CN104269586A - 窄带通频率选择表面 - Google Patents

窄带通频率选择表面 Download PDF

Info

Publication number
CN104269586A
CN104269586A CN201410500094.9A CN201410500094A CN104269586A CN 104269586 A CN104269586 A CN 104269586A CN 201410500094 A CN201410500094 A CN 201410500094A CN 104269586 A CN104269586 A CN 104269586A
Authority
CN
China
Prior art keywords
periodic structure
becket
cycle
optical window
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410500094.9A
Other languages
English (en)
Inventor
张龙
白正元
居永凤
姜雄伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201410500094.9A priority Critical patent/CN104269586A/zh
Publication of CN104269586A publication Critical patent/CN104269586A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

一种窄带通频率选择表面,构成包括金属环周期结构、光窗介质层和金属网栅周期结构,所述的金属环周期结构和金属网栅周期结构附于光窗介质层的表面上或嵌入所述的介质层内部,所述的金属环周期结构的周期为P,该金属环结构的周期P包含金属环的边长L和相邻金属环之间的最短间隔g;所述的金属网栅周期结构的周期为d,所述的P为所述的d的整数倍。本发明可在保证可见/红外窗口高通透性的同时,在1~18GHz雷达波段具有窄带通滤波的频率选择特性,并具有通带位置灵活可调,极化角度不敏感和超薄的特点。该方案适用于遥测遥感、医疗诊断、保密通讯、航天航空等领域的光学窗口的宽频谱电磁屏蔽和滤波。

Description

窄带通频率选择表面
技术领域
本发明涉及电磁屏蔽与滤波,特别是一种窄带通频率选择表面。
技术背景
伴随着科技的不断发展与进步,空间电磁环境也日益复杂,遥测遥感,医疗诊断,保密通讯,航空航天装备等领域的光学窗口存在着严重的电磁干扰问题,不仅有来自宇宙射线,卫星通信,电视广播等外部的电磁波信号对系统内部工作器件产生干扰,内部的电磁信号也会产生泄露,对外界产生影响。由于光学窗口对电磁波的通透性,在军事应用上将会成为飞行器暴露的重要因素之一。同时,在雷达探测、电磁隐身等技术不断突破的今天,对电磁屏蔽、选择性滤波等技术也提出了更高的要求,以适应更加复杂的电磁环境下的雷达探测与通讯、飞行器隐身等应用需求。频率选择表面(FSS)是由特定形状的单元图形构成的一种二维周期阵列结构,已经在微波、红外直至可见光波段得到广泛应用及其深入研究。采用FSS制作飞行兵器隐身雷达罩是目前国内外相关学者的研究热点。
光学窗口的微波电磁屏蔽及滤波技术的解决方案主要基于光窗材料的周期金属结构(即频率选择表面)。通过在窗口材料外部制作有周期阵列的导电金属结构,在特定的周期尺寸和金属线宽下可满足光学窗口的高透过率和宽频段微波电磁屏蔽及滤波的双重要求。因此,该结构在光学窗口电磁屏蔽和电磁滤波技术领域获得了广泛的应用:
1、专利201310340225.7“混合单元频率选择表面”由导电金属屏上周期排列的开孔单元构成,每个开孔单元的相邻两条或者四条周期边界上设有条形孔,每个开孔单元的条形孔的开孔位置,方向和尺寸一致,每个条形孔的长边等于条形孔开孔位置的周期边界的长度,该结构设计解决了现有技术中单屏频率选择表面的通带和阻带频段很近时难以兼顾通带和阻带的性能。但该结构设计采用高占空比(占空比>4)的金属结构实现微波频段的带通滤波功能,未考虑在光学窗口中的应用,即无法实现可见至红外波段的高通透性,限制了其应用范围。
2、专利201310385578.9“高性能雷达/红外双波段带通频率选择表面”提供了一种高性能雷达/红外双波段带通FSS,包括两层相同的光学透明FSS和两层光学透明FSS中间的耦合电介质,两层光学透明FSS平行且相对于耦合电介质对称,解决了现有技术中单层光学透明FSS的光学透过率和屏蔽效率矛盾以及多层金属网栅阵列结构无法实现雷达/红外双波带通功能的技术问题。但该结构设计仍较为复杂,红外透过率仅为77%,且双层网栅结构光学衍射效应更加明显,严重影响光窗波段的实际信号传输和接收效果。
发明内容
本发明的目的是提供一种窄带通频率选择表面,该结构在保证可见/红外光高通透性的同时,在雷达波段具有窄带通频率选择特性,并具有通带位置灵活可调、极化角度不敏感和超薄的特点。
本发明的技术方案如下:
一种窄带通频率选择表面,其特点在于其构成包括金属环周期结构、光窗介质层和金属网栅周期结构,所述的金属环周期结构和金属网栅周期结构附于光窗介质层的表面上或嵌入所述的介质层内部,所述的金属环周期结构的周期为P,该金属环结构的周期P包含金属环的边长L和相邻金属环之间的最短间隔g;所述的金属网栅周期结构的周期为d,所述的P为所述的d的整数倍。
所述的金属环周期结构为方环、圆环或正八边型环的周期结构。
所述的金属环周期结构和金属网栅周期结构的材料为金、银或铜。
所述的光窗介质层的材料为玻璃、聚合物介质板、陶瓷材料或柔性塑料薄膜,厚度为150~300μm。
所述的金属环周期结构和金属网栅周期结构的厚度均为5~10μm,线宽均为20~40μm;所述的金属环结构的周期P为2~10mm,金属环的边长或直径为1.9~9.5mm,相邻金属环之间的最短间隔g为200~500μm;所述的金属网栅周期d为500~1000μm。
本发明的技术效果如下:
(1)本发明的窄带通频率选择表面,采用长径比大于200的金属线作为金属周期结构的基本组成部分,具有低占空比特点(<1%),可实现光学窗口的高通透性,可见/红外光平均透过率大于85%;
(2)本发明的窄带通频率选择表面,能够实现1~18GHz雷达波段的窄带通滤波特性,且结构简单、带通频点的位置灵活可调。
附图说明
图1为本发明实施例1的方型金属环结构2×2周期单元俯视图。
图2为本发明实施例1的方型金属环结构2×2周期单元侧视图。
图3为本发明实施例1的方型金属环结构图。
图4为本发明实施例1的金属网栅结构图。
图5为本发明实施例2的圆型金属环结构周期单元俯视图。
图6为本发明实施例1、11的雷达波通带传输仿真特性曲线。
具体实施方式
下面结合附图对本发明做详细说明。
如图1-4所示,本发明的窄带通频率选择表面,为“金属+介质+金属”的三层结构,包括金属环周期结构1、光窗介质层2和金属网栅周期结构3,其中光窗介质层的厚度为h。
如图3所示,所述窄带通频率选择表面的金属环周期结构为方型金属环周期结构,其周期为P,方型环的边长为L,线宽为w1。
如图4所示,所述窄带通频率选择表面的金属网栅周期结构,金属线宽为w2,周期为d。
如图1-4所示,方型金属环的周期P为金属网栅的周期d的整数倍,在整体结构的单个周期内金属环边缘与最外侧金属网栅线的水平距离为f,两层金属结构的厚度均为10μm。
实施例1
当P=4mm,L=3.8mm,d=0.8mm,w1=w2=30μm,f=300μm,N=5,h=200μm,每个整体结构周期单元有一个方型金属环和5×5根金属网栅线,方环边缘与最外侧金属网栅线的水平距离为300μm。光窗介质层的材料为石英玻璃(介电常数约为4.3),金属环周期结构和金属网栅周期结构的金属选为金(电导率为4×107S/m)时,依据约束条件,得到如图1~4所示的周期结构示意图,依据该结构的低占空比和石英玻璃的透过率(>90%),结果表明,本发明窄带通频率选择表面的光学窗口的透过率大于85%。
对得到的窄带通频率选择表面的雷达波带通传输特性进行计算,结果如图6中曲线a所示,从图中可以看出,本发明的雷达波段频率选择表面具有窄带通(7.66GHz处峰值透过率-1.28dB)、截止波段屏蔽效率高(<-20dB)的滤波特性。
当改变实施例1中金属结构中方型金属环的边长、线宽、周期和金属网栅周期结构的线宽、周期以及光窗介质层厚度时,得到表1所列实施例2~10,窄带通频率选择表面的雷达波带通传输曲线仍保持相似特性,只是最大带通频点处的峰值透过率及频率发生相应变化,结果如表1所示。
表1
实施例11
当实施例1中的金属环周期结构为圆环周期结构4时,如图5所示,圆环直径2R为3.8μm,线宽w3为20μm,其他参数与实施例1相同,对得到的窄带通频率选择表面的雷达波带通传输特性进行计算,结果见图6中曲线b,该结果与方环型结构的带通滤波效果相似(11.12GHz处峰值透过率-1.02dB)。
实施例12~13
当实施例1中的金属环周期结构和金属网栅周期结构的金属线厚度取5、8μm时,所述的窄带同频率选择表明的带通滤波效果相似与实施例1相同。
以上所述主要阐述了本发明的核心设计思想,其中若干具体实施方式和/或实施例,不应当构成对本发明的限制。对于本技术领域的普通技术人员来说,在不脱离本发明基本思想的前提下,还可以做出若干改进和润饰,而这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种窄带通频率选择表面,其特征在于其构成包括金属环周期结构(1)、光窗介质层(2)和金属网栅周期结构(3),所述的金属环周期结构(1)和金属网栅周期结构(3)附于光窗介质层的表面上或嵌入所述的介质层(2)内部,所述的金属环周期结构(1)的周期为P,该金属环结构的周期P包含金属环的边长L和相邻金属环之间的最短间隔g;所述的金属网栅周期结构(3)的周期为d,所述的P为所述的d的整数倍。
2.根据权利要求1所述的窄带通频率选择表面,其特征在于所述的金属环周期结构为方环、圆环或正八边型环的周期结构。
3.根据权利要求1或权利要求2所述的窄带通频率选择表面,其特征在于所述的金属环周期结构(1)和金属网栅周期结构(3)的材料为金、银或铜。
4.根据权利要求1所述的窄带通频率选择表面,其特征在于所述的光窗介质层的材料为玻璃、聚合物介质板、陶瓷材料或柔性塑料薄膜,厚度为150~300μm。
5.根据权利要求1至4任一项所述的窄带通频率选择表面,其特征在于所述的金属环周期结构(1)和金属网栅周期结构(3)的厚度均为5~10μm,线宽均为20~40μm;所述的金属环结构的周期P为2~10mm,金属环的边长或直径为1.9~9.5mm,相邻金属环之间的最短间隔g为200~500μm;所述的金属网栅周期d为500~1000μm。
CN201410500094.9A 2014-09-26 2014-09-26 窄带通频率选择表面 Pending CN104269586A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410500094.9A CN104269586A (zh) 2014-09-26 2014-09-26 窄带通频率选择表面

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410500094.9A CN104269586A (zh) 2014-09-26 2014-09-26 窄带通频率选择表面

Publications (1)

Publication Number Publication Date
CN104269586A true CN104269586A (zh) 2015-01-07

Family

ID=52161091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410500094.9A Pending CN104269586A (zh) 2014-09-26 2014-09-26 窄带通频率选择表面

Country Status (1)

Country Link
CN (1) CN104269586A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887032A (zh) * 2016-05-10 2016-08-24 中国建筑材料科学研究总院 屏蔽光窗及其制备方法
CN109407252A (zh) * 2018-12-12 2019-03-01 中国工程物理研究院应用电子学研究所 一种高电磁屏蔽光窗及其制备方法
CN111129780A (zh) * 2019-12-28 2020-05-08 华南理工大学 一种改善玻璃材料在5g毫米波频段斜入射特性的结构
CN111555037A (zh) * 2020-05-19 2020-08-18 中国人民解放军空军工程大学 一种具有极化选择特性的时域开关调控频率选择表面
CN111565554A (zh) * 2020-06-10 2020-08-21 北京环境特性研究所 一种多光谱透明微波吸收材料及其制备方法
CN112292014A (zh) * 2020-10-19 2021-01-29 哈尔滨工业大学 基于相变材料和石墨烯的微波透射通带可调高透光光窗
CN113660843A (zh) * 2021-08-13 2021-11-16 北京环境特性研究所 一种窗口玻璃及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950824A (zh) * 2010-07-28 2011-01-19 哈尔滨工业大学 一种毫米波带通金属网栅结构
JP2014150433A (ja) * 2013-02-01 2014-08-21 Mitsubishi Electric Corp 積層構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950824A (zh) * 2010-07-28 2011-01-19 哈尔滨工业大学 一种毫米波带通金属网栅结构
JP2014150433A (ja) * 2013-02-01 2014-08-21 Mitsubishi Electric Corp 積層構造

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887032A (zh) * 2016-05-10 2016-08-24 中国建筑材料科学研究总院 屏蔽光窗及其制备方法
CN109407252A (zh) * 2018-12-12 2019-03-01 中国工程物理研究院应用电子学研究所 一种高电磁屏蔽光窗及其制备方法
CN111129780A (zh) * 2019-12-28 2020-05-08 华南理工大学 一种改善玻璃材料在5g毫米波频段斜入射特性的结构
CN111555037A (zh) * 2020-05-19 2020-08-18 中国人民解放军空军工程大学 一种具有极化选择特性的时域开关调控频率选择表面
CN111565554A (zh) * 2020-06-10 2020-08-21 北京环境特性研究所 一种多光谱透明微波吸收材料及其制备方法
CN111565554B (zh) * 2020-06-10 2022-05-24 北京环境特性研究所 一种多光谱透明微波吸收材料及其制备方法
CN112292014A (zh) * 2020-10-19 2021-01-29 哈尔滨工业大学 基于相变材料和石墨烯的微波透射通带可调高透光光窗
CN113660843A (zh) * 2021-08-13 2021-11-16 北京环境特性研究所 一种窗口玻璃及其制备方法
CN113660843B (zh) * 2021-08-13 2024-01-09 北京环境特性研究所 一种窗口玻璃及其制备方法

Similar Documents

Publication Publication Date Title
CN104269586A (zh) 窄带通频率选择表面
US9502777B2 (en) Artificial microstructure and artificial electromagnetic material using the same
Natarajan et al. A compact frequency selective surface with stable response for WLAN applications
CN103296409B (zh) 宽频带超材料天线罩及天线系统
CN106793733A (zh) 双网孔式红外波段双带通光学窗电磁屏蔽结构
CN106413359B (zh) 多层石墨烯网栅/金属网栅层叠结构的双向吸波强电磁屏蔽光窗
CN109586039B (zh) 一种吸/透特性石墨烯频选复合超材料周期结构及天线罩
CN103369939A (zh) 电磁屏蔽光窗
CN104485515A (zh) 加载集总元件的宽带吸波材料
CN103178354A (zh) 一种利用编织方式抑制无源互调的网状反射面天线
CN210404057U (zh) 基于石墨烯的透射动态可调柔性频率选择吸波器
CN106793732A (zh) 几何中心型红外波段双带通光学窗电磁屏蔽结构
CN101917837B (zh) 一种具有经纬形网栅结构的电磁屏蔽共形光学窗
CN103687462B (zh) 宽频谱电磁屏蔽光窗
CN204706637U (zh) 超材料滤波结构及具有其的超材料天线罩和天线系统
CN108718006A (zh) 一种三波段拓扑超材料太赫兹吸波器
CN106413362B (zh) 石墨烯网栅与透明导电薄膜双向吸波透明电磁屏蔽器件
CN106714533B (zh) 具有石墨烯与双层金属网栅的透明双向吸波电磁屏蔽器件
CN204156097U (zh) 加载集总元件的宽带吸波材料
CN106659099B (zh) 石墨烯网栅与双层金属网栅透明电磁屏蔽器件
CN110048201A (zh) 多频段太赫兹带阻滤波器
CN106413357B (zh) 基于石墨烯网栅与透明导电薄膜层叠结构的电磁屏蔽光窗
CN205051003U (zh) 超材料吸波结构、防护罩及电子系统
US20130000970A1 (en) Electromagnetic shield
CN203859221U (zh) 陶瓷天线罩

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150107