CN201310298591.0A CN201310298591A CN104291618A CN 104291618 A CN104291618 A CN 104291618A CN 201310298591 A CN201310298591 A CN 201310298591A CN 104291618 A CN104291618 A CN 104291618A
Authority
CN
China
Prior art keywords
glass
vacuum
bleeding point
sealing
periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201310298591.0A
Other languages
English (en)
Inventor
戴长虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201310298591.0A priority Critical patent/CN104291618A/zh
Publication of CN104291618A publication Critical patent/CN104291618A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Abstract

一种密封槽封边和封口的真空玻璃,其包括上玻璃和下玻璃,所述上玻璃和所述下玻璃是凸面玻璃或平面玻璃,所述上玻璃上有抽气口,所述上玻璃和所述抽气口的周边有密封条、所述下玻璃的周边和所述抽气口的对应处有密封槽,所述上玻璃和所述下玻璃的周边通过低温玻璃焊料在常压下封边炉内焊接在一起,所述抽气口利用金属焊料在真空炉内自动封闭,所述上玻璃和所述下玻璃之间形成一个封闭的真空层,所述真空层内没有或有呈点阵排列的支撑物。本发明的这种真空玻璃及其制作方法工艺简单,所制备的真空玻璃和钢化真空玻璃能克服现有技术中的不足,可有效保证真空玻璃的气密性,并能增加其强度以及隔热和隔音性能。

Description

密封槽封边和封口的真空玻璃及其制备方法
技术领域
本发明涉及玻璃深加工技术领域,尤其涉及一种密封槽封边和封口的真空玻璃及其制作方法。
 
背景技术
真空玻璃是一种新型的节能玻璃,真空玻璃不但可以解决现有大量使用的中空玻璃的“呼吸”问题,而且具有隔热隔声性能好、抗风压强度高、厚度小和使用寿命长等优点。真空玻璃一般由两到三片玻璃构成,相邻的两片玻璃之间形成空腔,在玻璃的周边设置有封边结构,空腔被抽成真空后形成真空层。真空玻璃根据形成真空层的方式不同,可以分为两种,一种是无抽气口的真空玻璃,这种真空玻璃的封边是在真空炉内进行的,随着封边的完成,相邻的两片玻璃之间所封闭的空腔自然形成真空层;另一种是有抽气口的真空玻璃,这种真空玻璃的封边是在常压下高温炉内进行的,封边完成后再通过预制的抽气口对玻璃之间所封闭的空腔抽真空,最后在抽气结束后封闭抽气口,完成真空玻璃的制作。
本发明申请人在2012年10月申请的真空玻璃的专利中公开了一系列无抽气口的真空玻璃及其制作方法,但在利用低温玻璃焊料封边时,由于低温玻璃焊料是由多种氧化物制成,在高温、真空下,焊料吸附的空气和水分、焊料中的易挥发物质、焊料在生产过程中溶入的气体以及焊料中部分氧化物的分解等都会造成焊料中产生大量的气泡,大大弱化了焊料的各项性能尤其是气密性,致使该种方式的可行性大受影响。现有批量化生产的真空玻璃都是有抽气口的真空玻璃,但存在着制作工艺复杂、抽气温度低(抽气不彻底)、单片抽真空、成本高、产能低、不能制作钢化真空玻璃等缺点。
发明内容
本发明所要解决的技术问题是在于针对现有抽气口真空玻璃存在的缺陷,提供一种密封槽封边和封口的真空玻璃及其制作方法,这种真空玻璃的制作方法工艺简单,所制备的真空玻璃和钢化真空玻璃能克服现有技术中的不足,可有效保证真空玻璃的气密性和透明度,并能增加其强度以及隔热、隔音性能。
为了解决上述技术问题,本发明提供了一种密封槽封边和封口的真空玻璃,包括上玻璃和下玻璃,所述上玻璃和所述下玻璃是凸面玻璃或平面玻璃,所述上玻璃上有抽气口,所述上玻璃和所述抽气口的周边有密封条、所述下玻璃的周边和所述抽气口的对应处有密封槽,所述上玻璃和所述下玻璃的周边通过低温玻璃焊料在常压下封边炉内焊接在一起,所述抽气口利用金属焊料在真空炉内自动封闭,所述上玻璃和所述下玻璃之间形成一个封闭的真空层,所述真空层内没有或有呈点阵排列的支撑物。
为了解决上述技术问题,在所述上玻璃和所述下玻璃是凸面玻璃时,本发明提供了凸面真空玻璃或凸面钢化真空玻璃的制备方法,其包括:
第一步,根据所需要制作的真空玻璃的形状和大小切割所需尺寸的上下两块平面玻璃,在上玻璃的边角处打孔制作抽气口,在下玻璃的周边焊接处及抽气口的对应处开设密封槽,并对上下两块玻璃进行磨边、倒角、清洗和干燥处理;
第二步,在上玻璃的周边及抽气口的周边制备密封条,密封条能够插入对应的密封槽内,将处理后的上下玻璃装入热弯模具、放在热弯炉或钢化炉中,升温至玻璃软化的温度550~750℃,依靠玻璃自身的重力或施加的外力使玻璃向下形成凸面,并随炉降至室温,或直接进行钢化处理;
第三步,将下玻璃周边的密封槽内均匀涂布低温玻璃焊料,上、下玻璃合片后送入封边炉中;
第四步,对所述封边炉进行加热升温操作,升温至低温玻璃焊料的熔融温度以上,达到封边温度,密封条在玻璃的重力作用下嵌入密封槽中;停止加热、随炉降温,低温玻璃焊料将两块玻璃气密性地焊接在一起,打开封边炉的炉门得到中空玻璃;
第五步,将金属焊料装入中空玻璃的抽气口中,并送入真空炉内;对所述真空炉边抽真空、边加热,抽真空至0.1Pa以下、升温至金属焊料的熔化温度以上,金属焊料熔化成液体,液体留存在下玻璃的密封槽内,上玻璃的密封条也淹没在液体中,液体将抽气口自行密封;停止加热、随炉降温,金属焊料凝固后对抽气口实现气密性密封,打开真空炉,取出真空玻璃;
第六步,在真空玻璃的抽气口内放入密封胶,在密封胶的上面粘贴产品商标或金属装饰片。
为了解决上述技术问题,在所述上玻璃和所述下玻璃是平面玻璃时,本发明提供了平面真空玻璃或平面钢化真空玻璃的制备方法,其包括:
第一步,根据所需要制作的真空玻璃的形状和大小切割所需尺寸的上下两块平面玻璃,在上玻璃的边角处打孔制作抽气口,在下玻璃的周边焊接处及抽气口的对应处开设密封槽,并对上下两块玻璃进行磨边、倒角、清洗和干燥处理;
第二步,在上玻璃的周边及抽气口的周边制备密封条,密封条能够插于对应的密封槽内,并在至少一块玻璃上制作支撑物,随后将上玻璃、下玻璃送入高温炉或钢化炉中进行高温或钢化处理;
第三步,将下玻璃周边的密封槽内均匀涂布低温玻璃焊料,上、下玻璃合片后送入封边炉中;
第四步,对所述封边炉进行加热升温操作,升温至低温玻璃焊料的熔融温度以上,达到封边温度,密封条在玻璃的重力作用下嵌入密封槽中;停止加热、随炉降温,低温玻璃焊料将两块玻璃气密性地焊接在一起,打开封边炉的炉门得到中空玻璃;
第五步,将金属焊料装入中空玻璃的抽气口中,并送入真空炉内;对所述真空炉边抽真空、边加热,抽真空至0.1Pa以下、升温至金属焊料的熔化温度以上,金属焊料熔化成液体,液体留存在下玻璃的密封槽内,上玻璃的密封条也淹没在液体中,液体将抽气口自行密封;停止加热、随炉降温,金属焊料凝固后对抽气口实现气密性密封,打开真空炉,取出真空玻璃;
第六步,在真空玻璃的抽气口内放入密封胶,在密封胶的上面粘贴产品商标或金属装饰片。
其中,所述凸面玻璃的凸面朝向外侧,凸面弓高不小于0.1mm,优选为1~200mm,进一步优选为3~10mm。
其中,所述上玻璃的周边或抽气口的周边至少含有一个密封条。
其中,所述下玻璃的周边或抽气口的对应处至少含有一个密封槽。
其中,所述上玻璃的密封条与所述下玻璃的密封槽相对应,所述上玻璃的密封条能够插入所述下玻璃的密封槽中。
其中,所述真空玻璃还可以包括一块中间玻璃,所述中间玻璃夹在所述上玻璃和所述下玻璃之间,所述上玻璃和所述中间玻璃上有抽气口,所述抽气口利用金属焊料在真空炉内自动封闭,所述上玻璃和所述下玻璃分别与所述中间玻璃形成两个封闭的真空层。
其中,所述上玻璃、所述中间玻璃和所述下玻璃是普通玻璃、或是钢化玻璃、或是半钢化玻璃。
其中,所述上玻璃、所述中间玻璃和所述下玻璃是普通玻璃、或是镀膜玻璃、或是Low-E玻璃。
其中,所述密封条采用印制、打印或机械喷涂低温玻璃粉或玻璃油墨或金属浆料等方式制备。
其中,所述密封槽由机械加工或激光加工而成,优选机械加工方式,如机械研磨、机械切削等。
其中,所述下玻璃抽气口对应处的密封槽的内表面可以涂刷金属浆料,金属浆料有助于金属焊料与玻璃的紧密结合。
其中,所述金属焊料包括低温金属焊料和合金焊料,所述材料均为现有的市售物品。
进一步,所述金属焊料的熔点低于低温玻璃焊料的熔点,金属焊料熔化时封边的低温玻璃焊料保持不变。
进一步,所述金属焊料的形状为粉状、条状、片状或块状,环状、管状等。
其中,所述凸面真空玻璃的真空层内没有或有少量的支撑物,凸面真空玻璃主要依靠凸面形状来抵抗大气压力。
其中,所述支撑物由金属、陶瓷、玻璃或高分子聚合物、复合材料制成,优选采用印制、喷涂玻璃油墨或聚合物制备。
其中,所述封边炉可以一次加热一至数块真空玻璃。
其中,所述封边炉是常规加热炉或微波加热炉。
进一步,所述封边炉在加热钢化玻璃时具有基础加热系统和局部加热系统,基础加热系统可采用热风加热或电阻加热的方式如电热丝、电热管、电热板等,局部加热系统可以采用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式;
进一步,所述基础加热,是将炉膛或玻璃整体加热至一较低的温度,如300~350℃,不会导致钢化玻璃明显退火;
进一步,所述局部加热,是将焊料或玻璃周边加热至一较高的温度,如400~450℃,防止钢化玻璃整体明显退火;
其中,所述抽真空和抽气口密封,可以在真空炉内批量进行,也可以单片实施;可以整体加热玻璃,也可以局部加热抽气口。
其中,所述真空炉加热,可以采用常规加热、红外加热,也可以采用感应加热、激光加热,还可以采用微波加热以及其他适当的加热装置或加热手段。
进一步,所述加热,可以加热玻璃整体,也可以局部加热抽气口。
其中,所述密封胶优选有机密封胶,进一步优选为热熔胶、热固胶或双组份密封胶。
本发明的有益效果:
本发明的密封槽封边和封口的真空玻璃其上玻璃的周边及抽气口的周边有密封条、下玻璃的周边及抽气口的对应处有密封槽,使得真空玻璃的封边和封口更简便、更可靠,密封条与密封槽的嵌合保证了真空玻璃即使在玻璃变形的情况下的密封效果,密封条与上玻璃之间具有比低温焊接玻璃更高的结合强度,密封条与密封槽的嵌合增大了上下玻璃之间的密封面积和气密层厚度,密封条与密封槽的嵌合实现了抽气口的自动密封和批量化密封;常压下低温玻璃焊料封边和真空下金属焊料封口解决了焊料的气密可靠性问题,增加了上、下玻璃之间真空层的密封度,提高了真空玻璃的寿命,极大地提高了真空玻璃的生产率和合格率、降低了真空玻璃的生产成本。
 
附图说明
图1为本发明的有支撑物的凸面真空玻璃结构示意图;
图2为本发明的凸面真空玻璃结构示意图;
图3为本发明的平面真空玻璃结构示意图;
图4为本发明的双真空层的凸面真空玻璃结构示意图;
图5为本发明的双真空层的平面真空玻璃结构示意图。
图中:1.上玻璃,2.下玻璃,3.抽气口,4.低温玻璃焊料,5.密封条,6.密封槽,7.金属焊料,8.支撑物,9.中间玻璃,10.密封胶,11.产品商标。
 
具体实施方式
以下采用实施例和附图来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。
实施例1:参见图1,真空玻璃由上玻璃1和下玻璃2组成,两块玻璃的周边通过低温玻璃焊料4焊接在一起,中间为真空层。其制作方法如下:首先根据所制作真空玻璃的形状和大小切割所需尺寸的两块平面玻璃,在上玻璃1的边角处钻一通孔为抽气口3,在下玻璃2的周边及抽气口3的对应处开设密封槽6,并进行磨边、倒角和清洗、干燥,在上玻璃1的周边焊接处及抽气口3的周边利用机械喷涂技术制备密封条5,并用点胶机在上下玻璃制备支撑物8;其次将上下两块玻璃装入模具、放在热弯炉中,升温至玻璃软化的温度550-750℃,依靠玻璃自身的重力使玻璃向下形成凸面,随炉降至室温,并用平面研磨方法使支撑物8处于同一水平高度;再次将下玻璃2周边的密封槽6中均匀涂布低温玻璃焊料4,并将两块玻璃上下对齐叠放在一起,送入封边炉中,升温至低温玻璃焊料4的熔融温度450℃以上,停止加热、随炉降温,低温玻璃焊料4将两块玻璃气密性地焊接在一起;最后在抽气口3中装入金属锌焊料7,送入真空炉中,进行抽真空和加热操作,抽真空至0.1Pa以下、升温至金属锌焊料7的熔融温度420℃以上,金属锌焊料7熔化成液体留存在密封槽中6,密封条5也淹没在液体中,液体将抽气口自行密封;停止加热、随炉降温,金属锌焊料7凝结成固体,对抽气口实现气密性密封,打开真空炉,取出真空玻璃。趁热在抽气口内放入密封胶10如丁基胶,密封胶10的上面覆盖产品商标11,商标11与上玻璃1的上表面齐平。
实施例2:参见图2,真空玻璃由上玻璃1和下玻璃2组成,两块玻璃为钢化玻璃或半钢化玻璃,其中一块还是低辐射玻璃,其制作方法如下:首先根据所制作真空玻璃的形状和大小切割所需尺寸的一块平面玻璃和一块低辐射玻璃,选择低辐射玻璃为下玻璃2,在上玻璃1的边角处钻一通孔为抽气口3,在下玻璃2的周边及抽气口3的对应处开设密封槽6,并进行磨边、倒角和清洗、干燥,在上玻璃1的周边焊接处及抽气口3的周边利用丝网印刷技术印制密封条;其次将两块玻璃分别装入两个成型模具内,该成型模具具有上模具和下模具(即阳模和阴模),玻璃夹在上模具和下模具之间,并能施压使上、下模具闭合,将装有玻璃的成型模具升温至玻璃软化的温度650-700℃,依靠施加于成型模具上的压力使成型模具中的玻璃形成凸面,随即移去上模具并进行风冷钢化,得到钢化或半钢化玻璃;再次将下玻璃2周边的密封槽6内均匀涂布低温玻璃焊料4,并将两块玻璃上下对齐叠放在一起,送入封边炉中,封边炉具有基础加热系统和局部加热系统,先利用基础加热系统如电加热管加热,使基础温度升至300~350℃,再利用局部加热系统如远红外线加热器将低温玻璃焊料加热至熔融温度430~450℃,熔融的低温玻璃焊料4将两块玻璃粘接在一起;停止加热、随炉降温,低温玻璃焊料4将两块玻璃气密性地焊接在一起;最后进行抽气口3的密封,同实施例1,只是金属焊料7改为金属锡。
实施例3:参见图3,真空玻璃由上玻璃1和下玻璃2组成,两块玻璃为钢化玻璃或半钢化玻璃,其中一块还是低辐射玻璃,其制作方法如下:首先根据所制作真空玻璃的形状和大小切割所需尺寸的一块平面玻璃和一块低辐射玻璃,选择低辐射玻璃为下玻璃2,在上玻璃1的边角处钻一通孔为抽气口3,在下玻璃2的周边及抽气口3的对应处开设密封槽6,并进行磨边、倒角和清洗、干燥,在上玻璃1的周边焊接处及抽气口3的周边利用丝网印刷技术印制密封条并同时印制支撑物8;其次将两块玻璃送入钢化炉中进行风冷钢化,得到钢化或半钢化玻璃;再次将下玻璃2周边的密封槽6内均匀涂满低温玻璃焊料4,并将两块玻璃上下对齐叠放在一起,送入封边炉中;封边炉为微波加热炉,并具有循环热风加热系统,先启动微波加热炉的循环热风加热系统,使微波加热炉的基础温度升至300℃后,再启动微波加热系统将密封槽6内的低温玻璃焊料4加热至熔融温度420℃以上,上玻璃1的密封条5在重力的作用下嵌入下玻璃2的密封槽6内,熔融的低温玻璃焊料4将两块玻璃粘接在一起,停止加热、随炉降温,低温玻璃焊料4将两块玻璃气密性地焊接在一起;最后进行抽气口3的密封,同实施例1,只是金属焊料7改为锌合金。
实施例4:参见图4,真空玻璃由上凸面玻璃1、中间玻璃9和下凸面玻璃2组成。其制作方法如下:首先根据所需要制作的真空玻璃的形状和大小切割所需尺寸的三块平面玻璃,在上玻璃1和中间玻璃9上分别钻一通孔形成抽气口3,其中上玻璃1上的通孔大于中间玻璃9上的通孔,在中间玻璃9和下玻璃2的上表面周边及抽气口3的周边和对应处开设密封槽6,并对三块玻璃进行磨边、倒角,清洗、干燥处理;其次在上玻璃1和中间玻璃9的下表面周边及抽气口3的周边和对应处喷涂制备密封条5,将中间玻璃9直接送入钢化炉中进行钢化处理,将上下两块玻璃装入模具中,升温至玻璃软化的温度550~750℃,依靠玻璃自身的重力或施加的外力使玻璃向下形成凸面,并随即进行钢化处理;再次将中间玻璃9和下玻璃2的周边密封槽6内装满低温玻璃焊料4,并将所述三块玻璃上下对齐叠放在一起,保证密封条5与密封槽6相对应,送入封边炉中;最后进行封边和抽气口3的密封,同实施例2,只是金属焊料7改为镁合金。
实施例5:参见图5,真空玻璃由上玻璃1、中间玻璃9和下玻璃2组成,三块玻璃中至少上、下玻璃为钢化玻璃或半钢化玻璃,其中下玻璃2或\和中间玻璃9还是低辐射玻璃,其制作方法如下:首先根据所需要制作的真空玻璃的形状和大小切割所需尺寸的三块平面玻璃,在上玻璃1和中间玻璃9上分别钻一通孔形成抽气口3,其中上玻璃1上的通孔大于中间玻璃9上的通孔,在中间玻璃9和下玻璃2的上表面周边及抽气口3的周边和对应处开设密封槽6,并对三块玻璃进行磨边、倒角,清洗、干燥处理;其次在上玻璃1和中间玻璃9的下表面周边及抽气口3的周边和对应处打印制备密封条5,在上玻璃1的下表面和下玻璃2的上表面上打印制备支撑物8,对中间玻璃9的密封条5进行高温烧结,将两块上、下玻璃进行钢化处理;再次用机械加工的方法分别将上、下玻璃上的支撑物8加工至同一水平高度,将中间玻璃9和下玻璃2周边的密封槽内均匀涂满低温玻璃焊料,并将三块玻璃上下对齐叠放在一起,送入封边炉中;最后进行封边和抽气口3的密封,同实施例3,只是金属焊料7改为锡合金。
所有上述的首要实施这一知识产权,并没有设定限制其他形式的实施这种新产品和/或新方法。本领域技术人员基于上述内容的修改,可实现类似的执行情况。但是,所有修改或改造基于本发明新产品属于保留的权利。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

1.一种密封槽封边和封口的真空玻璃,其特征在于:包括上玻璃和下玻璃,所述上玻璃和所述下玻璃是凸面玻璃或平面玻璃,所述上玻璃和所述下玻璃是普通玻璃或是钢化玻璃或是半钢化玻璃,所述上玻璃上有抽气口,所述上玻璃和所述抽气口的周边有密封条、所述下玻璃的周边和所述抽气口的对应处有密封槽,所述上玻璃和所述下玻璃的周边通过低温玻璃焊料在常压下封边炉内焊接在一起,所述抽气口利用金属焊料在真空炉内自动封闭,所述金属焊料包括低温金属焊料和合金焊料,所述上玻璃和所述下玻璃之间形成一个封闭的真空层,所述真空层内没有或有呈点阵排列的支撑物。
2.根据权利要求1所述的真空玻璃,其特征在于所述真空玻璃还可以包括一块中间玻璃,所述中间玻璃夹在所述上玻璃和所述下玻璃之间,所述上玻璃和所述中间玻璃上有抽气口,所述抽气口利用金属焊料在真空炉内自动封闭,所述上玻璃和所述下玻璃分别与所述中间玻璃形成两个封闭的真空层。
3.根据权利要求1或2所述的真空玻璃,其特征在于所述所述上玻璃、所述中间玻璃和所述下玻璃是普通玻璃或是镀膜玻璃或是Low-E玻璃。
4.根据权利要求1至3任一项所述的真空玻璃,其特征在于所述密封条采用印制、打印或机械喷涂低温玻璃粉或玻璃油墨或金属浆料的方式制备。
5.根据权利要求1至3任一项所述的真空玻璃,其特征在于所述密封槽采用机械加工或激光加工而成。
6.权利要求1至5任一项所述的真空玻璃的制备方法,其特征在于:当所述真空玻璃为凸面真空玻璃或凸面钢化真空玻璃时,制备方法如下:
第一步,根据所需要制作的真空玻璃的形状和大小切割所需尺寸的上下两块平面玻璃,在上玻璃的边角处打孔制作抽气口,在下玻璃的周边焊接处及抽气口的对应处开设密封槽,并对上下两块玻璃进行磨边、倒角、清洗和干燥处理;
第二步,在上玻璃的周边及抽气口的周边制备密封条,密封条能够插入对应的密封槽内,将处理后的上下玻璃装入热弯模具、放在热弯炉或钢化炉中,升温至玻璃软化的温度550~750℃,依靠玻璃自身的重力或施加的外力使玻璃向下形成凸面,并随炉降至室温,或直接进行钢化处理;
第三步,将下玻璃周边的密封槽内均匀涂布低温玻璃焊料,上、下玻璃合片后送入封边炉中;
第四步,对所述封边炉进行加热升温操作,升温至低温玻璃焊料的熔融温度以上,达到封边温度,密封条在玻璃的重力作用下嵌入密封槽中;停止加热、随炉降温,低温玻璃焊料将两块玻璃气密性地焊接在一起,打开封边炉的炉门得到中空玻璃;
第五步,将金属焊料装入中空玻璃的抽气口中,并送入真空炉内;对所述真空炉边抽真空、边加热,抽真空至0.1Pa以下、升温至金属焊料的熔化温度以上,金属焊料熔化成液体,液体留存在下玻璃的密封槽内,上玻璃的密封条也淹没在液体中,液体将抽气口自行密封;停止加热、随炉降温,金属焊料凝固后对抽气口实现气密性密封,打开真空炉,取出真空玻璃;
第六步,在真空玻璃的抽气口内放入密封胶,在密封胶的上面粘贴产品商标或金属装饰片。
7.权利要求1至5任一项所述的真空玻璃的制备方法,其特征在于:当所述真空玻璃为平面真空玻璃或平面钢化真空玻璃时,制备方法如下:
第一步,根据所需要制作的真空玻璃的形状和大小切割所需尺寸的上下两块平面玻璃,在上玻璃的边角处打孔制作抽气口,在下玻璃的周边焊接处及抽气口的对应处开设密封槽,并对上下两块玻璃进行磨边、倒角、清洗和干燥处理;
第二步,在上玻璃的周边及抽气口的周边制备密封条,密封条能够插于对应的密封槽内,并在至少一块玻璃上制作支撑物,随后将上玻璃、下玻璃送入高温炉或钢化炉中进行高温或钢化处理;
第三步,将下玻璃周边的密封槽内均匀涂布低温玻璃焊料,上、下玻璃合片后送入封边炉中;
第四步,对所述封边炉进行加热升温操作,升温至低温玻璃焊料的熔融温度以上,达到封边温度,密封条在玻璃的重力作用下嵌入密封槽中;停止加热、随炉降温,低温玻璃焊料将两块玻璃气密性地焊接在一起,打开封边炉的炉门得到中空玻璃;
第五步,将金属焊料装入中空玻璃的抽气口中,并送入真空炉内;对所述真空炉边抽真空、边加热,抽真空至0.1Pa以下、升温至金属焊料的熔化温度以上,金属焊料熔化成液体,液体留存在下玻璃的密封槽内,上玻璃的密封条也淹没在液体中,液体将抽气口自行密封;停止加热、随炉降温,金属焊料凝固后对抽气口实现气密性密封,打开真空炉,取出真空玻璃;
第六步,在真空玻璃的抽气口内放入密封胶,在密封胶的上面粘贴产品商标或金属装饰片。
8.根据权利要求6或7所述的真空玻璃的制备方法,其特征在于所述封边炉是常规加热炉或微波加热炉。
9.根据权利要求6或7所述的真空玻璃的制备方法,其特征在于所述封边炉具有基础加热系统和局部加热系统。
10.根据权利要求9所述的真空玻璃的制备方法,其特征在于所述基础加热系统采用热风加热、电阻加热、红外加热和远红外加热的一种或数种,所述局部加热系统采用微波加热、电磁加热、电阻加热、红外加热和远红外加热的一种或数种。
CN201310298591.0A 2013-07-17 2013-07-17 密封槽封边和封口的真空玻璃及其制备方法 Withdrawn CN104291618A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310298591.0A CN104291618A (zh) 2013-07-17 2013-07-17 密封槽封边和封口的真空玻璃及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310298591.0A CN104291618A (zh) 2013-07-17 2013-07-17 密封槽封边和封口的真空玻璃及其制备方法

Publications (1)

Publication Number Publication Date
CN104291618A true CN104291618A (zh) 2015-01-21

Family

ID=52311611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310298591.0A Withdrawn CN104291618A (zh) 2013-07-17 2013-07-17 密封槽封边和封口的真空玻璃及其制备方法

Country Status (1)

Country Link
CN (1) CN104291618A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617579A (ja) * 1992-04-06 1994-01-25 Kazuo Kuroiwa 真空断熱ガラス板及びその製造方法
CN1676481A (zh) * 2004-04-01 2005-10-05 唐健正 真空玻璃的边缘加热方法和采用该方法制造的真空玻璃
CN102951789A (zh) * 2012-03-21 2013-03-06 戴长虹 金属焊接的平板钢化真空玻璃及其制造方法
CN102951820A (zh) * 2012-10-06 2013-03-06 戴长虹 真空玻璃及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617579A (ja) * 1992-04-06 1994-01-25 Kazuo Kuroiwa 真空断熱ガラス板及びその製造方法
CN1676481A (zh) * 2004-04-01 2005-10-05 唐健正 真空玻璃的边缘加热方法和采用该方法制造的真空玻璃
CN102951789A (zh) * 2012-03-21 2013-03-06 戴长虹 金属焊接的平板钢化真空玻璃及其制造方法
CN102951820A (zh) * 2012-10-06 2013-03-06 戴长虹 真空玻璃及其制备方法

Similar Documents

Publication Publication Date Title
CN103420591B (zh) 玻璃焊接有密封条槽和安装孔的平面真空玻璃
CN103420575B (zh) 玻璃焊接有密封条和安装孔的凸面真空玻璃
CN103420576B (zh) 玻璃焊接有密封条和安装孔的平面真空玻璃
CN103420594B (zh) 密封条槽封边、封口的凸面真空玻璃及其制备方法
CN103420578A (zh) 密封条封边和封口的真空玻璃及其制备方法
CN103420574A (zh) 密封槽封边、封口的平面真空玻璃及其制备方法
CN103420587A (zh) 玻璃焊接有密封槽和安装孔的凸面真空玻璃
CN103420577A (zh) 玻璃焊接有密封槽和安装孔的平面双真空层玻璃
CN103420626A (zh) 金属焊接有密封槽和安装孔的凸面真空玻璃
CN104291618A (zh) 密封槽封边和封口的真空玻璃及其制备方法
CN203668208U (zh) 密封槽封边、封口的真空玻璃
CN104291619A (zh) 密封条和槽封边和封口的真空玻璃及其制备方法
CN203668241U (zh) 密封条槽封边、封口的真空玻璃
CN104291665A (zh) 密封槽封边、封口的凸面真空玻璃及其制备方法
CN203668240U (zh) 密封条封边、封口的真空玻璃
CN104291649A (zh) 密封条封边、封口的凸面真空玻璃及其制备方法
CN104291615A (zh) 密封条槽封边、封口的平面真空玻璃及其制备方法
CN104291565A (zh) 微波加热密封条槽封边封口的凸面真空玻璃及其制备方法
CN104291576A (zh) 微波加热密封槽封边封口的凸面真空玻璃及其制备方法
CN104291617A (zh) 密封条封边、封口的平面真空玻璃及其制备方法
CN104291560A (zh) 微波加热密封条封边封口的凸面真空玻璃及其制备方法
CN104291613A (zh) 玻璃焊接有密封条槽和安装孔的凸面真空玻璃
CN104291611A (zh) 玻璃焊接有密封槽和安装孔的凸面双真空层玻璃
CN104291708A (zh) 金属焊接有密封条槽和安装孔的凸面真空玻璃
CN104291614A (zh) 玻璃焊接有密封条槽和安装孔的凸面双真空层玻璃

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20150121