CN104271499B - 用碳前体强化的碳纳米管纤维的制备方法 - Google Patents

用碳前体强化的碳纳米管纤维的制备方法 Download PDF

Info

Publication number
CN104271499B
CN104271499B CN201380021392.3A CN201380021392A CN104271499B CN 104271499 B CN104271499 B CN 104271499B CN 201380021392 A CN201380021392 A CN 201380021392A CN 104271499 B CN104271499 B CN 104271499B
Authority
CN
China
Prior art keywords
carbon nano
tube fibre
preparation
carbon
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380021392.3A
Other languages
English (en)
Other versions
CN104271499A (zh
Inventor
丁荣镇
宋俊英
赵东焕
金秉国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foundation of Soongsil University Industry Cooperation
Original Assignee
Foundation of Soongsil University Industry Cooperation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foundation of Soongsil University Industry Cooperation filed Critical Foundation of Soongsil University Industry Cooperation
Publication of CN104271499A publication Critical patent/CN104271499A/zh
Application granted granted Critical
Publication of CN104271499B publication Critical patent/CN104271499B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/081Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing particle radiation or gamma-radiation
    • B01J19/085Electron beams only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明涉及用碳前体强化的碳纳米管纤维及其制备方法。根据本发明,碳纳米管纤维内部的空心空间被碳前体填充并且碳化,由于有效的应力传递和接触抵抗的减少而提高了力学、热学特性,并且所述特性即使在高温下也能够维持而不被破坏。

