CN104241659B - 一种pemfc被动式阳极结构及其制备与应用方法 - Google Patents

一种pemfc被动式阳极结构及其制备与应用方法 Download PDF

Info

Publication number
CN104241659B
CN104241659B CN201410334634.0A CN201410334634A CN104241659B CN 104241659 B CN104241659 B CN 104241659B CN 201410334634 A CN201410334634 A CN 201410334634A CN 104241659 B CN104241659 B CN 104241659B
Authority
CN
China
Prior art keywords
pemfc
anode construction
passive type
organic active
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410334634.0A
Other languages
English (en)
Other versions
CN104241659A (zh
Inventor
王晓红
吴宗霖
刘理天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201410334634.0A priority Critical patent/CN104241659B/zh
Publication of CN104241659A publication Critical patent/CN104241659A/zh
Application granted granted Critical
Publication of CN104241659B publication Critical patent/CN104241659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明属于微能源和微机械加工领域,特别涉及一种PEMFC被动式阳极结构及其制备与应用方法。所述阳极结构中,多孔支撑层和有机活性层相连构成渗透蒸发复合膜;所述多个有机活性层在同一平面上均匀间隔分布,所述多个有机活性层之间分别通过与其位于同一平面上电流收集层相连,构成PEMFC被动式阳极结构。所述多孔支撑层和有机活性层分别采用MEMS微加工技术制备。所述阳极结构在使用时,其多孔支撑层与液体燃料直接接触,所述液体燃料依次渗透通过多孔支撑层和有机活性层之后挥发成气体并直接跟阳极催化剂接触。所述阳极结构可使液体燃料汽化而不需辅助设备,从而让PEMFC既能利用气体燃料高反应速率和燃料利用率的特点,又能兼顾液体燃料易存储和微型化的优势。

