CN104280836A - Optical communication module - Google Patents
Optical communication module Download PDFInfo
- Publication number
- CN104280836A CN104280836A CN201310290275.9A CN201310290275A CN104280836A CN 104280836 A CN104280836 A CN 104280836A CN 201310290275 A CN201310290275 A CN 201310290275A CN 104280836 A CN104280836 A CN 104280836A
- Authority
- CN
- China
- Prior art keywords
- light
- communication module
- lens
- optical fiber
- optical communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4286—Optical modules with optical power monitoring
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/43—Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种光通信模组。 The invention relates to an optical communication module.
背景技术 Background technique
一般地,光通信模组包括一个光耦合透镜、一个发光元件、一个光电检测器及两根光纤。光耦合透镜一般包括位于基板侧且分别与发光元件及光电检测器对应的两个第一透镜、一个光反射面及位于光纤侧的两个第二透镜。发光元件发出的光信号经过第一透镜汇聚成平行光,然后被光反射面反射至光纤侧的第二透镜后汇聚成平行光射出至光纤内。反之,光纤发出的光信号经过第二透镜汇聚成平行光,然后被光反射面反射至基板侧的第一透镜后汇聚成平行光射出至光电检测器,从而实现光通信。 Generally, an optical communication module includes an optical coupling lens, a light emitting element, a photodetector and two optical fibers. The optical coupling lens generally includes two first lenses located on the substrate side and respectively corresponding to the light emitting element and the photodetector, a light reflecting surface and two second lenses located on the fiber side. The light signal emitted by the light-emitting element is converged into parallel light by the first lens, and then reflected by the light reflection surface to the second lens on the side of the fiber, and then converged into parallel light and emitted into the fiber. Conversely, the optical signal emitted by the optical fiber is converged into parallel light by the second lens, and then reflected by the light reflection surface to the first lens on the substrate side, then converged into parallel light and emitted to the photodetector, thereby realizing optical communication.
但是,现有的光通信模组仅具有单一的传输通道,随着消费性光通信技术的不断发展,如何增加光耦合透镜的传输通道成了迫切解决的问题。 However, the existing optical communication modules only have a single transmission channel. With the continuous development of consumer optical communication technology, how to increase the transmission channel of the optical coupling lens has become an urgent problem to be solved.
发明内容 Contents of the invention
有鉴于此,有必要提供一种能够增加光耦合透镜的传输通道的光通信模组。 In view of this, it is necessary to provide an optical communication module capable of increasing the transmission channel of the optical coupling lens.
一种光通信模组,其包括一个光转向元件、一个电路板、多个与该电路板电性连接的光电组合及多个与该光电组合对应的光纤组合。该光转向元件包括一个面向该电路板设置的第一透光面、一个与该第一透光面垂直且面向该多个光纤组合设置的第二透光面及一个反射面。该第一透光面上矩阵分布有多个第一透镜,该第二透光面上设有多个与该第一透镜对应的第二透镜。每个光电组合包括一个发光元件及一个光电检测元件。该光纤组合包括多个输入光纤及多个输出光纤。每个发光元件对应一个第一透镜、一个第二透镜及一个输出光纤,每个光电检测元件对应一个第一透镜、一个第二透镜及一个输入光纤。该反射面用于改变该发光元件发出的光线及该输入光纤输入的光线的传输方向。 An optical communication module includes a light steering element, a circuit board, a plurality of photoelectric assemblies electrically connected to the circuit board, and a plurality of optical fiber assemblies corresponding to the photoelectric assemblies. The light diverting element includes a first light-transmitting surface facing the circuit board, a second light-transmitting surface perpendicular to the first light-transmitting surface and facing the plurality of optical fiber combinations, and a reflective surface. A plurality of first lenses are distributed in matrix on the first light-transmitting surface, and a plurality of second lenses corresponding to the first lenses are arranged on the second light-transmitting surface. Each photoelectric combination includes a light-emitting element and a photodetection element. The fiber optic combination includes a plurality of input fibers and a plurality of output fibers. Each light emitting element corresponds to a first lens, a second lens and an output optical fiber, and each photoelectric detection element corresponds to a first lens, a second lens and an input optical fiber. The reflective surface is used to change the transmission direction of the light emitted by the light-emitting element and the light input by the input optical fiber.
本发明的光通信模组,包括有多个光电组合及多个光纤组合,通过在第一透光面上矩阵分布有多个第一透镜,第二透光面上对应分布有第二透镜,使每个发光元件对应一个第一透镜、一个第二透镜及一个输出光纤,每个光电检测元件对应一个第一透镜、一个第二透镜及一个输入光纤,利用一个反射面形成多个传输通道,可以同时传输多路光信号,提高了该反射面的利用率,也进一步提高了该光转向元件的利用率。 The optical communication module of the present invention includes a plurality of photoelectric combinations and a plurality of optical fiber combinations, a plurality of first lenses are distributed in a matrix on the first light-transmitting surface, and a second lens is correspondingly distributed on the second light-transmitting surface, Each light-emitting element corresponds to a first lens, a second lens, and an output optical fiber, and each photodetection element corresponds to a first lens, a second lens, and an input optical fiber, and a reflective surface is used to form multiple transmission channels, Multiple optical signals can be transmitted simultaneously, which improves the utilization rate of the reflective surface and further improves the utilization rate of the light steering element.
附图说明 Description of drawings
图1为本发明提供的光通信模组的结构示意图。 FIG. 1 is a schematic structural diagram of an optical communication module provided by the present invention.
图2为图1中的光通信模组的立体分解图。 FIG. 2 is an exploded perspective view of the optical communication module in FIG. 1 .
图3为图1中的光通信模组的光转向元件的另一方向的示意图。 FIG. 3 is a schematic diagram of another direction of the light diverting element of the optical communication module in FIG. 1 .
图4为图1中的光通信模组沿Ⅳ-Ⅳ线的剖视图。 FIG. 4 is a cross-sectional view of the optical communication module in FIG. 1 along line IV-IV.
主要元件符号说明 Description of main component symbols
如下具体实施方式将结合上述附图进一步说明本发明。 The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.
具体实施方式 Detailed ways
下面将结合附图对本发明实施方式作进一步的详细说明。 The embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
请一并参阅图1及图2,本发明实施方式提供的光通信模组100,其包括一个光转向元件10、一个电路板20、多个光电组合30及多个与光电组合30对应的光纤组合40。本实施方式中,该光电组合30的数量均为15个,可以理解,该光电组合30数量还可以大于或者小于15个,即根据需求及具体情况可以自行设定,相应地,该光纤组合40中光纤的数量也对应改变。 Please refer to FIG. 1 and FIG. 2 together. The optical communication module 100 provided by the embodiment of the present invention includes a light steering element 10, a circuit board 20, a plurality of photoelectric assemblies 30, and a plurality of optical fibers corresponding to the photoelectric assemblies 30. Combo 40. In this embodiment, the number of the photoelectric combination 30 is 15. It can be understood that the number of the photoelectric combination 30 can also be greater than or less than 15, that is, it can be set by itself according to requirements and specific conditions. Correspondingly, the optical fiber combination 40 The number of optical fibers in the medium also changes accordingly.
多个光电组合30与该电路板20电性连接。本实施方式中,该电路板20可以为软板或硬板。 A plurality of photoelectric assemblies 30 are electrically connected to the circuit board 20 . In this embodiment, the circuit board 20 may be a soft board or a hard board.
请结合图3,该光转向元件10大体呈方形,其包括一个面向该电路板20设置的第一透光面1110、一个与该第一透光面1110垂直且面向该多个光纤组合40设置的第二透光面112及一个反射面113。其中,该第一透光面1110、该第二透光面112及该反射面113之间的区域均为透光区域,由透光性材料制成。 Please refer to FIG. 3 , the light redirecting element 10 is generally square, and includes a first light-transmitting surface 1110 facing the circuit board 20 , and a first light-transmitting surface 1110 perpendicular to the first light-transmitting surface 1110 and facing the plurality of optical fiber assemblies 40 . The second transparent surface 112 and a reflective surface 113 . Wherein, the regions among the first transparent surface 1110 , the second transparent surface 112 and the reflective surface 113 are all transparent regions, which are made of transparent materials.