Description

用碳前体强化的碳纳米管纤维的制备方法
技术领域
本发明涉及用碳前体强化的碳纳米管纤维的制备方法。
背景技术
碳纳米管由日本电气有限公司(NEC)的饭岛博士在1991年最初发明之后,其作为最令人兴奋的新物质之一,引起了科学界和产业界的广泛关注。特别地,与传统材料相比,高分子/碳纳米管纳米复合材料具有优异的机械、化学、热学、电学、光学特性,对这些理想材料的开发汇聚了世界性的关注。高分子/碳纳米管纳米复合材料作为比现有材料强得多的复合材料,能够应用于各种最先进的IT产业等,被评价为具有多种潜在的工业应用价值。
碳纳米管通常是具有直径为1~100纳米(nm)、长度为数纳米(nm)至数十微米(μm)的高长径比(aspect ratio)的碳材料。碳纳米管具有由1个碳原子和另外3个碳原子结合构成的蜂窝形平面状碳构造干燥后形成的管状。碳纳米管也有多个种类,对应于构成纳米管的壁的数目,可以分为多壁碳纳米管(multi-walled nanotube,MWNT)、单壁碳纳米管(single-walled nanotube,SWNT)。由两个以上的壁构成的情况,称为多壁碳纳米管,而仅由一个壁构成的情况,则称为单壁碳纳米管。
碳纳米管纤维是集合了碳纳米管的结构,其内部存在大量的空心空间,因此,存在不能最大地发挥电气传导率、热传导率、机械特性的问题。
为了克服碳纳米管纤维的这些问题,在现有技术中,为了提高碳纳米管纤维的表面耐磨性,发表了用聚乙烯醇(PVA)涂覆的研究成果,美国莱斯大学的Ajayan教授的团队在Nano Lett杂志(vol.8 (9),pp2762-2766,2008年)上,报告了当碳纳米管纤维中浸渍有聚二甲硅氧烷(polydimethylsiloxane)聚合物而形成复合材料时,力学性能得到改善。
但是,没有关于将碳纳米管进行碳化而制造碳纤维的报告,对此的研究也是处于全无的状态。
在此,作为提高碳纤维的物理性能的研究的后续成果,发明人通过将碳纳米管纤维用碳前体涂覆而制得复合纤维之后,将其进行稳定化和碳化,制造碳纳米管纤维内部的空心空间被碳充满的复合纤维,确认由此制造的碳纳米管纤维的拉伸弹性率、拉伸强度和热稳定性得到强化,完成了本发明。
发明的详细说明
技术问题
本发明的目的是,提供用碳前体强化的碳纳米管纤维的制备方法。
解决问题的手段
本发明提供了用碳前体强化的碳纳米管纤维的制备方法。
发明效果
根据本发明的用碳前体强化的碳纳米管纤维具有优秀的效果,其中碳纳米管纤维内部的空心空间被碳前体填充并且碳化,由于有效的应力传递和接触抵抗的减少而提高了力学、热学特性,并且所述特性即使在高温下也能够维持而不被破坏。
附图说明
图1简略地示出了根据本发明的用碳前体强化的碳纳米管纤维的制备方法。
图2示出了纯净的碳纳米管纤维(左)和本发明的通过碳前体而被涂覆的碳纳米管纤维(右)的扫描电子显微镜图。
图3示出了纯净的碳纳米管纤维以及本发明的碳纳米管纤维的拉伸弹性率。
图4示出了纯净的碳纳米管纤维以及本发明的碳纳米管纤维的拉伸强度。
图5示出了纯净的碳纳米管纤维以及本发明的碳纳米管纤维的热分解行为。
实施发明的最佳形态
本发明提供了碳纳米管纤维的制备方法,所述方法包含以下步骤:
(a)将碳前体溶解于溶剂中,在其中浸渍碳纳米管纤维,制备涂覆有碳前体的碳纳米管纤维;
(b)干燥通过所述步骤(a)通过碳前体而被涂覆的碳纳米管纤维;
(c)将通过所述步骤(b)而被干燥的碳纳米管纤维在空气气氛下,在100~400℃下进行热处理,以进行稳定化;以及
(d)将通过所述步骤(c)而被稳定化的碳纳米管纤维在惰性气体气氛下,在500~1600℃下热处理30分钟~1小时,进行碳化。
以下,详细地说明本发明的具体步骤。
上述步骤(a)是制造通过碳前体而被涂覆的碳纳米管纤维的步骤,将碳前体溶解于溶剂中,在其中浸渍碳纳米管纤维或功能化的碳纳米管纤维,以进行涂覆。
上述碳前体,作为强化材料,在此不受限定,可以使用聚丙烯腈(polyacrylonitrile)、聚乙烯醇(polyvinyl alchol)、纤维素(cellulose)、沥青(pitch)等。
上述溶剂,在此不受限定,可以包含二甲基亚砜(dimethylsulfoxide)、二甲基甲酰胺(dimethylformamide)、二甲基戊胺(dimethylamylamine)、水、N-甲基吗啉-N-氧化物(N-methylmorpholine N-oxide)和水的混合溶液、氯化锂(lithium chloride)和二甲基乙酰胺(dimethylacetamide)的混合溶液、氢氧化钠(NaOH)和尿素(Urea)的混合溶液、喹啉(quinoline)、甲苯(toluene)等。
为了使碳纳米管纤维更好地被碳前体渗透,根据需求,可以进一步包含以下对碳纳米管纤维进行表面处理的步骤:对碳纳米管纤维进行的酸处理、紫外线照射、等离子体处理、电子束处理、表面活性剂或溶剂处理。
上述酸处理在此不受限定,可以在温度为30~100℃、浓度为4~15摩尔的酸性溶液中浸渍一定时间而进行,能够制造通过酸处理而表面被功能化的碳纳米管纤维。
上述紫外线照射在此不受限定,可以用波长100~400nm的紫外线照射10~120分钟而进行,制造通过紫外线照射过程而物理性能不降低的碳纳米管纤维。
上述等离子体处理在此不受限定,可以在氧等离子体中处理5至120分钟而进行,制造通过等离子体处理而表面被功能化的碳纳米管纤维。
上述使用溶剂的功能化,在此不受限定,可以通过浸渍在10%重量百分比的NH2OH·HCl水溶液中的过程而进行,在这时的水溶液中以解离状态存在的NH3OH+作为带酸性的离子,强力结合在碳纳米管表面这样的高电子密度的表面,在碳纳米管束之间扩散浸透,使碳纳米管纤维带有阳离子。
上述使用表面活性剂的功能化,在此不受限定,可以通过将碳纳米管纤维浸渍在十二烷基硫酸钠(sodium dodecyl sulfate)、聚乙二醇辛基苯基醚(triton X-100)、十二烷基硫酸锂(lithium dodecyl sulfate)、阿拉伯树胶(gum arabic)、木质素磺酸钠(sodium lignosulfonate)、聚苯乙烯磺酸钠(polystyrene sulfonate)等的溶液中而进行,可以通过表面活性剂处理对碳纳米管的表面赋予极性。
上述步骤(b)是干燥在步骤(a)中被涂覆的碳纳米管纤维的步骤,所述干燥过程在此不受限定,可以在50~70℃的烘箱中干燥20~30小时而进行,优选在60℃下干燥24小时。
上述步骤(c)是稳定化处理的步骤,碳纳米管纤维的稳定化处理在此不受限定,优选在空气下在100~400℃下每分钟升温0.5~1.5℃,进行20分钟~24小时的热处理。
上述步骤(d)是将碳纳米管纤维进行碳化的步骤,将碳纳米管纤维在500~1600℃下在惰性气体气氛下进行30分钟至1小时的热处理,上述惰性气体在此不受限定,优选使用氮气、氩气或氦气。
上述步骤(d)之后,还可以进一步包含步骤(e),其中将被碳化的碳纳米管纤维在惰性气体气氛下在1700~3000℃下进行30分钟至1小时的热处理,以进行石墨化。上述惰性气体在此不受限定,优选使用氮气、氩气或氦气。
通过上述方法制造的用碳前体强化的碳纳米管纤维,与纯净的碳纳米管纤维相比,其拉伸弹性率增强约7~10倍,拉伸强度增强约3~5倍,热稳定性得到大幅改善。
因此,根据本发明的碳纳米管纤维并非粒子,而是具有连续的纤维形状,与纯净的碳纳米管纤维相比,提高了拉伸弹性率、拉伸强度以及热稳定性,编织成非常柔软的纤维,不仅能制造组织,还能制造三维结构,由于其断裂伸长率达到约20%,因此能够容易地制造二维或三维结构。
具体实施方式
以下,根据实施例,更加详细地说明本发明。但是这些实施例仅仅是说明本发明的例子,并不应理解为限制本发明的范围。
实施例1 用聚丙烯腈强化的碳纳米管纤维的制备
将作为催化剂的重量百分比为2.3%的二茂铁(ferrocene)、作为活性剂的重量百分比为1.5%的噻吩(thiophene)和碳源丙酮(acetone)混合,将通过超声波处理装置而被分散的溶液和氢气以800mL/分钟的速度一起投入垂直炉。此时,设置炉的温度为1100℃,合成碳纳米管纤维。从电子炉的下方卷取(winding)碳纳米管纤维,以3%重量百分比的浓度将二甲基亚砜(DMSO)与聚丙烯腈(PAN)聚合物混合,在90℃加热3小时制得聚丙烯腈溶液。然后,用3%重量百分比浓度的聚丙烯腈溶液涂覆碳纳米管纤维。将被聚丙烯腈溶液涂覆的碳纳米管纤维在60℃的烘箱中干燥一天。然后,将通过聚丙烯腈溶液而被涂覆的碳纳米管复合纤维每分钟1℃地升温,在300℃下氧化1小时以进行稳定化,在氮气气氛下在1000℃下碳化1小时,制备用聚丙烯腈强化的碳纳米管纤维。
在图1至5中分别示出了本发明的用碳前体涂覆的碳纳米管纤维的制备过程、扫描电子显微镜照片、物理性能(拉伸弹性率、拉伸强度)以及热稳定性。
如图2所示,可以确认根据本发明的碳纳米管纤维比纯净的碳纳米管纤维的表面更加光滑。
并且,如图3至5所示,可以确认,与纯净的碳纳米管纤维相比,根据本发明的碳纳米管纤维的拉伸弹性率、拉伸强度分别增加了约8倍、约3.4倍,热稳定性也得到改善。
实施例2 用聚乙烯醇强化的碳纳米管纤维的制备
将聚乙烯醇和水以3%重量百分比的浓度混合,在90℃加热4小时,制备聚乙烯醇水溶液。将碳纳米管纤维用氧等离子体(流量速度:Ar-100ml·m、O2-1sccm)处理30分钟进行表面亲水化。此后,将功能化的碳纳米管纤维浸渍在前述制得的聚乙烯醇水溶液中,然后用60℃温度的干燥器干燥一日。将用聚乙烯醇处理过的碳纳米管纤维放入含有碘的密封容器中,在80℃用碘蒸汽处理12小时。此后,将用碘处理的碳纳米管纤维每分钟1℃地升温,在200℃下稳定化处理24小时。将稳定化处理后的碳纳米管复合纤维在氩气气氛下在1200℃碳化30分钟,制得用聚乙烯醇强化的碳纳米管纤维。
实施例3 用纤维素强化的碳纳米管纤维的制备
将聚合度为210的纤维素在设定为60℃的干燥器中干燥一天后,在常温下以2%重量百分比将LiCl (8%重量百分比)/DMAc(Dimethylacetamide)溶液与纤维素混合。此后,将与溶剂混合的纤维素在60℃下搅拌2小时,使纤维素溶解。将碳纳米管纤维投入填充有5摩尔硝酸的反应器,在90℃下搅拌2小时,进行功能化。将用硝酸进行表面处理的碳纳米管纤维用蒸馏水中和,然后用150℃的烘箱干燥12小时,制得功能化的碳纳米管纤维。将功能化的碳纳米管纤维浸渍在纤维素溶液中,使纤维素充分地浸透在碳纳米管纤维的内部。将用纤维素强化的碳纳米管纤维用60℃的烘箱干燥一天,将干燥的纤维在200℃的空气中稳定化处理20分钟之后,将稳定化的纤维在氮气气氛下在1000℃碳化30分钟,制得用纤维素强化的碳纳米管纤维。
实施例4 用沥青强化的碳纳米管纤维的制备
将沥青(pitch)和喹啉(quinoline)以1%的重量百分比混合,在60℃下加热2小时。将碳纳米管纤维浸渍在沥青溶液中,制得用沥青涂覆的碳纳米管纤维。此后,将涂覆有沥青的碳纳米管复合纤维在烘箱中干燥一日,去除喹啉。将用沥青强化的碳纳米管纤维每分钟1℃地升温,在310℃的空气气氛下稳定化处理2小时。然后将稳定化处理后的碳纳米管纤维在氮气气氛下在1100℃热处理1小时,制得用沥青强化的碳纳米管纤维。

Claims (12)

1.碳纳米管纤维的制备方法,所述方法包含以下步骤:
(a)制备碳纳米管纤维之后,将碳纳米管纤维通过选自以下步骤中的任意步骤进行前处理:酸处理步骤、紫外线照射步骤、等离子体处理步骤、电子束处理步骤、浸渍在溶剂或表面活性剂中的步骤;
(b)将碳前体溶解在溶剂中,在其中浸渍经过所述前处理的碳纳米管纤维,制备涂覆有碳前体的碳纳米管纤维;
(c)干燥通过所述步骤(b)通过碳前体而被涂覆的碳纳米管纤维;
(d)将通过所述步骤(c)而被干燥的碳纳米管纤维在空气气氛下,在100~400℃下进行热处理,以进行稳定化;以及
(e)将通过所述步骤(d)而被稳定化的碳纳米管纤维在惰性气体气氛下,在500~1600℃下热处理30分钟~1小时,以进行碳化。
2.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(e)之后,还包含以下步骤:
(f)将被碳化的碳纳米管纤维在惰性气体气氛下在1700~3000℃下进行30分钟至1小时的热处理,以进行石墨化。
3.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(a)中,所述酸处理,是将碳纳米管纤维在30~100℃下浸渍在4~15摩尔浓度的酸性溶液中。
4.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(a)中,所述紫外线照射,是用波长100~400nm的紫外线照射10~120分钟。
5.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(a)中,所述电子束处理,是用吸收剂量为10kGy至500kGy的电子束进行处理。
6.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(a)中,所述溶剂的处理,是将碳纳米管纤维浸渍在5~15%重量百分比的NH2OH·HCl水溶液中。
7.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(a)中,所述表面活性剂的处理,选自以下中的至少一种:十二烷基硫酸钠(sodium dodecyl sulfate)、聚乙二醇辛基苯基醚(triton X-100)、十二烷基硫酸锂(lithium dodecyl sulfate)、阿拉伯树胶(gum arabic)、木质素磺酸钠(sodium lignosulfonate)、聚苯乙烯磺酸钠(polystyrenesulfonate)。
8.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(b)中,碳前体选自以下中的至少一种:聚丙烯腈(polyacrylonitrile)、聚乙烯醇(polyvinyl alchol)、纤维素(cellulose)以及沥青(pitch)。
9.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(b)中,溶剂选自以下中的至少一种:二甲基亚砜(dimethylsulfoxide)、二甲基甲酰胺(dimethylformamide)、二甲基戊胺(dimethylamylamine)、水、N-甲基吗啉-N-氧化物(N-methylmorpholine N-oxide)和水的混合溶液、氯化锂(lithium chloride)和二甲基乙酰胺(dimethylacetamide)的混合溶液、氢氧化钠(NaOH)和尿素(Urea)的混合溶液、喹啉(quinoline)、甲苯(toluene)。
10.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(c)中,所述干燥是在50~70℃下进行20~30小时。
11.根据权利要求1所述的碳纳米管纤维的制备方法,其中在所述步骤(d)中,所述热处理是每分钟升温0.5~1.5℃,进行20分钟~24小时。
12.根据权利要求1或2所述的碳纳米管纤维的制备方法,其中所述惰性气体是氮气、氩气或氦气。
CN201380021392.3A 2012-05-30 2013-04-11 用碳前体强化的碳纳米管纤维的制备方法 Expired - Fee Related CN104271499B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0057375 2012-05-30
KR1020120057375A KR101374234B1 (ko) 2012-05-30 2012-05-30 탄소전구체로 보강된 탄소나노튜브섬유의 제조방법
PCT/KR2013/003050 WO2013180383A1 (ko) 2012-05-30 2013-04-11 탄소전구체로 보강된 탄소나노튜브섬유의 제조방법

Publications (2)

Publication Number Publication Date
CN104271499A CN104271499A (zh) 2015-01-07
CN104271499B true CN104271499B (zh) 2017-10-24

Family

ID=49673538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380021392.3A Expired - Fee Related CN104271499B (zh) 2012-05-30 2013-04-11 用碳前体强化的碳纳米管纤维的制备方法

Country Status (5)

Country Link
US (1) US10065862B2 (zh)
EP (1) EP2857354B1 (zh)
KR (1) KR101374234B1 (zh)
CN (1) CN104271499B (zh)
WO (1) WO2013180383A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457130B1 (ko) * 2013-10-24 2014-10-31 한국에너지기술연구원 탄소나노섬유의 제조방법
KR101726823B1 (ko) * 2015-11-25 2017-04-13 한국과학기술연구원 고성능 탄소나노튜브/탄소 복합섬유의 제조방법 및 그로부터 제조되는 탄소나노튜브/탄소 복합섬유
KR102059237B1 (ko) 2016-10-31 2019-12-30 주식회사 엘지화학 정렬도가 향상된 탄소나노튜브 섬유 집합체 제조 방법
KR102098989B1 (ko) 2017-01-04 2020-04-08 주식회사 엘지화학 탄소나노튜브 섬유 집합체 강도 조절 방법
KR102170675B1 (ko) 2017-06-23 2020-10-27 주식회사 엘지화학 탄소 나노튜브 섬유 집합체의 인장강도 향상 방법
KR102012429B1 (ko) * 2018-02-09 2019-11-04 한국과학기술연구원 기계적 특성 및 전기적 특성이 개선된 탄소나노튜브섬유 및 그 제조방법
CN108755126B (zh) * 2018-05-08 2021-06-25 中国科学院宁波材料技术与工程研究所 电化学聚合改性表面处理碳纤维的方法及碳纤维复合材料
US10533266B2 (en) * 2018-05-11 2020-01-14 The Boeing Company Layered carbon fiber
CN111101371B (zh) * 2018-10-25 2022-07-26 中国科学院苏州纳米技术与纳米仿生研究所 一种高性能碳纳米管/碳复合纤维及其快速制备方法
CN111170402B (zh) * 2020-02-12 2021-07-02 东华大学 利用木质素基碳纳米管去除水体中全氟辛酸的方法
CN111304799B (zh) * 2020-04-10 2022-05-31 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管纤维高温电加热的无氩气自保护方法及其应用
CN112591736B (zh) * 2020-12-16 2022-12-20 四川大学 一种纤维素辅助分散碳纳米管的方法
KR102651011B1 (ko) * 2023-03-10 2024-03-25 주식회사 익성 셀룰로오스 니트 탄소섬유 원단의 제조 방법, 셀룰로오스 니트 탄소섬유 원단, 흑연화 섬유 원단의 제조 방법 및 흑연화 섬유 원단

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181964A (zh) * 2011-04-02 2011-09-14 东华大学 一种制备聚丙烯腈基碳纤维的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595903B2 (ja) * 1994-07-05 1997-04-02 日本電気株式会社 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
US20060057290A1 (en) * 2004-05-07 2006-03-16 Glatkowski Paul J Patterning carbon nanotube coatings by selective chemical modification
CN101437663B (zh) * 2004-11-09 2013-06-19 得克萨斯大学体系董事会 纳米纤维带和板以及加捻和无捻纳米纤维纱线的制造和应用
US20110280793A1 (en) 2004-12-22 2011-11-17 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
US7862766B2 (en) * 2006-05-16 2011-01-04 Florida State University Research Foundation, Inc. Method for functionalization of nanoscale fiber films
WO2008140504A2 (en) 2006-12-15 2008-11-20 Los Alamos National Security, Llc Preparation of array of long carbon nanotubes and fibers therefrom
WO2008112349A2 (en) 2007-01-30 2008-09-18 Georgia Tech Research Corporation Carbon fibers and films and methods of making same
US7833504B2 (en) * 2007-08-27 2010-11-16 The Research Foundation Of State University Of New York Silylated carbon nanotubes and methods of making same
JP5509559B2 (ja) * 2008-09-10 2014-06-04 東レ株式会社 カーボンナノチューブ連続繊維の製造方法および製造装置
US8460711B2 (en) * 2010-08-30 2013-06-11 Fatemeh Atyabi Poly(citric acid) functionalized carbon nanotube drug delivery system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181964A (zh) * 2011-04-02 2011-09-14 东华大学 一种制备聚丙烯腈基碳纤维的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
碳纳米管表面处理对碳纳米管/氟橡胶复合材料形貌及界面作用的影响;徐涛等;《高分子材料科学与工程》;20110531;第27卷(第5期);第71-74页 *
碳纳米管表面处理技术的研究;曹茂盛等;《中国表面工程》;20021231(第4期);第32-36页 *
表面活性剂在碳纳米管表面处理中的应用;杜岩滨等;《精细化工》;20041031;第21卷;第1-5页 *

Also Published As

Publication number Publication date
WO2013180383A1 (ko) 2013-12-05
KR20130134102A (ko) 2013-12-10
US10065862B2 (en) 2018-09-04
EP2857354B1 (en) 2021-11-17
US20150069666A1 (en) 2015-03-12
EP2857354A1 (en) 2015-04-08
KR101374234B1 (ko) 2014-03-13
CN104271499A (zh) 2015-01-07
EP2857354A4 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
CN104271499B (zh) 用碳前体强化的碳纳米管纤维的制备方法
Yang et al. Building nanoporous metal–organic frameworks “armor” on fibers for high-performance composite materials
Yadav et al. High Performance Fibers from Carbon Nanotubes: Synthesis, Characterization, and Applications in Composites A Review
Riazi et al. Ti 3 C 2 MXene–polymer nanocomposites and their applications
Zhu et al. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites
Liu et al. Functionalization with MXene (Ti3C2) enhances the wettability and shear strength of carbon fiber-epoxy composites
Park et al. High-modulus and strength carbon nanotube fibers using molecular cross-linking
Wang et al. Spray-drying-assisted layer-by-layer assembly of alginate, 3-aminopropyltriethoxysilane, and magnesium hydroxide flame retardant and its catalytic graphitization in ethylene–vinyl acetate resin
Chen et al. Plasma activation of carbon nanotubes for chemical modification
Yoonessi et al. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites
Beese et al. Bio-inspired carbon nanotube–polymer composite yarns with hydrogen bond-mediated lateral interactions
Fang et al. Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors
Zhou et al. MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites
Lin et al. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer
Li et al. A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes− azide polymer composites
Gao et al. Bioinspired modification via green synthesis of mussel-inspired nanoparticles on carbon fiber surface for advanced composite materials
Cui et al. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor
Shariatnia et al. Hybrid cellulose nanocrystal-bonded carbon nanotubes/carbon fiber polymer composites for structural applications
Cheng et al. Electrospinning preparation and mechanical properties of PVA/HNTs composite nanofibers
Gao et al. Direct intertube cross-linking of carbon nanotubes at room temperature
Koning et al. Polymer carbon nanotube composites: the polymer latex concept
Zhang et al. Rapid in situ polymerization of polyacrylonitrile/graphene oxide nanocomposites as precursors for high-strength carbon nanofibers
KR101415255B1 (ko) 기계적 강도 향상을 위한 탄소나노튜브섬유 후처리 방법
Trakakis et al. Epoxidized multi-walled carbon nanotube buckypapers: A scaffold for polymer nanocomposites with enhanced mechanical properties
Park et al. Surface treatment and sizing of carbon fibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171024

Termination date: 20200411