CN104239650B - One kind extracts solar cell parametric technique based on equation clear - Google Patents

One kind extracts solar cell parametric technique based on equation clear Download PDF

Info

Publication number
CN104239650B
CN104239650B CN201410526923.0A CN201410526923A CN104239650B CN 104239650 B CN104239650 B CN 104239650B CN 201410526923 A CN201410526923 A CN 201410526923A CN 104239650 B CN104239650 B CN 104239650B
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
solar cell
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410526923.0A
Other languages
Chinese (zh)
Other versions
CN104239650A (en
Inventor
肖文波
胡方雨
张华明
赖刘生
姚斌
邹加富
肖智勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201410526923.0A priority Critical patent/CN104239650B/en
Publication of CN104239650A publication Critical patent/CN104239650A/en
Application granted granted Critical
Publication of CN104239650B publication Critical patent/CN104239650B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

One kind extracts solar cell parametric technique based on equation clear, it is first depending on short circuit current flow point, open-circuit voltage point and Lambertw functions, the parameter electric current output equation of abbreviation solar cell 5 is the electric current output Lambertw equations clear only containing ideal factor, 3 parameters of parallel resistance and series resistance, and obtains photogenerated current and reverse saturation current analytical expression;Using solar cell photogenerated current much larger than 3 boundary conditions such as reverse saturation currents, simplify the first differential derivation equation of 5 parameter electric current output equations;Secondly experimental data of the solar cell at short dot slope and maximum power point is combined, ideal factor, parallel resistance and series impedance is solved;Above-mentioned 3 parameter values are finally substituted into photogenerated current and reverse saturation current analytical expression, photogenerated current and reverse saturation current value is obtained.The solution have the advantages that:By solar cell wall scroll VA characteristic curve under illumination, can degree of precision 5 electrical parameters of extraction solar cell.

Description

One kind extracts solar cell parametric technique based on equation clear
Technical field
The present invention relates to the extractive technique field of solar cell parameter, and in particular to one kind extracts the sun based on equation clear Battery photogenerated current, reverse saturation current, ideal factor, 5 electrical parameter methods of parallel resistance and series resistance, this method can For energy technology field.
Background technology
Solar cell parameter (referring to photogenerated current, reverse saturation current, ideal factor, parallel resistance and series resistance) is shadow Ring the key factor of solar cell power characteristic, it is how simple and to be accurately determined these parameters be solar cell research process In an important step.In order to solve this problem, it has been proposed that carrying out various solar cell the parameter extracting method [(# such as Liu Feng Light, 2010.21 (8):1181), (Wang Yuling etc., Acta Physica Sinica, 2012.61 (24):248402), (Xiao Wenbo etc., photoelectron # Laser, 2012.23 (9):1681), (Chunfu Zhang et al., Journal of applied physics, 2011.110:064504)].The target that all methods are pursued is high-precision extraction solar cell parameter.
So, here, it is proposed that a kind of extract solar cell parametric technique based on equation clear, this method be first according to According to short circuit current flow point, open-circuit voltage point and Lambertw functions, the parameter electric current output equation of abbreviation solar cell 5 is only containing reason Think the electric current output Lambertw equations clear of the factor, 3 parameters of parallel resistance and series resistance, and obtain photogenerated current and anti- To saturation current analytical expression;Then, it is in parallel much larger than reverse saturation current, solar cell using solar cell photogenerated current Resistance is approximately equal to 3 boundary conditions of short circuit current flow much larger than series resistance and solar cell photogenerated current, simplifies sun electricity The first differential derivation equation of the parameter electric current output equation of pond 5;Secondly, with reference to combine solar cell in a short-circuit situation slope with And at maximum power point electric current and voltage experimental data, set up and solve solar cell ideal factor, parallel resistance and series electrical The closing Algebraic Equation set of 3 electrical parameters is hindered, so as to solve ideal factor, parallel resistance and series impedance;Finally, will Above-mentioned 3 electrical parameter values substitute into photogenerated current and reverse saturation current analytical expression, obtain photogenerated current and reverse saturation Current value.Above-mentioned 5 electrical parameter values are substituted into the parameter electric current output equation of solar cell 5, the volt-ampere under overall situation fitting illumination Characteristic curve, obtains electric current root-mean-square error.
The content of the invention
Solar cell parametric technique is extracted based on equation clear it is an object of the invention to provide one kind, it is relied under illumination too Positive electricity pond wall scroll VA characteristic curve, realizes the extraction solar cell parameter of degree of precision.
The present invention is achieved by the following technical solutions, it is characterised in that method and step is:
(1) according to short circuit current flow point, open-circuit voltage point and Lambertw functions, the parameter electric current of abbreviation solar cell 5 is defeated It is the electric current output Lambertw equations clear only containing ideal factor, 3 parameters of parallel resistance and series resistance to go out equation, and is obtained Obtain photogenerated current and reverse saturation current analytical expression;
(2) it is much larger than series connection much larger than reverse saturation current, solar cell parallel resistance using solar cell photogenerated current Resistance and solar cell photogenerated current are approximately equal to 3 boundary conditions of short circuit current flow, simplify the output of the parameter electric current of solar cell 5 The first differential derivation equation of equation;
(3) combine solar cell in a short-circuit situation at slope and maximum power point electric current and voltage experimental data, Set up and solve solar cell ideal factor, the closing Algebraic Equation set of 3 electrical parameters of parallel resistance and series resistance, so as to ask Solve ideal factor, parallel resistance and series impedance;
(4) above-mentioned 3 electrical parameter values are substituted into photogenerated current and reverse saturation current analytical expression, obtains photoproduction electricity Stream and reverse saturation current value;
(5) above-mentioned 5 electrical parameter values are substituted into the parameter electric current output equation of solar cell 5, under overall situation fitting illumination VA characteristic curve, obtains electric current root-mean-square error.
In the step (1), set up during 3 parameter solar cell electric currents output equation clear, make use of short circuit current flow Point, open-circuit voltage point and Lambertw functions.
In the step (2), the first differential derivation equation abbreviation of the parameter electric current output equation of solar cell 5 is to utilize Solar cell photogenerated current is much larger than series resistance and solar cell much larger than reverse saturation current, solar cell parallel resistance Photogenerated current is approximately equal to 3 boundary conditions of short circuit current flow.
In the step (3), with reference to the reality of solar cell slope and maximum power point electric current and voltage in a short-circuit situation Data are tested, sets up and solves solar cell ideal factor, the closing algebraic equation of 3 electrical parameters of parallel resistance and series resistance Group, solves ideal factor, parallel resistance and series impedance.
In the step (4), obtained ideal factor, parallel resistance and series impedance are updated to photogenerated current and anti- To saturation current analytical expression, photogenerated current and reverse saturation current value are obtained.
The present invention solar cell electric current output equation be:
According to short circuit current flow point, open-circuit voltage and Lambertw functions, 3 parameter electric currents output Lambertw can be obtained clear Equation, reverse saturation current and photogenerated current expression formula are:
Series resistance is much larger than much larger than reverse saturation current, solar cell parallel resistance according to solar cell photogenerated current And solar cell photogenerated current is approximately equal to 3 boundary conditions of short circuit current flow, the parameter electric current of solar cell 5 in a short-circuit situation The first differential derivation equation of output equation is:
Series resistance is much larger than much larger than reverse saturation current, solar cell parallel resistance according to solar cell photogenerated current And solar cell photogenerated current is approximately equal to the parameter of solar cell 5 at 3 boundary conditions of short circuit current flow, maximum power point extreme value The first differential derivation equation of electric current output equation is:
3 parameter electric currents export Lambertw equations clear at maximum power point extreme value:
In above formula, I is cell output current, IphFor photogenerated current, I0For reverse saturation current, V exports for battery Voltage, RsFor series resistance, n is ideal factor, VthFor thermal voltage constant, RshFor parallel resistance .IscFor solar cell short circuit electricity Stream, VocFor solar batteries;For solar cell voltage verses current (when output voltage is zero) under short-circuit conditions First differential derivation value (i.e. slope under short-circuit conditions);VmFor the voltage at solar cell maximum power point, ImFor solar cell Electric current at maximum power point
(5), (6), (7) 3 Closure equation groups more than, we are bent according to C-V characteristic under the solar cell illumination of measurement Line and its numerical differentiation feature, can obtain first differential derivation value, the sun electricity of solar cell voltage verses current under short-circuit conditions Pond short circuit current flow, solar batteries, the voltage at solar cell maximum power point, at solar cell maximum power point Electric current, parses solar cell ideal factor, 3 electrical parameter values of parallel resistance and series resistance.The result drawn is substituted into In formula (3) and (4), solar cell photogenerated current and reverse saturation current value are obtained.5 parameters of the solar cell extracted The parameter electric current output equation of solar cell 5 is substituted into, the solar cell VA characteristic curve under overall situation fitting illumination obtains electric current equal Square error.
The method of the present invention is compared with traditional solar cell parameter extracting method following characteristics:1st, using according to short circuit Current point, open-circuit voltage and Lambertw functions, are reduced to 3 parameter electric currents defeated by the parameter electric current output equation of solar cell 5 Go out Lambertw equations clear;2nd, reverse saturation current, solar cell parallel resistance are much larger than using solar cell photogenerated current 3 boundary conditions of short circuit current flow are approximately equal to much larger than series resistance and solar cell photogenerated current, by the parameter of solar cell 5 First differential derivation equation (i.e. slope) abbreviation of electric current output equation;3rd, this method has the characteristics of precision is higher.
It is current solar cell ginseng the invention provides a kind of method that 5 parameters of battery are extracted while degree of precision Number, which is extracted, provides an effective approach.
Brief description of the drawings
Fig. 1 is measurement and is fitted many body solar cell volt-ampere characteristics of figure.
Embodiment
The present invention is a kind of method for only relying on solar cell wall scroll VA characteristic curve extraction battery parameter under illumination.
As an example, we are measured and are fitted wall scroll C-V characteristic under solar cell illumination using this method.Test It is as shown in Figure 1 with fitting result;Fig. 1 is volt-ampere characteristics of figure under present invention measurement and fitting solar cell illumination.Concrete operations are, VA characteristic curve under the method measurement solar cell illumination of electric current is surveyed first with common making alive, and obtains numerical differentiation Feature;Secondly, sharp present invention extracts solar cell parameter;Finally, it is fitted using the parameter electric current output equation of solar cell 5 VA characteristic curve under solar cell illumination.From Fig. 1 measurements and fitting result, it can be seen that coincide fine.The sun extracted Battery photogenerated current is 1.0321 amperes, and reverse saturation current is 1.9335 × 10-6 amperes, and ideal factor is 46.5424, and It is 554.8327 ohm to join resistance, and series resistance is 1.3424 ohm.Electric current root-mean-square error is 0.0073 ampere.From root mean square Error can be seen that error very little, that is, 5 parameters precisions extracted are higher.
Above example illustrate it is proposed that solar cell parameter extracting method be correct.This method will be at present too Certain popularization is obtained among the research of positive electricity pond parameter extraction technology.
It is described above, it is only the embodiment in the present invention, but protection scope of the present invention is not limited thereto, and appoints What be familiar with the people of the technology disclosed herein technical scope in, the conversion or replacement that can be readily occurred in should all be covered Within the scope of the present invention.Therefore, protection scope of the present invention should be defined by the protection domain of claims.

Claims (1)

1. one kind extracts solar cell parametric technique based on equation clear, it is characterised in that comprise the following steps:
(1) according to short circuit current flow point, open-circuit voltage point and Lambertw functions, the parameter electric current output side of abbreviation solar cell 5 Journey is the electric current output Lambertw equations clear only containing ideal factor, 3 parameters of parallel resistance and series resistance, and obtains light Raw electric current and reverse saturation current analytical expression;Lambertw equations clear, photogenerated current and reverse saturation current resolution table It is respectively up to formula:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>I</mi> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> </mfrac> <mi>l</mi> <mi>a</mi> <mi>m</mi> <mi>b</mi> <mi>e</mi> <mi>r</mi> <mi>t</mi> <mi>w</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mi>s</mi> </msub> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> <mi>exp</mi> <mo>(</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> <mo>&amp;times;</mo> <mi>exp</mi> <mfrac> <mn>1</mn> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <mi>V</mi> </mrow> <mrow> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mi>V</mi> <msub> <mi>R</mi> <mi>s</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <mi>V</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mfrac> <mo>&amp;rsqb;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>I</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mfrac> <mo>-</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
(2) it is much larger than series resistance much larger than reverse saturation current, solar cell parallel resistance using solar cell photogenerated current And solar cell photogenerated current is approximately equal to 3 boundary conditions of short circuit current flow, simplify the parameter electric current output equation of solar cell 5 First differential derivation equation;And combine solar cell electric current and voltage at slope and maximum power point in a short-circuit situation Experimental data, sets up and solves solar cell ideal factor, the closing algebraic equation of 3 electrical parameters of parallel resistance and series resistance Group, so as to solve ideal factor, parallel resistance and series impedance;The closing Algebraic Equation set of 3 electrical parameters is respectively:
<mrow> <mfrac> <mrow> <mi>d</mi> <mi>V</mi> </mrow> <mrow> <mi>d</mi> <mi>I</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>V</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfrac> <msub> <mi>V</mi> <mi>m</mi> </msub> <msub> <mi>I</mi> <mi>m</mi> </msub> </mfrac> <mo>=</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mi>m</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> </mfrac> <mi>l</mi> <mi>a</mi> <mi>m</mi> <mi>b</mi> <mi>e</mi> <mi>r</mi> <mi>t</mi> <mi>w</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <msub> <mi>R</mi> <mi>s</mi> </msub> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mi>exp</mi> <mfrac> <mn>1</mn> <mrow> <msub> <mi>nV</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <msub> <mi>V</mi> <mi>m</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>m</mi> </msub> <msub> <mi>R</mi> <mi>s</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <msub> <mi>V</mi> <mi>m</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
In above formula, I is cell output current, IphFor photogenerated current, I0For reverse saturation current, V is cell output voltage, RsFor series resistance, n is ideal factor, VthFor thermal voltage constant, RshFor parallel resistance;IscFor solar cell short circuit current flow, V For solar batteries;For the first differential derivation value of solar cell voltage verses current under short-circuit conditions;VmFor Voltage at solar cell maximum power point, ImFor the electric current at solar cell maximum power point;
(3) above-mentioned 3 electrical parameter values are substituted into photogenerated current and reverse saturation current analytical expression, obtain photogenerated current and Reverse saturation current value;
(4) above-mentioned 5 electrical parameter values are substituted into the parameter electric current output equation of solar cell 5, the volt-ampere under overall situation fitting illumination Characteristic curve, obtains electric current root-mean-square error.
CN201410526923.0A 2014-10-09 2014-10-09 One kind extracts solar cell parametric technique based on equation clear Expired - Fee Related CN104239650B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410526923.0A CN104239650B (en) 2014-10-09 2014-10-09 One kind extracts solar cell parametric technique based on equation clear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410526923.0A CN104239650B (en) 2014-10-09 2014-10-09 One kind extracts solar cell parametric technique based on equation clear

Publications (2)

Publication Number Publication Date
CN104239650A CN104239650A (en) 2014-12-24
CN104239650B true CN104239650B (en) 2017-08-25

Family

ID=52227704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410526923.0A Expired - Fee Related CN104239650B (en) 2014-10-09 2014-10-09 One kind extracts solar cell parametric technique based on equation clear

Country Status (1)

Country Link
CN (1) CN104239650B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107341324B (en) * 2017-08-23 2020-06-16 河海大学常州校区 Method for solving five parameters of photovoltaic module by using Lambert function
CN111898077A (en) * 2020-06-30 2020-11-06 中电科仪器仪表(安徽)有限公司 Method for obtaining resistance value of parallel resistor of solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237010A (en) * 2008-02-29 2008-08-06 珈伟太阳能(武汉)有限公司 Method for improving solar battery diffusion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268764B1 (en) * 2000-02-18 2001-07-31 Microchip Technology Incorporated Bandgap voltage comparator used as a low voltage detection circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237010A (en) * 2008-02-29 2008-08-06 珈伟太阳能(武汉)有限公司 Method for improving solar battery diffusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于Lambert W函数的太阳能电池组件参数确定法;王玉玲等;《物理学报》;20121127;第61卷(第24期);第1-6页 *

Also Published As

Publication number Publication date
CN104239650A (en) 2014-12-24

Similar Documents

Publication Publication Date Title
CN103633937B (en) A kind of solar cell parameter extracting method based on Lambert W function and fitting of a polynomial
CN102288891B (en) Method for extracting parameters of solar cell
CN110061315A (en) A kind of lithium ion battery fast charge method
CN108880469A (en) A kind of method of solar battery parameter extraction
CN103105573B (en) Solar battery parameter extraction method based on Lambert W function
CN106501724B (en) A kind of all-vanadium flow battery SOC methods of estimation based on RLS and EKF algorithms
TWI400459B (en) A method for parameters extraction of solar cells
CN102890243B (en) A kind of battery electric quantity measuring circuit, measurement apparatus and battery meter
CN104239650B (en) One kind extracts solar cell parametric technique based on equation clear
Katsanevakis Modelling the photovoltaic module
CN107463742A (en) A kind of modeling method for photovoltaic module exception degradation failure
CN104079193A (en) Device for direct current component adjustment and control method thereof
CN104237805A (en) Method for extracting solar cell parameters based on analytic equation
CN103091616B (en) New analytic method for extracting solar battery parameters
CN102968535A (en) Modeling method for engineering mathematical model of solar cell
CN108306617A (en) A kind of method for solving of ideal solar cell maximum power point parameter
CN102759696A (en) Device for adjusting and sampling I-V characteristics of solar battery
CN202710712U (en) I-V characteristic adjusting and sampling device of solar cell
CN103852623B (en) Condenser type photovoltaic cell voltage x current harvester
CN103105574B (en) Analytic method for extracting solar battery parameter
CN104035060B (en) A kind of valve controlled sealed lead-acid accumulator internal resistance measurement degree of accuracy method of calibration
CN104242819A (en) Method for predicting photovoltaic power generation on basis of electrical parameters of battery at two different temperatures
CN105628771B (en) A kind of direct current electrochemical applications system based on solar cell for supplying power
CN108280287B (en) Method for extracting solar cell parameters
CN202471837U (en) A battery internal resistance measuring circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170825

Termination date: 20181009

CF01 Termination of patent right due to non-payment of annual fee