请一并结合图4,具体地,该光转向元件10包括首尾连接的一个第一表面110、一个第二表面120、一个第三表面130及一个第四表面140,该第一表面110与该第三表面130平行,该第二表面120与该第四表面140平行。该第一表面110上开设有一个收容槽111,该收容槽111的底面即为第一透光面1110,该第一透光面1110与该第一表面110平行。在该第三表面130及该第四表面140相交处开设有一个缺口141,该缺口141包括一个与该第四表面140平行的侧壁,该侧壁即为第二透光面112。该第三表面130上开设有一个凹槽131,该凹槽131中的一个侧面从该第三表面130向该第二表面120的方向倾斜,该侧面即为该反射面113。该反射面113用于改变该光电组合30与该光纤组合40之间的光线的传输方向。 Please combine with FIG. 4, specifically, the light redirecting element 10 includes a first surface 110, a second surface 120, a third surface 130 and a fourth surface 140 connected end to end, the first surface 110 and the The third surface 130 is parallel to the second surface 120 and the fourth surface 140 is parallel. A receiving groove 111 is defined on the first surface 110 , the bottom surface of the receiving groove 111 is a first light-transmitting surface 1110 , and the first light-transmitting surface 1110 is parallel to the first surface 110 . A notch 141 is defined at the intersection of the third surface 130 and the fourth surface 140 . The notch 141 includes a sidewall parallel to the fourth surface 140 , and the sidewall is the second transparent surface 112 . A groove 131 is defined on the third surface 130 , and a side surface of the groove 131 is inclined from the third surface 130 to the second surface 120 , and the side surface is the reflective surface 113 . The reflective surface 113 is used to change the transmission direction of light between the photoelectric assembly 30 and the optical fiber assembly 40 .
该第一透光面1110上矩阵分布有多个第一透镜1110a,该第二透光面112上设有多个与该第一透镜1110a对应的第二透镜1120。该第一透镜1110a与该第二透镜1120的数量相等,且排列方式相同。本实施方式中,该第一透镜1110a的数量为30个,可以理解,该第一透镜1110a的数量可以根据需求进行增加或减少。该多个第一透镜1110a布满整个该第一透光面1110分布,这样更能充分利用该光转向元件10。 A plurality of first lenses 1110 a are distributed in matrix on the first light-transmitting surface 1110 , and a plurality of second lenses 1120 corresponding to the first lenses 1110 a are disposed on the second light-transmitting surface 112 . The number of the first lenses 1110 a and the second lenses 1120 are equal and arranged in the same manner. In this embodiment, the number of the first lenses 1110a is 30, and it can be understood that the number of the first lenses 1110a can be increased or decreased according to requirements. The plurality of first lenses 1110 a are distributed throughout the first light-transmitting surface 1110 , so that the light turning element 10 can be fully utilized.
每个光电组合30包括一个发光元件310及一个光电检测元件320。发光元件310为发光二极管(LED)或激光二极管(LD)。光电检测元件320为光电二极管(PD)。该光纤组合40包括多个输入光纤410及多个输出光纤420。每个发光元件310对应一个第一透镜1110a、一个第二透镜1120及一个输出光纤420,每个光电检测元件320对应一个第一透镜1110a、一个第二透镜1120及一个输入光纤410。该反射面113具体用于改变该发光元件310发出的光线及该输入光纤410输入的光线的传输方向。本实施方式中,该反射面113与该第一透镜1110a或与该第二透镜1120的光轴之间的夹角均为45度。 Each photoelectric combination 30 includes a light emitting element 310 and a photodetection element 320 . The light emitting element 310 is a light emitting diode (LED) or a laser diode (LD). The photodetection element 320 is a photodiode (PD). The fiber assembly 40 includes a plurality of input fibers 410 and a plurality of output fibers 420 . Each light emitting element 310 corresponds to a first lens 1110 a , a second lens 1120 and an output optical fiber 420 , and each photodetection element 320 corresponds to a first lens 1110 a , a second lens 1120 and an input optical fiber 410 . The reflective surface 113 is specifically used to change the transmission direction of the light emitted by the light emitting element 310 and the light input by the input optical fiber 410 . In this embodiment, the included angles between the reflective surface 113 and the optical axis of the first lens 1110 a or the second lens 1120 are both 45 degrees.
本实施方式中,该光纤组合40被集成在一起,即多个输入光纤410及多个输出光纤420被集成为一体,这样更方便拿取及安装。该输入光纤410及该输出光纤420的数量、排列方式分别与光电检测元件320及发光元件310相同。 In this embodiment, the optical fiber assembly 40 is integrated together, that is, multiple input optical fibers 410 and multiple output optical fibers 420 are integrated into one body, which is more convenient to take and install. The number and arrangement of the input optical fiber 410 and the output optical fiber 420 are the same as those of the photodetection element 320 and the light emitting element 310 respectively.
使用该光通信模组100时,若输出光信号,该光电组合30的发光元件310发出的光线经该第一透光面1110的第一透镜1110a入射到该反射面113上,光信号被该反射面113反射后,射向该第二透光面112,光信号穿过第二透镜1120后经输出光纤420进行通信。若输入光信号,该光信号经由该输入光纤410传输至该光转向元件10的第四表面140的第二透光面112上,然后经由该第二透镜1120入射至该反射面113上,光信号在被该反射面113反射后射向第一透光面1110,光信号穿过第一透镜1110a后被光电检测元件320接收,从而实现光通信。 When using the optical communication module 100, if an optical signal is output, the light emitted by the light-emitting element 310 of the photoelectric combination 30 is incident on the reflecting surface 113 through the first lens 1110a of the first light-transmitting surface 1110, and the optical signal is received by the After being reflected by the reflective surface 113 , it is transmitted to the second light-transmitting surface 112 , and the optical signal passes through the second lens 1120 and communicates through the output optical fiber 420 . If an optical signal is input, the optical signal is transmitted to the second light-transmitting surface 112 of the fourth surface 140 of the light turning element 10 through the input optical fiber 410, and then incident on the reflecting surface 113 through the second lens 1120, the light After the signal is reflected by the reflective surface 113, it goes to the first light-transmitting surface 1110, and the optical signal passes through the first lens 1110a and is received by the photodetection element 320, thereby realizing optical communication.
该光通信模组100包括有多个光电组合30及多个光纤组合40。通过在第一透光面1110上矩阵分布有多个第一透镜1110a,第二透光面112上对应分布有第二透镜1120,使每个发光元件310对应一个第一透镜1110a、一个第二透镜1120及一个输出光纤420,每个光电检测元件320对应一个第一透镜1110a、一个第二透镜1120及一个输入光纤410,利用一个反射面113形成多个传输通道,可以同时传输多路光信号。如此,提高了该反射面113的利用率,也进一步提高了该光转向元件10的利用率。另外,这种增加传输通道的方法并没有增加该光转向元件10的体积,即在实现多通道传输的同时也保证了整个光通信模组100的小型化。 The optical communication module 100 includes a plurality of photoelectric assemblies 30 and a plurality of optical fiber assemblies 40 . A plurality of first lenses 1110a are distributed in matrix on the first light-transmitting surface 1110, and second lenses 1120 are correspondingly distributed on the second light-transmitting surface 112, so that each light emitting element 310 corresponds to one first lens 1110a and one second lens 1110a. Lens 1120 and an output optical fiber 420, each photodetection element 320 corresponds to a first lens 1110a, a second lens 1120 and an input optical fiber 410, using a reflective surface 113 to form multiple transmission channels, which can simultaneously transmit multiple optical signals . In this way, the utilization rate of the reflective surface 113 is improved, and the utilization rate of the light redirecting element 10 is further improved. In addition, this method of increasing the transmission channel does not increase the volume of the light redirecting element 10 , that is, it ensures the miniaturization of the entire optical communication module 100 while realizing multi-channel transmission.
虽然本发明已以较佳实施方式披露如上,但是,其并非用以限定本发明,另外,本领域技术人员还可以在本发明精神内做其它变化等。当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。 Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. In addition, those skilled in the art can also make other changes within the spirit of the present invention. Of course, these changes made according to the spirit of the present invention should all be included within the scope of protection claimed by the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310290275.9A CN104280836A (en) | 2013-07-11 | 2013-07-11 | Optical communication module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310290275.9A CN104280836A (en) | 2013-07-11 | 2013-07-11 | Optical communication module |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104280836A true CN104280836A (en) | 2015-01-14 |
Family
ID=52255886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310290275.9A Pending CN104280836A (en) | 2013-07-11 | 2013-07-11 | Optical communication module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104280836A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108508553A (en) * | 2018-04-11 | 2018-09-07 | 青岛海信宽带多媒体技术有限公司 | A kind of optical mode group |
US11209608B2 (en) | 2018-04-11 | 2021-12-28 | Hisense Broadband Multimedia Technologies Co., Ltd. | Optical module |
CN115622629A (en) * | 2021-07-12 | 2023-01-17 | 宁波环球广电科技有限公司 | Multichannel parallel optical communication module and optical transceiver |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102162885A (en) * | 2011-05-03 | 2011-08-24 | 苏州旭创科技有限公司 | Parallel optical transceiving component for high-speed transmission |
CN103176247A (en) * | 2011-12-22 | 2013-06-26 | 鸿富锦精密工业(深圳)有限公司 | Photoelectric converter |
CN103185931A (en) * | 2011-12-27 | 2013-07-03 | 鸿富锦精密工业(深圳)有限公司 | Photoelectric converter |
-
2013
- 2013-07-11 CN CN201310290275.9A patent/CN104280836A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102162885A (en) * | 2011-05-03 | 2011-08-24 | 苏州旭创科技有限公司 | Parallel optical transceiving component for high-speed transmission |
CN103176247A (en) * | 2011-12-22 | 2013-06-26 | 鸿富锦精密工业(深圳)有限公司 | Photoelectric converter |
CN103185931A (en) * | 2011-12-27 | 2013-07-03 | 鸿富锦精密工业(深圳)有限公司 | Photoelectric converter |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108508553A (en) * | 2018-04-11 | 2018-09-07 | 青岛海信宽带多媒体技术有限公司 | A kind of optical mode group |
WO2019196594A1 (en) * | 2018-04-11 | 2019-10-17 | 青岛海信宽带多媒体技术有限公司 | Optical module |
US11209608B2 (en) | 2018-04-11 | 2021-12-28 | Hisense Broadband Multimedia Technologies Co., Ltd. | Optical module |
CN115622629A (en) * | 2021-07-12 | 2023-01-17 | 宁波环球广电科技有限公司 | Multichannel parallel optical communication module and optical transceiver |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8447149B2 (en) | Optoelectronic transmission device | |
TWI611230B (en) | Optical receptacle and optical module | |
US8942525B2 (en) | Photoelectric conversion device and optical fiber coupling connector | |
US8942524B2 (en) | Optical coupling lens and optical fiber coupling connector | |
WO2016021384A1 (en) | Optical receptacle and optical module | |
JPWO2018079091A1 (en) | Optical coupling device and optical communication system | |
CN103676029A (en) | Photoelectric coupling module | |
US9046667B2 (en) | Photoelectric conversion device and optical fiber coupling connector | |
CN104280836A (en) | Optical communication module | |
CN104111503A (en) | Optical communication module | |
CN115755291A (en) | Single-fiber bidirectional transmission parallel optical path structure and optical module | |
TW201423182A (en) | Optical-electric coupling element and optical-electric converting device using same | |
CN103941352A (en) | Optical communication module | |
US8965154B2 (en) | Optical coupling lens | |
US20130170799A1 (en) | Optical fiber connector | |
US9274296B2 (en) | Optical fiber connector and optical fiber coupling assembly having same | |
CN202771056U (en) | Wedge Filter for Optical Transceiver Submodule | |
TWI572923B (en) | Optical communication module | |
JP2014232260A (en) | Optical receptacle and optical module provided therewith | |
CN104375244B (en) | Optical communication module | |
US9146154B2 (en) | Photoelectric conversion device and optical fiber coupling connector | |
TWI459061B (en) | Optoelectronic transmission system | |
TW201502620A (en) | Optical communication device | |
US9002208B2 (en) | Optical transceiver system | |
CN104597573A (en) | Optical communication module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150114 |
|
WD01 | Invention patent application deemed withdrawn after publication |