Description

一种PEMFC被动式阳极结构及其制备与应用方法
技术领域
本发明属于微能源和微机械加工领域,特别涉及一种PEMFC被动式阳极结构及其制备与应用方法。
背景技术
质子交换膜燃料电池(PEMFC)能将燃料(如甲醇、乙醇、异丙醇、丁醇、二甲醚、甲酸和氢气等)的化学能直接转化成电能。同其他微型能源相比,其具有能量密度大,室温工作,环保,无可移动部件,燃料便于存储等优点。PEMFC在便携式电子设备(如笔记本电脑,PDA,数码相机),无线通讯网络(如手机,GPS,无线传感器网络节点),微型系统(如片上系统,SOC,MEMS器件组成的微系统)以及紧急电源和军用单兵携带电源等方面具有突出优势。利用成熟的MEMS技术制作的微型PEMFC具有精度高,重复性好,可以等比例缩放,批量生产成本低等的优点,并有望同其他MEMS器件和IC电路集成,促进自供给、低成本、高性能的微型系统的实现。由于MEMS系统对微型化、集成化的需求,微型PEMFC需要在单位面积的催化剂层上获得尽可能高的功率输出,同时希望液体燃料的利用效率足够高,从而使单位质量的燃料能够提供足够多的能量输出。
在微型PEMFC工作中,较高浓度的液体燃料虽然能够在单位时间内提供更多的反应物分子有利于提高功率输出,但是由于液体燃料为易溶于水的醇类或醚等小分子液体,因此液体燃料会反向渗透透过质子交换膜(PEM)到达阴极,从而产生一个反向电动势,既减小了功率输出又降低了燃料的利用效率。如果直接用汽化的燃料供给,不仅可以提高电化学反应速率还能大大减少燃料的反向 渗透,但是直接用气体作燃料这又不可能实现微型化。为此,在常温下高效率、低能耗或者无能耗地直接让液体燃料汽化的方法和结构成为微型PEMFC的探索方向。
文献[1](J.Lobato,P.M.A.Rodrigo,and J.J.Linares,Testing a Vapour-fed PBI-based DirectEthanol Fuel Cell,FUEL CELLS09,2009,No.5,597–604.)介绍了一种基于PBI材料的汽化液体燃料的PEMFC,但是由于辅助设备相对复杂,很难实现微型化。文献[2](G.Jewett,Z.Guo and A.Faghri,Performance characteristics of a vapor feed passive miniature direct methanol fuel cell,Int.J.Heat Mass Transfer,vol.52,no.19,pp.4573–4583.)设计了一种在电池阳极集成一个电阻片的燃料电池,通过对电阻两边加热的方法来促进液体燃料挥发,这种方法虽然可实现微型化,但是需要较多额外的能耗。文献[3](Q.X.Wu,T.S.Zhao,R.Chen and W.W.Yang,A microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels,J.Micromech.Microeng,20(2010)045014.)提出了一种利用一种特殊的突变孔半径的物理结构来促进液体挥发的燃料电池,虽然结构简单,但是这种结构由于供应混合气体和液体燃料,没有从根本上解决燃料反向渗透问题。文献[4](H.K.Kim,Passive direct methanol fuel cells fed with methanol vapor,Journal of Power Sources162(2006)1232–1235.)报道了一种基于多孔传输层汽化的燃料电池,但是其汽化速率太慢,而且速度不可控,导致电池功率密度较低。因此,本发明设计了一种基于渗透蒸发复合膜的PEMFC阳极结构。
发明内容
为了解决高速率、无能耗的液体汽化,本发明提供了一种PEMFC被动式阳 极结构及其制备与应用方法。
一种PEMFC被动式阳极结构,所述阳极结构中,多孔支撑层和有机活性层相连构成渗透蒸发复合膜;所述多个有机活性层在同一平面上均匀间隔分布,所述多个有机活性层之间分别通过与其位于同一平面上电流收集层相连,构成PEMFC被动式阳极结构。所述多孔支撑层和电流收集层为一个整体结构,而不是需要键合或者组装的双层结构。
所述多孔支撑层的材质为多孔纳米材料。
所述多孔支撑层的材质为多孔硅材料。
所述有机活性层的材质为聚二甲基硅氧烷(PDMS)。
所述电流收集层为层状相连的Ti和Cu,或者Ti和Au。
所述衬底的材质为硅。
一种PEMFC被动式阳极结构的制备方法,所述多孔支撑层采用微机电系统(MEMS)微加工技术制备,先通过氢氧化钾溶液腐蚀硅,在硅片一侧刻蚀出储存槽,然后在具有储存槽的一侧硅片上通过阳极氧化方法制作出多孔硅,最后在硅片另一侧进行干法刻蚀获得穿通的多孔硅膜。
一种PEMFC被动式阳极结构的制备方法,所述有机活性层采用MEMS微加工技术制备,通过有机溶剂稀释PDMS并旋涂到多孔硅表面,并通过蒸发溶剂和加热固化,形成有机活性层。
所述有机活性层的厚度不超过3μm。
一种PEMFC被动式阳极结构的应用方法,所述阳极结构在使用时,其多孔支撑层与液体燃料直接接触,所述液体燃料依次渗透通过多孔支撑层和有机活性层之后挥发成气体并直接跟阳极催化剂接触。
所述液体燃料为甲醇、乙醇、异丙醇、丁醇、二甲醚和甲酸中的一种或多种,或含有甲醇、乙醇、异丙醇、丁醇、二甲醚和甲酸中的一种或多种的总浓度为10mol/L以上的溶液。
本发明的有益效果为:
本发明所述阳极结构可使液体燃料直接汽化而不需辅助设备,从而让PEMFC既能利用气体燃料高反应速率和燃料利用率的特点,又能兼顾液体燃料易存储和微型化的优势,实现一种可直接供给液体燃料的、可集成的微型气体PEMFC。
附图说明
图1为未涂覆有机活性层的阳极极板结构示意图,其中图1(a)为俯视图,图1(b)为A-A’处侧视截面图;
图2(a)~图2(d)依次为未涂覆有机活性层的阳极极板加工工艺流程图;
图3(a)~图3(c)依次为旋涂有机活性层的加工工艺流程图;
图4为本发明渗透蒸发复合膜的SEM图;
图中标号:1-衬底、2-多孔支撑层、3-电流收集层、4-Si3N4、5-SiO2、6-Si、7-PDMS。
具体实施方式
本发明提供了一种PEMFC被动式阳极结构及其制备与应用方法,下面结合附图和具体实施方式对本发明做进一步说明。
本发明设计了一种基于MEMS工艺的渗透蒸发复合膜的PEMFC阳极结构。多孔支撑层表面涂布有机活性层,从而形成渗透蒸发复合膜。这种渗透蒸发复合膜具有活性膜薄,可以高效率地实现液体燃料的汽化的优点。同时具有多孔 支撑层,通过改变溶液配比和电流密度,可以控制多孔支撑层的孔径和孔隙率,因此也具有良好的机械性能。
图1展示了所设计的渗透蒸发复合膜的PEMFC阳极结构示意图,图1(a)为器件的俯视图,图1(b)为器件的A-A’处侧视截面示意图。上述提到的阳极结构中,多孔支撑层的以窗格形成分布,其中窗口的边缘为不仅作为支撑骨架,同时作为电流收集层。这种窗格的密度不局限于本发明的4x4的结构和60%的占空比。另一方面,本发明中涉及的多孔支撑层也不仅限于本发明的多孔硅,只要是可以通过光刻和刻蚀形成多孔性纳米材料的均可作为支撑层。
图2演示了图1所示的电极结构的工艺制作流程图,其演示的MEMS工艺流程具体如下:
(a)如图2(a)所示,采用500μm~550μm厚的双面抛光的4英寸n型<100>晶向硅片,在硅片两侧分别进行热氧化生长20nm~50nm厚的SiO2,然后采用LPCVD在所得SiO2层上分别淀积200nm~300nm厚的Si3N4。在所得其中一个Si3N4层上依次溅射金属Ti和Cu,或者Ti和Au(其中Ti层厚度为20nm~40nm,Cu层厚度为500nm~800nm,Au层厚度为100nm~200nm)作为电流收集层。
(b)如图2(b)所示,采用双面光刻工艺,在步骤(a)所得Si3N4层一侧生成渗透蒸发膜的图形,在所得电流收集层一侧生成相应的图形。用浓度为1mol/L的碘化钾溶液刻蚀电流收集层,用RIE刻蚀去除Si3N4层一侧图形区域的Si3N4,用氢氟酸HF去除SiO2
(c)如图2(c)所示,采用ICP技术并在侧壁保护气体下进行硅的深刻蚀,刻蚀直到剩下80μm的厚度。
(d)如图2(d)所示,采用阳极氧化法生长多孔硅,溶液采用氢氟酸与无 水乙醇的混合溶液(体积比为3:1~1:1),电流密度为30mA/cm2~300mA/cm2,直到多孔硅产生穿孔。然后对硅片电流收集层一侧用ICP进行刻蚀,将剩余的部分硅刻蚀去除。
图3演示了在多孔支撑层上形成渗透蒸发复合膜的过程,其演示的MEMS工艺流程具体如下:
(a)如图3(a)所示,把完成图2所示的工艺,所得到的极板浸入浓度为0.01mol/L的HF溶液中、在10W功率超声环境下处理30秒,然后把处理后的极板清洗吹干,最后置于去离子水中浸泡24小时。
(b)如图3(b)所示,按照体积比10:3的比例配置PDMS和二氯甲烷的溶液,在15摄氏度下搅拌5分钟并静置15分钟。在2500r/min的转速下,在极板的电流收集层一侧旋涂上述配置的有机溶液,然后把旋涂后所得极板在常温下水平静止2小时,然后在在60摄氏度下烘烤12小时。
(c)如图3(c)所示,用做好的掩膜版挡住需要的部位,用甲苯把PDMS有机膜刻蚀出沟槽,最后揭掉在电流收集层上的PDMS有机活性层。
图4演示了所形成的渗透蒸发复合膜的SEM照片。图中下部分为多孔支撑层,上部分薄膜为有机活性层,其厚度介于50nm~5μm。

Claims (10)

1.一种PEMFC被动式阳极结构,其特征在于:所述阳极结构中,多孔支撑层和多个有机活性层相连构成渗透蒸发复合膜;所述多个有机活性层在同一平面上均匀间隔分布,所述多个有机活性层之间分别通过与其位于同一平面上电流收集层相连,构成PEMFC被动式阳极结构。
2.根据权利要求1所述的一种PEMFC被动式阳极结构,其特征在于:所述多孔支撑层的材质为多孔纳米材料。
3.根据权利要求2所述的一种PEMFC被动式阳极结构,其特征在于:所述多孔支撑层的材质为多孔硅材料。
4.根据权利要求1所述的一种PEMFC被动式阳极结构,其特征在于:所述有机活性层的材质为PDMS。
5.根据权利要求1所述的一种PEMFC被动式阳极结构,其特征在于:所述电流收集层为层状相连的Ti和Cu,或者Ti和Au。
6.如权利要求1~5任意一项所述的一种PEMFC被动式阳极结构的制备方法,其特征在于:所述多孔支撑层采用MEMS微加工技术制备,先通过氢氧化钾溶液腐蚀硅,在硅片一侧刻蚀出储存槽,然后在具有储存槽的一侧硅片上通过阳极氧化方法制作出多孔硅,最后在硅片另一侧进行干法刻蚀获得穿通的多孔硅膜。
7.如权利要求1~5任意一项所述的一种PEMFC被动式阳极结构的制备方法,其特征在于:所述有机活性层采用MEMS微加工技术制备,通过有机溶剂稀释PDMS并旋涂到多孔硅表面,并通过蒸发溶剂和加热固化,形成有机活性层。
8.根据权利要求7所述的一种PEMFC被动式阳极结构的制备方法,其特征在于:所述有机活性层的厚度不超过3μm。
9.如权利要求1~5任意一项权利要求所述的一种PEMFC被动式阳极结构的应用方法,其特征在于:所述阳极结构在使用时,其多孔支撑层与液体燃料直接接触,所述液体燃料依次渗透通过多孔支撑层和有机活性层之后挥发成气体并直接跟阳极催化剂接触。
10.根据权利要求9所述的一种PEMFC被动式阳极结构的应用方法,其特征在于:所述液体燃料为含有甲醇、乙醇、异丙醇、丁醇、二甲醚和甲酸中的一种或多种的总浓度为10mol/L以上的溶液。
CN201410334634.0A 2014-07-14 2014-07-14 一种pemfc被动式阳极结构及其制备与应用方法 Active CN104241659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410334634.0A CN104241659B (zh) 2014-07-14 2014-07-14 一种pemfc被动式阳极结构及其制备与应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410334634.0A CN104241659B (zh) 2014-07-14 2014-07-14 一种pemfc被动式阳极结构及其制备与应用方法

Publications (2)

Publication Number Publication Date
CN104241659A CN104241659A (zh) 2014-12-24
CN104241659B true CN104241659B (zh) 2016-08-17

Family

ID=52229336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410334634.0A Active CN104241659B (zh) 2014-07-14 2014-07-14 一种pemfc被动式阳极结构及其制备与应用方法

Country Status (1)

Country Link
CN (1) CN104241659B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833424A (en) * 1972-03-28 1974-09-03 Licentia Gmbh Gas fuel cell battery having bipolar graphite foam electrodes
EP2562862A1 (en) * 2007-11-08 2013-02-27 Alan Devoe Sofc device on ceramic support structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833424A (en) * 1972-03-28 1974-09-03 Licentia Gmbh Gas fuel cell battery having bipolar graphite foam electrodes
EP2562862A1 (en) * 2007-11-08 2013-02-27 Alan Devoe Sofc device on ceramic support structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
硅基微型直接甲醇燃料电池的研究;王晓红等;《半导体学报》;20050731;第26卷(第7期);第1437-1441页 *

Also Published As

Publication number Publication date
CN104241659A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
Tsuchiya et al. Scalable nanostructured membranes for solid-oxide fuel cells
Moghaddam et al. An inorganic–organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure
Chu et al. An improved miniature direct formic acid fuel cell based on nanoporous silicon for portable power generation
CN103199268B (zh) 基于纳米压印技术的有序纳米结构膜、有序纳米结构膜电极的制备及应用
Gautier et al. Integration of porous silicon in microfuel cells: a review
Pichonat et al. Realization of porous silicon based miniature fuel cells
Shamim et al. A review on recent advances in proton exchange membrane fuel cells: Materials, technology and applications
CN107634231B (zh) 一种质子交换膜燃料电池的制备方法
KR20090078660A (ko) 초소형 연료전지 및 그 제조 방법과 이를 이용한 초소형연료전지 스택
Pandey et al. PVDF supported silica immobilized phosphotungstic acid membrane for DMFC application
Zhang et al. Sulfonated poly (ether ether ketone)/TiO2 double-deck membrane for vanadium redox flow battery application
CN101436676A (zh) 平板式微型直接醇类燃料电池组及其制作方法
CN102738477A (zh) 基于3维质子导体的有序化单电极和膜电极及制备方法
Xiao et al. A silicon-based fuel cell micro power system using a microfabrication technique
Kuriyama et al. Design and fabrication of MEMS-based monolithic fuel cells
Kouassi et al. Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers
CN101552343B (zh) 带毛细排水结构的微型pemfc阴极极板及其制作方法
Hayase et al. A miniature fuel cell with porous Pt layer formed on a Si substrate
Zhang et al. Application of nanoimprint technology in MEMS-based micro direct-methanol fuel cell ($\mu $-DMFC)
CN104241659B (zh) 一种pemfc被动式阳极结构及其制备与应用方法
Scotti et al. Integration of carbon felt gas diffusion layers in silicon micro fuel cells
CN104347884A (zh) 一种适用于燃料电池的电极的制备方法
CN103526299A (zh) 一种制备硅纳米结构材料的方法
Wu et al. A passive vapor-feed direct methanol fuel cell based on a composite pervaporation membrane
Yu et al. Optimally catalyzed porous-silicon electrode of self-breathing micro fuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant