CN104242766A - 一种凸极式永磁同步电机弱磁区域的转矩控制方法 - Google Patents

一种凸极式永磁同步电机弱磁区域的转矩控制方法 Download PDF

Info

Publication number
CN104242766A
CN104242766A CN201410446706.0A CN201410446706A CN104242766A CN 104242766 A CN104242766 A CN 104242766A CN 201410446706 A CN201410446706 A CN 201410446706A CN 104242766 A CN104242766 A CN 104242766A
Authority
CN
China
Prior art keywords
sampling period
reference voltage
torque
kth
kth sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410446706.0A
Other languages
English (en)
Other versions
CN104242766B (zh
Inventor
李红梅
周亚男
刘子豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201410446706.0A priority Critical patent/CN104242766B/zh
Publication of CN104242766A publication Critical patent/CN104242766A/zh
Application granted granted Critical
Publication of CN104242766B publication Critical patent/CN104242766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种凸极式永磁同步电机弱磁区域的转矩控制方法,其特征是:基于凸极式永磁同步电机的转矩估计,将指令转矩与转矩估计进行比较,通过单转矩闭环PI调节器生成逆变器参考电压矢量的弱磁区相位角,鉴于逆变器参考电压矢量的弱磁区相位角和电机输出的电磁转矩之间存在单调关系,单独控制逆变器参考电压矢量的弱磁区相位角实现控制系统在弱磁区的动态转矩控制。本发明有效克服了传统的基于双电流PI调节器闭环控制的凸极式永磁同步电机控制系统运行于弱磁区时出现的调节器饱和故障且兼具鲁棒性强的技术优势,能够实现电动汽车电驱动系统安全可靠地持续运行。

Description

一种凸极式永磁同步电机弱磁区域的转矩控制方法
技术领域
本发明涉及电动汽车用凸极式永磁同步电机弱磁区域的转矩控制方法,实现凸极式永磁同步电机在弱磁区域的转矩控制。
背景技术
随着能源危机的加深,环境污染日趋严重,国家十二五中长期规划明确指出新能源电动汽车将是重点发展方向,随着政策措施的落实,市场配套条件的完善,新能源电动汽车将是公民绿色出行首选方式之一。
电驱动系统是纯电动汽车唯一的动力输出,其驱动电机多采用永磁同步电机,相对于表贴式永磁同步电机,凸极式永磁同步电机的永磁体嵌入转子磁钢内部,机械强度大大增强,满足车用电机高速运行工况;此外,因其电机生成的电磁转矩中含有磁阻转矩,转矩输出性能得以提升,增强了整车动力性。但是,凸极式永磁同步电机驱动系统在弱磁区域运行时,受永磁体材料的非线性B-H曲线特性、电机凸极式拓扑结构以及汽车实际运行时复杂工况影响,其直轴磁路和交轴磁路易出现磁路饱和及交叉耦合,使基于双电流闭环控制的PI调节器出现饱和失调的故障,导致系统的转矩控制精度下降,严重时甚至导致系统失稳。
为了抑制电流PI调节器饱和失调故障,最初采用前馈解耦控制方案,但前馈解耦控制方案对电机参数的依耐性强,实际控制效果不佳。为此,后续提出了单电流调节器控制方案,定子直轴电流闭环控制的PI调节器生成定子直轴电压指令,而定子交轴电压指令则采用查表法直接获取,该方案虽能有效避免电流PI调节器饱和,但其定子交轴电压指令是离线获取,而满足电机实际运行工况的定子交轴电压指令是难以离线准确计算获取的。
发明内容
本发明是为了克服上述现有技术所存在的不足,提出一种车用凸极式永磁同步电机在弱磁区区域的转矩控制方法,实现电动汽车电驱动系统安全、稳定及持续运行。
本发明为解决技术问题采用如下技术方案:
本发明凸极式永磁同步电机弱磁区域的转矩控制方法,设置凸极式永磁同步电机的控制系统包括:恒转矩区电压指令发生器、弱磁区电压指令发生器、SVPWM调制模块、逆变器、电流传感器、位置传感器和电压传感器;所述恒转矩区电压指令发生器包括恒转矩区定子电流指令表、恒转矩区定子直轴电流PI调节器和恒转矩区定子交轴电流PI调节器;所述弱磁区电压指令发生器包括转矩估计模块和转矩闭环PI调节器;其特征是所述转矩控制方法按如下步骤进行:
步骤一、设定控制系统运行的采样周期为Ts
步骤二、按如下方式获得第k个采样周期实际定子直轴电流id(k),第k个采样周期实际定子交轴电流iq(k),第k个采样周期转子实际位置角α(k)和第k个采样周期转子实际转速ωm(k)。
利用电流传感器检测获得第k个采样周期定子a相电流ia(k)和第k个采样周期定子b相电流ib(k),利用位置传感器检测获得第k个采样周期转子实际位置角α(k),通过式(1)进行坐标变换,获得基于转子磁场定向的同步旋转坐标系下凸极式永磁同步电机第k个采样周期实际定子直轴电流id(k)和第k个采样周期实际定子交轴电流iq(k):
i d ( k ) i q ( k ) = 2 3 cos α ( k ) cos ( α ( k ) - 2 3 π ) cos ( α ( k ) + 2 3 π ) - sin α ( k ) - sin ( α ( k ) - 2 3 π ) - sin ( α ( k ) + 2 3 π ) i a ( k ) i b ( k ) - ( i a ( k ) + i b ( k ) ) - - - ( 1 )
式(1)中,k≥1且k取为正整数,k=1,2,3,…;
利用第k个采样周期转子实际位置角α(k)计算获得第k个采样周期转子实际转速ωm(k)。
步骤三、控制系统运行于恒转矩区时,利用恒转矩区电压指令发生器获得第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令并按如下步骤判断控制系统是否需要从恒转矩区进入弱磁区运行。
a、控制系统运行于恒转矩区时,采用最大转矩电流比控制策略按如下方式实现电磁转矩的动态控制:根据第k个采样周期指令转矩查找恒转矩区定子电流指令表获得第k个采样周期定子直轴电流指令和第k个采样周期定子交轴电流指令由式(2)获得第k个采样周期逆变器参考电压矢量的恒转矩区直轴指令和第k个采样周期逆变器参考电压矢量的恒转矩区交轴指令
u d 1 * ( k ) = k pd ( i d * ( k ) - i d ( k ) ) + k id T s Σ i = 1 k ( i d * ( i ) - i d ( i ) ) u q 1 * ( k ) = k pq ( i q * ( k ) - i q ( k ) ) + k iq T s Σ i = 1 k ( i q * ( i ) - i q ( i ) ) - - - ( 2 )
式(2)中,kpd为恒转矩区定子直轴电流PI调节器比例系数,kid为恒转矩区定子直轴电流PI调节器积分系数;kpq为恒转矩区定子交轴电流PI调节器比例系数,kiq为恒转矩区定子交轴电流PI调节器积分系数。
b、按式(3)计算获得第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令
u d * ( k ) = u d 1 * ( k ) u q * ( k ) = u q 1 * ( k ) - - - ( 3 ) .
c、根据第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令以及第k个采样周期转子实际位置角α(k),经过SVPWM调制模块生成第k个采样周期逆变器控制信号Sa(k)、Sb(k)、Sc(k),控制永磁同步电机定子三相电压,实现对凸极式永磁同步电机在恒转矩区的动态转矩控制。
d、按式(4)计算获得第k个采样周期逆变器参考电压矢量的恒转矩区幅值Um1(k):
U m 1 ( k ) = ( u d * ( k ) ) 2 + ( u q * ( k ) ) 2 - - - ( 4 ) .
e、逆变器采用SVPWM线性调制策略,并忽略逆变器的非线性,根据式(5)实现控制系统从恒转矩区到弱磁区的切换;
其中Udc(k)是通过电压传感器检测到的第k个采样周期逆变器直流侧电压;
当式(5)中Δ(k)大于等于零,控制系统保持在恒转矩区运行,并在步骤二至步骤三中按采样周期Ts循环,实现控制系统在恒转矩区的转矩控制以及从恒转矩区到弱磁区的切换,当式(5)中Δ(k)小于零,表示逆变器达到其输出能力的极限,在下一采样周期到来时,控制系统切换到弱磁区运行。
步骤四、控制系统运行于弱磁区时,利用弱磁区电压指令发生器按如下方式获得第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令
a、假定在执行步骤三时,在k=m-1,即第m-1个采样周期时,式(5)中的Δ(m-1)小于零,则控制系统在第m个采样周期到来时运行于弱磁区,此时k=m,m为正整数。
b、为了实现控制系统从恒转矩区到弱磁区的平滑切换,将控制系统在恒转矩区运行时第m-1个采样周期的逆变器参考电压矢量的恒转矩区相位角终值作为控制系统在弱磁区运行时转矩闭环PI调节器中积分器的初值β0,所述转矩闭环PI调节器中积分器的初值β0由式(6)给出。
β 0 = arctam ( u q * ( m - 1 ) u d * ( m - 1 ) ) + π - - - ( 6 ) ;
式(6)中,为k=m-1,即第m-1个采样周期逆变器参考电压矢量的交轴指令 为k=m-1,即第m-1个采样周期逆变器参考电压矢量的直轴轴指令
c、所述控制方法是基于数字微处理器实现,所述数字微处理器是实施离散控制,因此,计算获得的第k-2个采样周期逆变器参考电压矢量的直轴指令和第k-2个采样周期逆变器参考电压矢量的交轴指令在第k-1个采样周期才会作用于实际电机,生成第k个采样周期实际定子直轴电流id(k)和第k个采样周期实际定子交轴电流iq(k);因此,控制系统在第m个采样周期切换至弱磁区运行时,此时k=m,根据第k-2个采样周期逆变器参考电压矢量直轴指令第k-2个采样周期逆变器参考电压矢量交轴指令第k个采样周期实际定子直轴电流id(k),第k个采样周期实际定子交轴电流iq(k)和第k个采样周期转子实际转速ωm(k),利用转矩估计模块获得第k个采样周期估计转矩如式(7):
T ^ e ( k ) = 3 2 ( u d * ( k - 2 ) i d ( k ) + u q * ( k - 2 ) i q ( k ) ) - 3 2 R s ( ( i d ( k ) ) 2 + ( i q ( k ) ) 2 ) ω m ( k ) - - - ( 7 )
式(7)中,Rs为定子绕组相电阻。
d、按式(8)生成第k个采样周期逆变器参考电压矢量的弱磁区相位角β(k):
β ( k ) = k pt ( T 2 * ( k ) - T ^ e ( k ) ) + k it T s Σ i = m k ( T e * ( i ) - T ^ e ( i ) ) + β 0 - - - ( 8 )
式(8)中,kpt为转矩闭环PI调节器的比例系数;kit为转矩闭环PI调节器的积分系数。
e、对于逆变器采用SVPWM线性调制策略,并忽略逆变器的非线性,考虑到逆变器已达到其输出能力的极限,则第k个采样周期逆变器参考电压矢量的弱磁区幅值Um2(k)计算依据如式(9)所示:
U m 2 ( k ) = U dc ( k ) / 3 - - - ( 9 ) .
f、将第k个采样周期逆变器参考电压矢量的弱磁区幅值Um2(k)与第k个采样周期逆变器参考电压矢量的弱磁区相位角β(k)输入至弱磁区电压指令发生器,按式(10)生成第k个采样周期逆变器参考电压矢量的弱磁区直轴指令和第k个采样周期逆变器参考电压矢量的弱磁区交轴指令
u d 2 * ( k ) = U m 2 ( k ) cos β ( k ) u q 2 * ( k ) = U m 2 ( k ) sin β ( k ) - - - ( 10 ) .
g、控制系统在弱磁区运行时,生成第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令如式(11)所示;
u d * ( k ) = u d 2 * ( k ) u q * ( k ) = u q 2 * ( k ) - - - ( 11 ) .
h、根据第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令以及第k个采样周期转子实际位置角α(k),经过SVPWM调制模块生成第k个采样周期逆变器控制信号Sa(k)、Sb(k)、Sc(k),控制永磁同步电机定子三相电压。
i、按采样周期Ts循环实施步骤二和步骤四,实现对凸极式永磁同步电机在弱磁区的动态转矩控制。
凸极式永磁同步电机驱动系统在恒转矩区运行时,采用最大转矩电流比控制策略可生成逆变器参考电压矢量的恒转矩区直轴指令和逆变器参考电压矢量的恒转矩区交轴指令随着电机转速的增加,当逆变器达到至输出能力极限时,电机切换至弱磁区运行,此时,逆变器参考电压矢量控制自由度变为1。具体地说,考虑逆变器已达到其输出能力的极限,因此逆变器参考电压矢量的弱磁区幅值Um2(k)将保持为最大值,只有逆变器参考电压矢量的弱磁区相位角β(k)可以改变,单独控制逆变器参考电压矢量的弱磁区相位角β(k)即可实现逆变器参考电压矢量在弱磁区的控制,鉴于逆变器参考电压矢量的弱磁区相位角β(k)和电机输出的电磁转矩之间存在单调关系,为此,控制逆变器参考电压矢量的弱磁区相位角β(k)就能实现电机在弱磁区转矩的动态控制。与现有技术相比,本发明有益效果体现在:
1、本发明控制方法不同于传统的凸极式永磁同步电机系统双电流PI调节器闭环控制架构,而是在弱磁区直接根据指令转矩与估计转矩之差,经过转矩闭环PI调节器生成逆变器参考电压矢量的弱磁区相位角β(k),逆变器参考电压矢量的弱磁区幅值Um2(k)恒定且保持最大值,实现电机转矩的动态控制,具有直流侧电压利用率高、控制结构简单、方便系统实时运行,有效克服了传统的凸极式永磁同步电机系统弱磁运行时出现的电流PI调节器饱和故障且兼具鲁棒性强的技术优势,能够实现永磁同步电机系统安全可靠地高效持续运行。
2、本发明中,控制系统运行于恒转矩区时,采用双电流PI调节器闭环控制架构;控制系统运行于弱磁区时,采用单转矩闭环PI调节器闭环控制架构。本发明通过将逆变器参考电压矢量的恒转矩区相位角终值设置为控制系统在弱磁区运行时转矩闭环PI调节器中积分器初值β0的技术方案,实现控制系统由恒转矩区到弱磁区的平滑切换。
附图说明
图1为本发明所基于的电机处在弱磁区域的电磁转矩与逆变器参考电压矢量的弱磁区相位角特性示意图;
图2为本发明控制方法方框图;
图3为本发明所设置的控制系统中恒转矩区电压指令发生器原理图;
图4为本发明所设置的控制系统中弱磁区电压指令发生器原理图;
具体实施方式
本实施例中设置凸极式永磁同步电机的控制系统包括:恒转矩区电压指令发生器、弱磁区电压指令发生器、SVPWM调制模块、逆变器、电流传感器、位置传感器和电压传感器;所述恒转矩区电压指令发生器包括恒转矩区定子电流指令表、恒转矩区定子直轴电流PI调节器和恒转矩区定子交轴电流PI调节器;所述弱磁区电压指令发生器包括转矩估计模块和转矩闭环PI调节器。
本实施例中凸极式永磁同步电机弱磁区域的转矩控制方法按如下步骤进行:
步骤一、设定控制系统运行的采样周期为Ts;本实施例中,采样周期Ts为100微秒。
步骤二、按如下方式获得第k个采样周期实际定子直轴电流id(k),第k个采样周期实际定子交轴电流iq(k),第k个采样周期转子实际位置角α(k)和第k个采样周期转子实际转速ωm(k),图2所示凸极式永磁同步电机在本实施例中用于电动汽车的驱动电机。
利用电流传感器检测获得第k个采样周期定子a相电流ia(k)和第k个采样周期定子b相电流ib(k),利用位置传感器检测获得第k个采样周期转子实际位置角α(k),通过式(1)进行坐标变换,获得基于转子磁场定向的同步旋转坐标系下凸极式永磁同步电机第k个采样周期实际定子直轴电流id(k)和第k个采样周期实际定子交轴电流iq(k):
i d ( k ) i q ( k ) = 2 3 cos α ( k ) cos ( α ( k ) - 2 3 π ) cos ( α ( k ) + 2 3 π ) - sin α ( k ) - sin ( α ( k ) - 2 3 π ) - sin ( α ( k ) + 2 3 π ) i a ( k ) i b ( k ) - ( i a ( k ) + i b ( k ) ) - - - ( 1 )
式(1)中,k≥1且k取为正整数,k=1,2,3,…;
利用第k个采样周期转子实际位置角α(k)计算获得第k个采样周期转子实际转速ωm(k);
其中,第k个采样周期定子a相电流ia(k)和第k个采样周期定子b相电流ib(k)是利用霍尔电流传感器检测获得;第k个采样周期转子实际位置角α(k)是利用旋转变压器获得;第k个采样周期转子实际转速ωm(k)是经过速度计算模块利用相邻采样的第k个采样周期转子实际位置角α(k)之差再除以采样周期获得。
步骤三、如图3所示,控制系统运行于恒转矩区时,利用恒转矩区电压指令发生器获得第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令并按如下步骤判断控制系统是否需要从恒转矩区进入弱磁区运行。
a、控制系统运行于恒转矩区时,采用最大转矩电流比控制策略按如下方式实现电磁转矩的动态控制:根据第k个采样周期指令转矩查找恒转矩区定子电流指令表获得第k个采样周期定子直轴电流指令和第k个采样周期定子交轴电流指令由式(2)获得第k个采样周期逆变器参考电压矢量的恒转矩区直轴指令和第k个采样周期逆变器参考电压矢量的恒转矩区交轴指令
u d 1 * ( k ) = k pd ( i d * ( k ) - i d ( k ) ) + k id T s Σ i = 1 k ( i d * ( i ) - i d ( i ) ) u q 1 * ( k ) = k pq ( i q * ( k ) - i q ( k ) ) + k iq T s Σ i = 1 k ( i q * ( i ) - i q ( i ) ) - - - ( 2 )
式(2)中,kpd为恒转矩区定子直轴电流PI调节器比例系数,kid为恒转矩区定子直轴电流PI调节器积分系数;kpq为恒转矩区定子交轴电流PI调节器比例系数,kiq为恒转矩区定子交轴电流PI调节器积分系数。
本实施例中采用离线计算获得的恒转矩区定子电流指令表如表1,实现控制系统运行于恒转矩区的最大转矩电流比控制策略,如表1所示,在恒转矩区定子电流指令表中,每一个不同的第k个采样周期指令转矩对应一组不同的第k个采样周期定子直轴电流指令和第k个采样周期定子交轴电流指令
表1恒转矩区定子电流指令表
b、按式(3)计算获得第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令
u d * ( k ) = u d 1 * ( k ) u q * ( k ) = u q 1 * ( k ) - - - ( 3 )
c、根据第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令以及第k个采样周期转子实际位置角α(k),经过SVPWM调制模块生成第k个采样周期逆变器控制信号Sa(k)、Sb(k)、Sc(k),控制永磁同步电机定子三相电压,实现对凸极式永磁同步电机在恒转矩区的动态转矩控制。
d、按式(4)计算获得第k个采样周期逆变器参考电压矢量的恒转矩区幅值Um1(k):
U m 1 ( k ) = ( u d * ( k ) ) 2 + ( u q * ( k ) ) 2 - - - ( 4 )
e、逆变器采用SVPWM线性调制策略,并忽略逆变器的非线性,根据式(5)实现控制系统从恒转矩区到弱磁区的切换;
其中Udc(k)是通过电压传感器检测到的第k个采样周期逆变器直流侧电压;第k个采样周期逆变器直流侧电压Udc(k)是利用霍尔电压传感器检测获得的动力电池组输出电压。
当式(5)中Δ(k)大于等于零,控制系统保持在恒转矩区运行,并在步骤二至步骤三中按采样周期Ts循环,实现控制系统在恒转矩区的转矩控制以及从恒转矩区到弱磁区的切换,当式(5)中Δ(k)小于零,表示逆变器达到其输出能力的极限,在下一采样周期到来时,控制系统切换到弱磁区运行。
步骤四、如图4所示,控制系统运行于弱磁区时,利用弱磁区电压指令发生器按如下方式获得第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令考虑逆变器已达到其输出能力的极限,因此逆变器参考电压矢量的弱磁区幅值Um2(k)将保持为最大值,在此情况下,逆变器参考电压矢量的弱磁区相位角β(k)和凸极式永磁同步电机输出的电磁转矩之间存在单调关系,如图1所示,单独控制逆变器参考电压矢量的弱磁区相位角β(k)即可实现对凸极式永磁同步电机在弱磁区的动态转矩控制。
a、假定在执行步骤三时,在k=m-1,即第m-1个采样周期时,式(5)中的Δ(m-1)小于零,则控制系统在第m个采样周期到来时运行于弱磁区,此时k=m,m为正整数。
b、为了实现控制系统从恒转矩区到弱磁区的平滑切换,将控制系统在恒转矩区运行时第m-1个采样周期的逆变器参考电压矢量的恒转矩区相位角终值作为控制系统在弱磁区运行时转矩闭环PI调节器中积分器的初值β0,所述转矩闭环PI调节器中积分器的初值β0由式(6)给出:
β 0 = arctam ( u q * ( m - 1 ) u d * ( m - 1 ) ) + π - - - ( 6 ) ;
式(6)中,为k=m-1,即第m-1个采样周期逆变器参考电压矢量的交轴指令 为k=m-1,即第m-1个采样周期逆变器参考电压矢量的直轴轴指令
c、所述控制方法是基于数字微处理器实现,所述数字微处理器是实施离散控制,因此,计算获得的第k-2个采样周期逆变器参考电压矢量的直轴指令和第k-2个采样周期逆变器参考电压矢量的交轴指令在第k-1个采样周期才会作用于实际电机,生成第k个采样周期实际定子直轴电流id(k)和第k个采样周期实际定子交轴电流iq(k);因此,控制系统在第m个采样周期切换至弱磁区运行时,此时k=m,根据第k-2个采样周期逆变器参考电压矢量直轴指令第k-2个采样周期逆变器参考电压矢量交轴指令第k个采样周期实际定子直轴电流id(k),第k个采样周期实际定子交轴电流iq(k)和第k个采样周期转子实际转速ωm(k),利用转矩估计模块获得第k个采样周期估计转矩如式(7):
T ^ e ( k ) = 3 2 ( u d * ( k - 2 ) i d ( k ) + u q * ( k - 2 ) i q ( k ) ) - 3 2 R s ( ( i d ( k ) ) 2 + ( i q ( k ) ) 2 ) ω m ( k ) - - - ( 7 )
式(7)中,Rs为定子绕组相电阻;
第k-2个采样周期逆变器参考电压矢量直轴指令第k-2个采样周期逆变器参考电压矢量交轴指令是将第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令经过采样保持后获得,如图2所示。
d、按式(8)生成第k个采样周期逆变器参考电压矢量的弱磁区相位角β(k):
β ( k ) = k pt ( T 2 * ( k ) - T ^ e ( k ) ) + k it T s Σ i = m k ( T e * ( i ) - T ^ e ( i ) ) + β 0 - - - ( 8 )
式(8)中,kpt为转矩闭环PI调节器的比例系数;kit为转矩闭环PI调节器的积分系数。
e、对于逆变器采用SVPWM线性调制策略,并忽略逆变器的非线性,考虑到逆变器已达到其输出能力的极限,则第k个采样周期逆变器参考电压矢量的弱磁区幅值Um2(k)计算依据如式(9)所示:
U m 2 ( k ) = U dc ( k ) / 3 - - - ( 9 ) .
f、将第k个采样周期逆变器参考电压矢量的弱磁区幅值Um2(k)与第k个采样周期逆变器参考电压矢量的弱磁区相位角β(k)输入至弱磁区电压指令发生器,按式(10)生成第k个采样周期逆变器参考电压矢量的弱磁区直轴指令和第k个采样周期逆变器参考电压矢量的弱磁区交轴指令
u d 2 * ( k ) = U m 2 ( k ) cos β ( k ) u q 2 * ( k ) = U m 2 ( k ) sin β ( k ) - - - ( 10 ) .
g、控制系统在弱磁区运行时,生成第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令如式(11)所示:
u d * ( k ) = u d 2 * ( k ) u q * ( k ) = u q 2 * ( k ) - - - ( 11 ) .
h、根据第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令以及第k个采样周期转子实际位置角α(k),经过SVPWM调制模块生成第k个采样周期逆变器控制信号Sa(k)、Sb(k)、Sc(k),控制永磁同步电机定子三相电压。
i、按采样周期Ts循环实施步骤二和步骤四,实现对凸极式永磁同步电机在弱磁区的动态转矩控制。

Claims (1)

1.一种凸极式永磁同步电机弱磁区域的转矩控制方法,设置凸极式永磁同步电机的控制系统包括:恒转矩区电压指令发生器、弱磁区电压指令发生器、SVPWM调制模块、逆变器、电流传感器、位置传感器和电压传感器;所述恒转矩区电压指令发生器包括恒转矩区定子电流指令表、恒转矩区定子直轴电流PI调节器和恒转矩区定子交轴电流PI调节器;所述弱磁区电压指令发生器包括转矩估计模块和转矩闭环PI调节器;其特征是:所述转矩控制方法按如下步骤进行:
步骤一、设定控制系统运行的采样周期为Ts
步骤二、按如下方式获得第k个采样周期实际定子直轴电流id(k),第k个采样周期实际定子交轴电流iq(k),第k个采样周期转子实际位置角α(k)和第k个采样周期转子实际转速ωm(k):
利用电流传感器检测获得第k个采样周期定子a相电流ia(k)和第k个采样周期定子b相电流ib(k),利用位置传感器检测获得第k个采样周期转子实际位置角α(k),通过式(1)进行坐标变换,获得基于转子磁场定向的同步旋转坐标系下凸极式永磁同步电机第k个采样周期实际定子直轴电流id(k)和第k个采样周期实际定子交轴电流iq(k):
i d ( k ) i q ( k ) = 2 3 cos α ( k ) cos ( α ( k ) - 2 3 π ) cos ( α ( k ) + 2 3 π ) - sin α ( k ) - sin ( α ( k ) - 2 3 π ) - sin ( α ( k ) + 2 3 π ) i a ( k ) i b ( k ) - ( i a ( k ) + i b ( k ) ) - - - ( 1 )
式(1)中,k≥1且k取为正整数,k=1,2,3,…;
利用第k个采样周期转子实际位置角α(k)计算获得第k个采样周期转子实际转速ωm(k);
步骤三、控制系统运行于恒转矩区时,利用恒转矩区电压指令发生器获得第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令并按如下步骤判断控制系统是否需要从恒转矩区进入弱磁区运行:
a、控制系统运行于恒转矩区时,采用最大转矩电流比控制策略按如下方式实现电磁转矩的动态控制:根据第k个采样周期指令转矩查找恒转矩区定子电流指令表获得第k个采样周期定子直轴电流指令和第k个采样周期定子交轴电流指令由式(2)获得第k个采样周期逆变器参考电压矢量的恒转矩区直轴指令和第k个采样周期逆变器参考电压矢量的恒转矩区交轴指令
u d 1 * ( k ) = k pd ( i d * ( k ) - i d ( k ) ) + k id T s Σ i = 1 k ( i d * ( i ) - i d ( i ) ) u q 1 * ( k ) = k pq ( i q * ( k ) - i q ( k ) ) + k iq T s Σ i = 1 k ( i q * ( i ) - i q ( i ) ) - - - ( 2 )
式(2)中,kpd为恒转矩区定子直轴电流PI调节器比例系数,kid为恒转矩区定子直轴电流PI调节器积分系数;kpq为恒转矩区定子交轴电流PI调节器比例系数,kiq为恒转矩区定子交轴电流PI调节器积分系数;
b、按式(3)计算获得第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令
u d * ( k ) = u d 1 * ( k ) u q * ( k ) = u q 1 * ( k ) - - - ( 3 )
c、根据第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令以及第k个采样周期转子实际位置角α(k),经过SVPWM调制模块生成第k个采样周期逆变器控制信号Sa(k)、Sb(k)、Sc(k),控制永磁同步电机定子三相电压,实现对凸极式永磁同步电机在恒转矩区的动态转矩控制;
d、按式(4)计算获得第k个采样周期逆变器参考电压矢量的恒转矩区幅值Um1(k):
U m 1 ( k ) = ( u d * ( k ) ) 2 + ( u q * ( k ) ) 2 - - - ( 4 )
e、逆变器采用SVPWM线性调制策略,并忽略逆变器的非线性,根据式(5)实现控制系统从恒转矩区到弱磁区的切换;
其中Udc(k)是通过电压传感器检测到的第k个采样周期逆变器直流侧电压;
当式(5)中Δ(k)大于等于零,控制系统保持在恒转矩区运行,并在步骤二至步骤三中按采样周期Ts循环,实现控制系统在恒转矩区的转矩控制以及从恒转矩区到弱磁区的切换,当式(5)中Δ(k)小于零,表示逆变器达到其输出能力的极限,在下一采样周期到来时,控制系统切换到弱磁区运行;
步骤四、控制系统运行于弱磁区时,利用弱磁区电压指令发生器按如下方式获得第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令
a、假定在执行步骤三时,在k=m-1,即第m-1个采样周期时,式(5)中的Δ(m-1)小于零,则控制系统在第m个采样周期到来时运行于弱磁区,此时k=m,m为正整数;
b、为了实现控制系统从恒转矩区到弱磁区的平滑切换,将控制系统在恒转矩区运行时第m-1个采样周期的逆变器参考电压矢量的恒转矩区相位角终值作为控制系统在弱磁区运行时转矩闭环PI调节器中积分器的初值β0,所述转矩闭环PI调节器中积分器的初值β0由式(6)给出:
β 0 = arctam ( u q * ( m - 1 ) u d * ( m - 1 ) ) + π - - - ( 6 ) ;
式(6)中,为k=m-1,即第m-1个采样周期逆变器参考电压矢量的交轴指令 为k=m-1,即第m-1个采样周期逆变器参考电压矢量的直轴轴指令
c、所述控制方法是基于数字微处理器实现,所述数字微处理器是实施离散控制,因此,计算获得的第k-2个采样周期逆变器参考电压矢量的直轴指令和第k-2个采样周期逆变器参考电压矢量的交轴指令在第k-1个采样周期才会作用于实际电机,生成第k个采样周期实际定子直轴电流id(k)和第k个采样周期实际定子交轴电流iq(k);因此,控制系统在第m个采样周期切换至弱磁区运行时,此时k=m,根据第k-2个采样周期逆变器参考电压矢量直轴指令第k-2个采样周期逆变器参考电压矢量交轴指令第k个采样周期实际定子直轴电流id(k),第k个采样周期实际定子交轴电流iq(k)和第k个采样周期转子实际转速ωm(k),利用转矩估计模块获得第k个采样周期估计转矩如式(7):
T ^ e ( k ) = 3 2 ( u d * ( k - 2 ) i d ( k ) + u q * ( k - 2 ) i q ( k ) ) - 3 2 R s ( ( i d ( k ) ) 2 + ( i q ( k ) ) 2 ) ω m ( k ) - - - ( 7 )
式(7)中,Rs为定子绕组相电阻;
d、按式(8)生成第k个采样周期逆变器参考电压矢量的弱磁区相位角β(k):
β ( k ) = k pt ( T 2 * ( k ) - T ^ e ( k ) ) + k it T s Σ i = m k ( T e * ( i ) - T ^ e ( i ) ) + β 0 - - - ( 8 )
式(8)中,kpt为转矩闭环PI调节器的比例系数;kit为转矩闭环PI调节器的积分系数;
e、对于逆变器采用SVPWM线性调制策略,并忽略逆变器的非线性,考虑到逆变器已达到其输出能力的极限,则第k个采样周期逆变器参考电压矢量的弱磁区幅值Um2(k)计算依据如式(9)所示:
U m 2 ( k ) = U dc ( k ) / 3 - - - ( 9 )
f、将第k个采样周期逆变器参考电压矢量的弱磁区幅值Um2(k)与第k个采样周期逆变器参考电压矢量的弱磁区相位角β(k)输入至弱磁区电压指令发生器,按式(10)生成第k个采样周期逆变器参考电压矢量的弱磁区直轴指令和第k个采样周期逆变器参考电压矢量的弱磁区交轴指令
u d 2 * ( k ) = U m 2 ( k ) cos β ( k ) u q 2 * ( k ) = U m 2 ( k ) sin β ( k ) - - - ( 10 )
g、控制系统在弱磁区运行时,生成第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令如式(11)所示;
u d * ( k ) = u d 2 * ( k ) u q * ( k ) = u q 2 * ( k ) - - - ( 11 )
h、根据第k个采样周期逆变器参考电压矢量的直轴指令和第k个采样周期逆变器参考电压矢量的交轴指令以及第k个采样周期转子实际位置角α(k),经过SVPWM调制模块生成第k个采样周期逆变器控制信号Sa(k)、Sb(k)、Sc(k),控制永磁同步电机定子三相电压;
i、按采样周期Ts循环实施步骤二和步骤四,实现对凸极式永磁同步电机在弱磁区的动态转矩控制。
CN201410446706.0A 2014-09-03 2014-09-03 一种凸极式永磁同步电机弱磁区域的转矩控制方法 Active CN104242766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410446706.0A CN104242766B (zh) 2014-09-03 2014-09-03 一种凸极式永磁同步电机弱磁区域的转矩控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410446706.0A CN104242766B (zh) 2014-09-03 2014-09-03 一种凸极式永磁同步电机弱磁区域的转矩控制方法

Publications (2)

Publication Number Publication Date
CN104242766A true CN104242766A (zh) 2014-12-24
CN104242766B CN104242766B (zh) 2016-06-29

Family

ID=52230274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410446706.0A Active CN104242766B (zh) 2014-09-03 2014-09-03 一种凸极式永磁同步电机弱磁区域的转矩控制方法

Country Status (1)

Country Link
CN (1) CN104242766B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617483A (zh) * 2018-12-21 2019-04-12 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) 一种永磁同步电机转矩控制方法
CN110729933A (zh) * 2018-07-17 2020-01-24 中车株洲电力机车研究所有限公司 一种基于异步调制的交流电机转矩控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567655A (zh) * 2008-04-24 2009-10-28 迈为电子技术(上海)有限公司 电动车驱动用ipm电机的控制方法
CN102651626A (zh) * 2012-04-24 2012-08-29 北京交通大学 一种永磁同步电机的弱磁控制方法
CN102684580A (zh) * 2012-06-01 2012-09-19 合肥工业大学 一种永磁同步电机驱动系统的控制方法
CN103532466A (zh) * 2013-10-21 2014-01-22 南车株洲电力机车研究所有限公司 一种用于控制永磁同步电机转矩变化率的方法及装置
CN103701384A (zh) * 2013-12-30 2014-04-02 中冶南方(武汉)自动化有限公司 内置式永磁同步电机弱磁控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567655A (zh) * 2008-04-24 2009-10-28 迈为电子技术(上海)有限公司 电动车驱动用ipm电机的控制方法
CN102651626A (zh) * 2012-04-24 2012-08-29 北京交通大学 一种永磁同步电机的弱磁控制方法
CN102684580A (zh) * 2012-06-01 2012-09-19 合肥工业大学 一种永磁同步电机驱动系统的控制方法
CN103532466A (zh) * 2013-10-21 2014-01-22 南车株洲电力机车研究所有限公司 一种用于控制永磁同步电机转矩变化率的方法及装置
CN103701384A (zh) * 2013-12-30 2014-04-02 中冶南方(武汉)自动化有限公司 内置式永磁同步电机弱磁控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘子豪等: "IPMSM驱动系统宽调速范围的高效鲁棒控制", 《微特电机》 *
周亚男等: "基于在线定子电流优化的IPMSM驱动系统控制", 《微特电机》 *
李峥: "基于模型的电动汽车IPMSM驱动系统矢量控制", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729933A (zh) * 2018-07-17 2020-01-24 中车株洲电力机车研究所有限公司 一种基于异步调制的交流电机转矩控制方法及系统
CN110729933B (zh) * 2018-07-17 2021-06-08 中车株洲电力机车研究所有限公司 一种基于异步调制的交流电机转矩控制方法及系统
CN109617483A (zh) * 2018-12-21 2019-04-12 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) 一种永磁同步电机转矩控制方法

Also Published As

Publication number Publication date
CN104242766B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
Pellegrino et al. Direct-flux vector control of IPM motor drives in the maximum torque per voltage speed range
CN103607155B (zh) 基于旋转电流矢量的永磁同步电机无位置传感器控制方法
Alberti et al. IPM machine drive design and tests for an integrated starter–alternator application
EP2600519B1 (en) Control apparatus of ac rotating machine
CN102710206B (zh) 一种变速永磁交流发电机系统及其双端口稳压控制方法
CN103401506B (zh) 一种电动车用隐极式混合励磁电机直接转矩控制方法
CN103595325B (zh) 一种隐极式混合励磁电机矢量控制方法
CN105356805A (zh) 一种永磁同步电机模型预测共模电压抑制方法
CN102647134B (zh) 一种永磁同步电机无角度传感器的效率优化控制方法
CN103595324B (zh) 一种混合励磁电机弱磁控制方法
CN108390602B (zh) 一种混合励磁同步电机直接预测功率控制方法
CN106026803A (zh) 一种基于滑模观测器的无速度传感器控制方法
Gu et al. Driving and braking control of PM synchronous motor based on low-resolution hall sensor for battery electric vehicle
CN106059421A (zh) 一种改进型前馈永磁同步电机弱磁方法
CN102684580A (zh) 一种永磁同步电机驱动系统的控制方法
CN106160605A (zh) 柴油机变频起动方法及柴油发电机组、机车
CN202696533U (zh) 一种变速永磁交流发电机系统
Singh et al. Direct torque control: a practical approach to electric vehicle
CN104242766B (zh) 一种凸极式永磁同步电机弱磁区域的转矩控制方法
CN103840732B (zh) 驱动电机弱磁控制方法
CN104767446A (zh) 一种混合励磁同步电机气隙磁通与电流相量角控制方法
Bojoi et al. Direct flux vector control of axial flux IPM motors for in-wheel traction solutions
CN103532461B (zh) 一种用于平稳控制永磁同步电机低速小转矩状态切换的装置
CN103607156A (zh) 一种混合励磁同步电机功率因数控制方法
Huang et al. Maximum-torque-per-ampere control of interior permanent magnet synchronous machine applied for hybrid electric vehicles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant