CN104278200B - 一种高热强性喷射成形热作模具钢及其制备方法 - Google Patents

一种高热强性喷射成形热作模具钢及其制备方法 Download PDF

Info

Publication number
CN104278200B
CN104278200B CN201410474807.9A CN201410474807A CN104278200B CN 104278200 B CN104278200 B CN 104278200B CN 201410474807 A CN201410474807 A CN 201410474807A CN 104278200 B CN104278200 B CN 104278200B
Authority
CN
China
Prior art keywords
steel
hot
die steel
temperature
work die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410474807.9A
Other languages
English (en)
Other versions
CN104278200A (zh
Inventor
黄进峰
张金祥
张济山
王和斌
卢林
崔华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201410474807.9A priority Critical patent/CN104278200B/zh
Publication of CN104278200A publication Critical patent/CN104278200A/zh
Application granted granted Critical
Publication of CN104278200B publication Critical patent/CN104278200B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Abstract

一种高热强性喷射成形热作模具钢及其制备方法,属于热作模具钢技术领域。模具钢的成分为:C0.3‑0.5,Cr3.0‑5.0,Mo1.5‑3.5,W0.4‑1.0,Si0.3‑0.8,Mn0.3‑0.5,V0.8‑1.5,Nb0.03‑0.10,S≤0.03,P≤0.03,余量为Fe。制备采用喷射成形‑热锻‑热处理工艺路线,通过控制喷射成形过程中的工艺参数和热锻温度的方式,调整淬火与回火温度来获得不同的综合力学性能,以满足不同的工况需求。本发明针对喷射成形工艺特点,同时考虑热作模具钢对高温性能的特殊需求,合理优化合金元素配伍,具有优良的高温性能,好的热稳定性与回火抗性,同时保持较高的冲击韧性,综合性能优异,大幅提高热作模具寿命。

Description

一种高热强性喷射成形热作模具钢及其制备方法
技术领域
本发明属于热作模具钢技术领域,具体为针对喷射成形工艺特点而发明一种高热强性喷射成形热作模具钢新材料,以及喷射成形制备、后续热加工与热处理的工艺技术与方法。
背景技术
热作模具在工业上主要用于热成形各种机械零件。最流行的热成形方法包括锻造、挤压和有色合金的铸造,模具在热成形过程中要承受不同机械载荷与温度的剧烈变化,这种机械应力,热应力以及化学因素的综合作用表明对模具材料的性能有着极其苛刻的要求。热作模具钢是用来制作热作模具最常用的材料,其中H13钢是世界范围内使用非常广泛的一种热作模具钢,具有良好的综合性能,主要用于热锻模、压铸模和挤压模,但由于H13钢在高温下的热强度较低,其服役温度一般低于600℃,高于此使用温度,模具寿命急剧降低。
为了解决H13钢600℃以上热强度不足的问题,人们开始重新优化H13钢的合金成分。H13钢高温强度不足的原因主要是Cr的碳化物在高温下的热稳定性差,容易聚集长大,因此人们开始降低Cr的含量,并增加强碳化物形成元素Mo、V的含量,同时加入少量的Nb进行微合金化。此举虽然提高了钢的高温强度,但由于强碳化物形成元素的增加,导致铸造过程中产生的粗大一次共晶碳化物增加,从而急剧降低了材料的韧性,同样不能满足模具材料的性能需求。
铸态组织中粗大的一次碳化物的增加一方面是由强碳化物形成元素的增加造成的,另一方面是由于传统铸造工艺凝固过程较低的冷速。众所周知,快速凝固技术可以抑制凝固过程中碳化物的析出与合金元素的偏析,粉末冶金技术是一种典型的快速凝固技术,很快被人们用来生产高速钢等高合金度的材料,但是由于其成本极其昂贵,工序相当复杂,应用受到了限制。
喷射成形技术是一种可以制备近终型产品的先进工艺,常用来制备高性能金属材料。由于雾化过程中的冷速高,喷射成形也具有一般快速凝固所特有的优点,包括组织细化、无宏观偏析、初生相细小弥散分布,合金元素固溶度高等。目前,喷射成形技术在热作模具钢方面的应用主要集中在直接精密成形模具上,德国不莱梅材料科学研究所、芬兰技术研究中心和美国爱达荷国家实验室在喷射成形热作模具钢上均取得了一定的成果。
但是,喷射成形工艺制备热作模具钢还是存在两方面的问题:(1)用喷射成形技术直接成形模具,由于不能采取后续变形处理来使其致密化,所以在喷射沉积过程中必须有足够的液相来保证所成形的模具的致密度,但这势必导致组织较为粗大,不能充分发挥喷射成形的优势。(2)没有针对喷射成形工艺特点,重新调整合金成分,设计喷射成形新型热作模具钢。
因此,如何充分利用喷射成形技术的优点,再结合合金元素在热作模具钢中的作用机理,设计出新型的喷射成形热作模具钢,提高模具钢的综合性能,具有十分重要的意义,可以带来巨大的经济效益。
发明内容
本发明的目的在于根据喷射成形的工艺特点,设计和制备出高热强性兼具韧性的喷射成形新型热作模具钢,使其可以在600℃以上的高温使用,实现开发性价比高,综合性能优异,应用范围更广的新型热作模具钢。
根据上述目标,本发明以H13钢的成分为基础,利用喷射成形组织细小、无宏观偏析、初生相细小弥散分布,合金元素固溶度高的特点,提高Mo含量,降低Cr含量,但不低于3%以确保足够的淬透性,重新优化Cr、Mo合金配比,使得新合金回火时析出富Mo的M2C型碳化物来增加二次硬化,提高回火抗性,同时保持成本不增加与适当的韧性、导热性与淬透性;此外,加入少量的W、Nb进行微合金化,进一步提高热稳定性并细化晶粒。
1、本发明的具体方案为:(1)成分方面,喷射成形热作模具钢的化学成分(wt%)为:C0.3-0.5,Cr3.0-5.0,Mo1.5-3.5,W0.4-1.0,Si0.3-0.8,Mn0.3-0.5,V0.8-1.5,Nb0.03-0.10,S≤0.03,P≤0.03,余量为Fe。其中的优选范围为C:0.35-0.45,Cr:3.0-4.0,Mo:2.0-3.0,Nb:0.03-0.06。
碳:C一方面在较低温度下主要负责马氏体强化,另一方面与合金元素作用,形成二次析出碳化物,产生二次硬化,负责较高温度下的强化。要想形成二次硬化来提高高温强度,C含量至少0.2%,最好是0.3%以上。然而,过高的C含量会导致淬火时析出晶粒形状的碳化物(特别是Mo和V含量较高时),并且增加硬度和二次析出碳化物的体积,从而损害了韧性。为了保持较高的韧性,一般C含量不超过0.5%,最好是0.4%以下。这个范围的C含量同时也可降低残余奥氏体的含量,从而预防了模具尺寸不稳定与脆性相关问题的产生。
铬:Cr含量应该高于3.0%,最好是3.5%以上,因为这个元素有利于提高淬透性,而淬透性对大型模具的应用极为关键。然而Cr含量也应该受到限制,本发明就提出了降低Cr含量来提高回火抗性的思路。这是一个非常重要的作用,因为本发明钢最终的回火抗性比目前最流行的H13钢明显提高。其作用机理被认为与二次析出富Cr的M7C3型碳化物有关,这种碳化物可以溶解V和Mo并且是最先析出的。因此,降低Cr含量,可以减少M7C3形碳化物的含量,从而有更多的V和Mo可以作用于二次硬化。最终导致当新合金的Cr含量比H13钢低时,回火抗性明显提高。要想通过Cr的降低来获得更高的回火抗性,Cr含量必须控制在5.0%以下,最好是在4.0%以下。本发明确认,要获得最佳的回火抗性,Cr含量须在3.0%到4.0%之间。此外,Cr的降低除了提高回火抗性之外,还增加了导热性,同时当Mo含量提高时,也可保持良好的导热性。因此,如此小的Cr含量范围,是为了获得最大的回火抗性和充足的导热性而精心设计的。
钼和钨:本发明提高Mo含量主要是为了提高回火抗性。由于增加Mo含量可能使的新合金在回火是析出热稳定性更高的富Mo碳化物,特别是M2C型碳化物。因此本发明钢必须至少含有1.5%的Mo,最好是2.0%以上。但是,过高的Mo含量会导致在淬火时形成先共晶碳化物,从而损害韧性,同时也会明显增加合金成本,使其很难得到实际应用。因此,Mo含量最好不要超过3.5%。钨和钼的作用类似,都形成M2C或M6C型二次碳化物。但是,由于W的扩散速率明显低于Mo,少量的W进入到碳化物中,减慢碳化物的长大速度,从而增加热稳定性。然而,W的二次硬化效果远不如Mo,并且成本也偏高,因此W的含量须控制在1.0%以内。
钒:V对二次析出的MC型碳化物至关重要,由于二次析出的富V的MC型碳化物细小弥散,且热稳定性高,从而能够阻止位错的移动,从而提高强度。一次的MC还能够阻止晶粒长大,允许较高的奥氏体化温度(1000℃以上)。要想起到以上作用,V的含量必须在0.1%以上,最好高于0.3%。然而过高的V会产生一次难溶的碳化物,从而降低韧性。因此,V含量应该低于1.5%,最好低于1.0%。
铌:Nb是比V更强的碳化物形成元素,少量加入可以抑制晶粒长大,从而提高强韧性。若加入过多,则容易在钢液凝固过程中产生较多的大颗粒伪共晶碳化物,严重损害韧性。因此,Nb含量应低于0.1%。
硅:Si对二次硬化和韧性有很大的影响。Si含量较高时,Si增加600℃以下的二次硬化硬度。然而,本发明研究发现,较低的Si含量能够减少高温下硬度的降低,从而提高回火抗性。此外,较低的Si含量也有利于韧性的提高。因此,本发明钢的Si含量必须低于0.8%,最好在0.5%以下。
磷:降低P含量可以显著提高韧性,因为P容易在晶界偏聚,从而降低界面的内聚力。因此P含量必须低于0.03%,最好低于0.015%。
残余元素:其它元素如Mn和Al应该被认为是炼钢或加工过程中带来的有害元素。因此,Mn和Al的含量应该在0.5%以下。由于S容易形成夹杂物,这些夹杂物容易导致材料开裂,因此S含量必须控制在0.03%以下,最好是0.02%以下。
工艺方面:
高质量沉积坯:要想充分发挥喷射成形的技术优势,必须制备出高质量的沉积坯。首先,要确保沉积坯具有高的致密度,使坯料经过热加工(锻造、轧制等工艺)可以完全致密化。其次要使沉积坯组织均匀细小,无宏观偏析。本发明通过调整喷射成形工艺参数(钢液过热度、雾化压力、沉积距离等),获得组织均匀细小致密度高的沉积坯。
锻造与退火:沉积坯锻造工艺为1100-1150℃加热,始锻温度1120-1150℃,终锻温度≥850℃,锻比不小于3,锻后致密度达99.8%以上;锻造后进行等温球化退火,具体工艺为:钢材在小于500℃入炉随炉升温,以不高于100℃/h的加热速率加热到840-880℃,保温100min+1min/mm,然后以30℃/h的速率随炉冷到730-770℃,保温200min+1min/mm,然后以40℃/h的速率随炉冷到500℃,最后出炉空冷;其中退火工艺中的保温时间与钢材的尺寸有关,钢材直径或厚度每增加1mm,保温时间增加1min;
淬火与回火:本发明钢可根据工况需求,来调整淬火与回火工艺,以获得不同的综合性能。具体为奥氏体化温度可在1040-1130℃调整,保温15-30min,油冷,随后回火温度可在550-650℃温度范围内调整,回火2-3次,每次1-3h。
本发明针对喷射成形工艺特点,同时考虑热作模具钢对高温性能的特殊需求,合理优化合金元素配伍,具有优良的高温性能,好的热稳定性与回火抗性,同时保持较高的冲击韧性,综合性能优异,大幅提高热作模具寿命。
具体实施方式:
实施例1
本发明所述的高热强性热作模具钢通过优化合金成分配伍与调整喷射成形工艺实现高性能。其制备方法为:(1)采用喷射成形工艺制备热作模具钢沉积坯:在真空或非真空下的感应炉中冶炼至化学成分范围符合要求,保温10-20min,钢液过热100-200℃,然后浇注到温度1000℃以上的中间包。钢液由N2雾化,雾化系统采用非限制型主副两级环孔式雾化喷嘴,沉积距离400-500mm,沉积基板为不锈钢。随着喷射沉积过程的进行,匀速下拉基板,最终获得直径120mm,高150mm的柱状沉积坯。
(2)锻造及退火:沉积坯锻造工艺为1100-1150℃加热,始锻温度1120-1150℃,终锻温度≥850℃;锻造后等温球化退火,具体工艺为:钢材在小于500℃入炉随炉升温,以不高于100℃/h的加热速率加热到840-880℃,保温100min+1min/mm,然后以30℃/h的速率随炉冷到730-770℃,保温200min+1min/mm,然后以40℃/h的速率随炉冷到500℃,最后出炉空冷;其中退火工艺中的保温时间与钢材的尺寸有关,钢材直径或厚度每增加1mm,保温时间增加1min;
(3)淬火与回火:奥氏体化温度为1040-1130℃,保温15-30min,油冷,随后在550-650℃回火2次,每次1-3h。
对比钢采用国内某厂生产的商用H13钢,其热处理工艺为传统H13钢的最优热处理工艺。
分别对本发明钢与对比钢进行了化学成分分析,并且在经过最终热处理后,分别对两者进行了力学性能测试。
本发明钢和对比钢的化学成分见表1
本发明钢在室温硬度与对比钢相近的情况下,其高温拉伸性能明显优于对比钢,并且基本保持了H13钢的冲击韧性。具体性能数据对比见表2。
本发明钢回火抗性和热稳定性显著优于对比钢。具体性能数据对比见表3和表4。
表1:本发明钢与对比钢化学成分,重量%。
表2:本发明钢与对比钢高温拉伸、室温冲击性能与室温硬度的对比
表3:本发明钢与对比钢在不同温度回火下的硬度值
表4:本发明钢与对比钢热稳定性对比
实施例2
本实施例所述的发明钢的制备方法、热加工与热处理工艺同实施例1,对比钢依然采用实施例1中的商用H13钢。
本发明钢和对比钢的化学成分见表5
本发明钢在室温硬度与对比钢相近的情况下,其高温拉伸性能明显优于对比钢,并且冲击韧性也高于对比钢。具体性能数据对比见表6。
本发明钢的回火抗性和热稳定性显著优于对比钢。具体性能数据对比见表7和表8。
表5:本发明钢与对比钢化学成分,重量%
表6:本发明钢与对比钢高温拉伸、室温冲击性能与室温硬度对比
表7:本发明钢与对比钢在不同温度回火下的硬度值
表8:本发明钢与对比钢热稳定性对比
实施例3
本实施例所述的发明钢的制备方法、热加工与热处理工艺同实施例1,对比钢依然采用实施例1中的商用H13钢。
本发明钢和对比钢的化学成分见表9
本发明钢在室温硬度与对比钢相近的情况下,其高温拉伸性能明显优于对比钢,并且冲击韧性也高于对比钢。具体性能数据对比见表10。
本发明钢的回火抗性和热稳定性显著优于对比钢。具体性能数据对比见表11和表12。
表9:本发明钢与对比钢化学成分,重量%
表10:本发明钢与对比钢高温拉伸、室温冲击性能与室温硬度对比
表11:本发明钢与对比钢在不同温度回火下的硬度值
表12:本发明钢与对比钢热稳定性对比

Claims (1)

1.一种高热强性喷射成形热作模具钢的制备方法,其特征在于热作模具钢的化学成分重量百分比为:C 0.39,Cr 3.0,Mo 2.4,W 0.8,Si 0.5,Mn 0.3,V 1.3,Nb 0.08,S≤0.03,P≤0.03,余量为Fe;
或者是成分重量百分比为:C 0.37,Cr 3.0,Mo 2.4,W 0.8,Si 0.6,Mn 0.3,V 0.9,Nb0.04,S≤0.03,P≤0.03,余量为Fe;
或者是成分重量百分比为:C 0.42,Cr 4.0,Mo 2.4,W 0.4,Si 0.6,Mn 0.3,V 1.0,Nb0.04,S≤0.03,P≤0.03,余量为Fe;
具体工艺步骤为:
(1)采用喷射成形工艺制备热作模具钢沉积坯:在真空或非真空下的感应炉中冶炼至化学成分范围符合要求,保温10min,钢液过热100-200℃,然后浇注到温度1000℃以上的中间包;钢液由N2雾化,雾化系统采用非限制型主副两级环孔式雾化喷嘴,沉积距离400-500mm,沉积基板为不锈钢;随着喷射沉积过程的进行,匀速下拉基板,最终可获得直径80-180mm,高100-200mm的柱状沉积坯;
(2)锻造及退火:沉积坯锻造工艺为1100-1150℃加热,始锻温度1120-1150℃,终锻温度≥850℃;锻造后进行等温球化退火,具体工艺为:钢材在小于500℃入炉随炉升温,以不高于100℃/h的加热速率加热到840-880℃,保温100min+1min/mm,然后以30℃/h的速率随炉冷到730-770℃,保温200min+1min/mm,然后以40℃/h的速率随炉冷到500℃,最后出炉空冷;其中退火工艺中的保温时间与钢材的尺寸有关,钢材直径或厚度每增加1mm,保温时间增加1min;
淬火与回火:奥氏体化温度为1040-1130℃,保温15-30min,油冷,随后在550-650℃回火2次,每次1-3h。
CN201410474807.9A 2014-09-17 2014-09-17 一种高热强性喷射成形热作模具钢及其制备方法 Active CN104278200B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410474807.9A CN104278200B (zh) 2014-09-17 2014-09-17 一种高热强性喷射成形热作模具钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410474807.9A CN104278200B (zh) 2014-09-17 2014-09-17 一种高热强性喷射成形热作模具钢及其制备方法

Publications (2)

Publication Number Publication Date
CN104278200A CN104278200A (zh) 2015-01-14
CN104278200B true CN104278200B (zh) 2017-02-15

Family

ID=52253539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410474807.9A Active CN104278200B (zh) 2014-09-17 2014-09-17 一种高热强性喷射成形热作模具钢及其制备方法

Country Status (1)

Country Link
CN (1) CN104278200B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878300B (zh) * 2015-05-15 2017-08-04 河冶科技股份有限公司 喷射成形高韧性工具钢
CN105274437A (zh) * 2015-10-08 2016-01-27 如皋市宏茂重型锻压有限公司 一种抗热疲劳高性能热作模具钢及其制造工艺
CN105950969A (zh) * 2016-05-04 2016-09-21 宝钢特钢有限公司 一种高耐热奥氏体模具钢及其制备方法
CN105950962B (zh) * 2016-05-09 2018-08-14 天津钢研海德科技有限公司 一种兼有耐高温和高韧性的热作模具钢及其制法
CN106544592B (zh) * 2016-11-01 2018-05-18 辽宁乾金金属材料开发有限公司 强韧性热作模具钢及其生产方法
CN106834931B (zh) * 2017-03-28 2019-05-14 宁波禾顺新材料有限公司 一种抗热疲劳的热作模具钢及其制备方法
CN107746917B (zh) * 2017-11-07 2019-05-17 广东和胜工业铝材股份有限公司 模具钢及其制作方法和应用、模具
CN108396261A (zh) * 2017-11-29 2018-08-14 安徽景隆金属材料有限公司 一种专用模具钢的选材及加工处理工艺
CN112375984B (zh) * 2018-11-06 2021-09-03 江苏省无锡交通高等职业技术学校 柴油机超高压共轨燃油喷射系统针阀体用高塑性钢
CN109593929B (zh) * 2018-12-12 2020-10-30 河钢股份有限公司承德分公司 一种冷镦钢的球化退火方法
CN109487052B (zh) * 2018-12-12 2020-10-30 河钢股份有限公司承德分公司 一种含b冷镦钢的球化退火方法
CN109517949B (zh) * 2018-12-12 2020-10-30 河钢股份有限公司承德分公司 一种轴类用钢的球化退火方法
CN109628713B (zh) * 2018-12-12 2020-11-06 河钢股份有限公司承德分公司 一种低碳号钢的球化退火方法
CN109487166A (zh) * 2018-12-21 2019-03-19 北京科技大学 一种高温高强低碳热模钢及其制备方法
CN111057952A (zh) * 2019-12-31 2020-04-24 昆山奥马热工科技有限公司 高等向性热作模具钢及其热处理工艺
CN111057955A (zh) * 2020-01-21 2020-04-24 重庆优特模具有限公司 一种模具钢及其制备方法
CN111549298B (zh) * 2020-05-20 2021-02-05 北京科技大学 一种热作模具钢及其制备方法
CN111440995B (zh) * 2020-05-25 2021-02-05 江苏丰尚智能科技有限公司 一种小孔径环模的制造方法
CN114196870B (zh) * 2020-09-02 2022-07-15 宝武特种冶金有限公司 一种铝型材挤压模具钢及其制备方法
CN112251686B (zh) * 2020-09-29 2022-03-18 中国科学院金属研究所 一种超高强度纳米晶4Cr5MoWSi模具钢及其制备方法
CN116516130B (zh) * 2023-07-05 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 一种高硬度高冲击韧性Cr-Mo-V系热作模具钢及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302599A (zh) * 2008-07-01 2008-11-12 上海大学 铌微合金化高强度热作模具钢及其制备方法
CN101392353A (zh) * 2008-10-30 2009-03-25 上海大学 高锰低铬型高强韧性热作模具钢及其制备方法
JP5680461B2 (ja) * 2011-03-24 2015-03-04 山陽特殊製鋼株式会社 熱間工具鋼
CN103276298B (zh) * 2013-06-09 2015-08-05 河冶科技股份有限公司 高硬高韧冷热兼作模具钢及其生产方法

Also Published As

Publication number Publication date
CN104278200A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
CN104278200B (zh) 一种高热强性喷射成形热作模具钢及其制备方法
CN101596553B (zh) 一种应用于高速线材轧机的高速钢辊环及其制造方法
CN100485075C (zh) 一种高碳高钒高速钢复合轧辊及其热处理方法
CN102912236B (zh) 一种高性能耐磨热作模具钢及其制备工艺
CN102242316B (zh) H13模具钢及其制备方法
CN102766824B (zh) 一种耐磨高速钢辊环及其制备方法
CN110863156B (zh) 一种热作模具钢及其高效的制备方法
CN107974636A (zh) 一种高硬度高淬透性预硬化塑料模具钢及其制备方法
CN105643222A (zh) 一种汽车一轴锻造模具的加工方法
CN105154769A (zh) 一种780MPa级热轧高强度高扩孔钢及其制造方法
CN101476082B (zh) 一种高性能低成本热作模具钢
CN102653837A (zh) 一种高强韧耐磨冷作模具钢及其制备方法
CN103938096A (zh) 一种高强度高韧性热作模具钢及其制备方法
CN105779898A (zh) 一种冷作模具钢板及其制造方法
CN104561802A (zh) 一种高硬度高韧性冷作模具钢及其制备方法
CN103352170A (zh) 合金锻钢及其生产方法和应用
CN102691005A (zh) 一种低合金模具钢
CN102899589A (zh) 一种高强度非调质贝氏体钢及制备方法
CN109763078A (zh) 一种耐热合金渗碳钢及其制备方法
CN108774712A (zh) 超高热导率热冲压模具钢及其制造方法
CN100352964C (zh) 高合金冷作模具钢的生产工艺
CN106480373A (zh) 一种9.8级紧固件用非调质冷镦钢盘条及其生产方法
CN106480372A (zh) 一种8.8级紧固件用非调质冷镦钢盘条及其生产方法
CN104195439B (zh) 一种厚规格热轧双相钢板及制造方法
CN105950969A (zh) 一种高耐热奥氏体模具钢及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant