CN104215998B - 一种微通道中子示踪仪 - Google Patents

一种微通道中子示踪仪 Download PDF

Info

Publication number
CN104215998B
CN104215998B CN201410412062.3A CN201410412062A CN104215998B CN 104215998 B CN104215998 B CN 104215998B CN 201410412062 A CN201410412062 A CN 201410412062A CN 104215998 B CN104215998 B CN 104215998B
Authority
CN
China
Prior art keywords
microchannel
neutron
probe
tracing instrument
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410412062.3A
Other languages
English (en)
Other versions
CN104215998A (zh
Inventor
陈东风
刘蕴韬
高建波
孙凯
王洪立
韩松柏
刘新智
李玉庆
王子军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201410412062.3A priority Critical patent/CN104215998B/zh
Publication of CN104215998A publication Critical patent/CN104215998A/zh
Application granted granted Critical
Publication of CN104215998B publication Critical patent/CN104215998B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

本发明涉及一种微通道中子示踪仪,包括一探头、一高压部与一供电部,所述高压部连接所述供电部与所述探头,接受所述供电部供给的电能为所述探头提供高压电平,其特征在于:所述探头包括一壳体、一入射窗、一高压极、一微通道板与一显示屏。将中子转化与电子倍增集成到了同一器件内工作,大大节省了体积;采用了一层单向透射窗口,提高了测量精度;采用了曲管微通道板,减少了测量误差;将高压部与供电部集成到了手柄中,减小了体积,使设备使用更方便;显示屏能够接受电子,可同时获取中子的强度与位置信息;探测灵敏度高,可实现每秒每平方厘米几个中子的情况下泄露的微弱中子束检测。

Description

一种微通道中子示踪仪
技术领域
本发明涉及放射探测领域,尤其是一种微通道中子示踪仪。
背景技术
中子散射谱仪在调试时,需要精确调整各个中子光学部件的相对位置,优化中子束流的品质,以方便后续实验测量;同时还需保证中子束流不泄露,以保证辐射安全。这就需要一种实时便携式的中子束强度和位置检测装置,沿着中子束流方向逐点监测。常见的中子二维位置灵敏探测器一般包括几个部分:探头、信号处理电子学模块、电源、信号处理软件等等。通常中子信号最终输入到电脑终端进行储存、显示和处理。装置整体体积庞大、便携性较差。现在亟待出现一种便携的中子二维位置灵敏探测器,将中子信号的探测、处理、显示集成到一起,方便实验人员在现场随时随地检测中子束流的品质和屏蔽泄露情况,提高现场工作效率。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本创作。
发明内容
本发明的目的在于提供一种微通道中子示踪仪,用以克服上述技术缺陷。
为实现上述目的,本发明提供一种微通道中子示踪仪,包括一探头、一高压部与一供电部,所述高压部连接所述供电部与所述探头,接受所述供电部供给的电能为所述探头提供高压电平,其特征在于:
所述探头包括一壳体、一入射窗、一高压极、一微通道板与一显示屏;
所述壳体两侧分别设置有供待测中子束射入的所述入射窗与显示中子位置的显示屏,所述微通道板与所述入射窗平行设置于所述壳体内用于将检测到的中子转换为电子团;
所述高压极包括一顶电极与一底电极,设置于所述入射窗后方的所述底电极上施加零电压,与设置于所述显示屏后方的所述顶电极施加正电压配合,在所述探头内形成电场。
较佳的,所述微通道板包括若干微通道,所述微通道为中端弯折的长方体,径向截面为正方形。
较佳的,所述探头还包括一单向透射窗口,位于所述显示屏之外,用于阻挡外界光源入射至所述壳体内部。
较佳的,所述探头还包括一玻璃密封层,位于所述单向透射窗口之外,用于保护所述显示屏与所述单向透射窗口。
较佳的,所述高压极还包括紧贴于所述微通道板上下表面的一微通道顶电极与一微通道底电极,所述微通道顶电极为所述微通道底电极为带有与所述微通道径向截面相同形状通孔的金属层;
所述微通道顶电极位于靠近所述顶电极的一侧,所述微通道底电极位于靠近所述底电极的一侧,所述微通道顶电极电压高于所述微通道底电极。
较佳的,所述探头还包括一第二微通道板,与所述微通道板平行设置。
较佳的,所述探头还包括一记录部,所述记录部包括一捕捉所述显示屏上中子踪迹的摄像头、一将所述摄像头捕捉图像处理成数据的处理器与一存储器。
较佳的,其还包括一手柄,所述手柄与所述探头固定连接,并将所述高压部与所述供电部包裹在内。
较佳的,所述入射窗口为铝板,厚度2~5mm;
所述单向透射窗口为铝镀膜,厚度为
所述微通道板厚度为0.3~3mm,所述微通道直径6~15μm,微通道壁厚2~3μm。
较佳的,所述底电极、微通道底电极、微通道顶电极与顶电极所施加电压分别为0V、300V、2000V、5000V。
与现有技术比较本发明的有益效果在于:提供了一种微通道中子示踪仪,将中子转化与电子倍增集成到了同一器件内工作,大大节省了体积;采用了一层单向透射窗口,提高了测量精度;采用了曲管微通道板,减少了测量误差;将高压部与供电部集成到了手柄中,减小了体积,使设备使用更方便;显示屏能够接受电子,可同时获取中子的强度与位置信息;探测灵敏度高,可实现每秒每平方厘米几个中子的情况下泄露的微弱中子束检测。
附图说明
图1为本发明所述示踪仪实施例一结构示意图;
图2为本发明所述示踪仪实施例一探头结构图;
图3为本发明所述示踪仪实施例二结构示意图;
图4为本发明所述示踪仪实施例三探头结构图;
图5为本发明所述示踪仪实施例四探头结构图;
图6为本发明所述示踪仪实施例五探头结构图;
图7为本发明所述示踪仪实施例六探头结构图;
图8为本发明所述示踪仪实施例七探头结构图。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例一
请参见图1所示,图1为本发明所述的中子示踪仪实施例一结构示意图。
其包括,一探头A1、一高压部A2与一供电部A3;
所述探头A1位于设备最前端,接受捕捉接受并且探测显示中子;所述高压部A2位于所述探头A1与所述供电部A3之间,并与二者连接,用于向所述探头A1提供高压;所述供电部A3与所述高压部A2连接,用于给所述高压部A2供电。所述供电部A3可以为电池,也可以外接移动电源或者充电宝之类的供电设备。
请参见图2,所示,图2为本发明所述的中子示踪仪实施例一探头A1结构示意图。
所述探头A1包括一壳体1a、一入射窗2a、一高压极、一微通道板4a、一显示屏5a。
所述壳体1a用于支撑所述探头A1的主体结构,其为一密封腔体结构,其前方设置有所述入射窗2a,用于供待探测的中子入射;尾部设置有所述显示屏,入射至所述示踪仪的中子经过探头处理在所述显示屏5a上面显示为一个大点。从而使测试人员观察到。
所述高压极包括多个不同的高压梯级,实施例一中,包括一底极板31a与一顶极板34a,所述底极板31a接入大地电压,所述顶极板34a接入高压,从而在所述探头A1内部形成定向电场,使其中的带电粒子能够沿电场方向运动,并且在所述显示屏5a上面显示出来。
所述壳体1a内部设置一微通道板4a,所述微通道板4a包括众多的微通道,与所述入射窗2a平行设置;如图2所示,所述微通道板4a中的微通道具有弯折,而非标准的圆柱形或长方形微通道,如此设置的优点在于,对于任何从所述入射窗1a中入射的任何角度的中子,都会保证触碰到所述微通道板4a中的微通道的通道壁上,杜绝了由于,例如采用圆柱形或长方形微通道,出现完全平行于通道方向入射的中子,便会造成遗漏,导致测量失准。
对中子的探测过程如下:将所述探头放置于中子束附近,中子经所述入射窗口2a射入所述壳体1a的腔体中,并撞击所述微通道板4a的微通道壁上。中子与所述微通道壁内掺杂的10B发生核反应,产生7Li和4He粒子,7Li和4He粒子从微通道板壁中出射,在所述高压极形成的电场的作用下撞击到邻近微通道壁上产生次级电子,随后经过系列雪崩倍增生成大量雪崩电子,雪崩电子团最终入射到所述显示屏5a上形成荧光光斑。也就是说,将整个示踪仪接近中子束,每一个中子均会在所述显示屏5a上形成一个点,从而可以使操作者方便地初步确定中子束的品质或是屏蔽泄露的情况,从而确定下一步动作。
本实施例中,所述入射窗2a为铝窗,厚度为3mm,所述底电极31a、所述顶电极34a为铝板,厚度1mm,所述显示屏5a厚度1.5mm。
所述微通道板4a为掺杂10B的微通道板,所述微通道径向截面形状为正方形,所述微通道板4a直径为10μm,通道壁厚为2.5μm,上述微通道板4a厚度为1.5mm。采用掺10B的微通道板,即中子灵敏元素直接掺杂到微通道板的玻璃基材中,在探测过程中,在所述微通道板4a处同时实现了中子的转化和电子的倍增放大,大大地缩减了了装置整体体积。
所述底电极31a接入0V电压,所述顶电极34a接入5000V电压。
本实施例实测,对中子的位置分辨率高,对冷中子的位置分辨可达到15μm。
实施例二
请参见图3所示,图3为本发明实施例二结构示意图。
实施例二与实施例一相似,不同之处在于,其还包括一手柄部A4,所述手柄部A4将所述高压部A2与所述供电部A3集成在内,同时便于操作人员进行握持。
所述手柄部A4一段与所述探头A1固定连接,其可以使操作者在使用示踪仪探测中子时,对示踪仪的操作更加灵活。
实施例二所述的中子示踪仪体积很小,使用灵活,外形尺寸60mm×60mm,有效探测面积为50mm×50mm,厚度仅为25mm。
实施例三
请参见图4所示,图4为本发明实施例四探头结构示意图。
如上述实施例所述的示踪仪,实施例四中,探头A1包括一壳体1b、一入射窗2b、高压极、一微通道板4b、一显示屏5b;高压极包括一顶电极34b与一底电极31b。其还包括一单向透光膜6b,所述单向透光膜6b能够阻挡从所述显示屏5b方向试图入射至所述壳体1b内的光线,而允许探测到的中子所形成的电子团在所述显示屏5b上形成的光线透射到所述壳体1b外,而使操作者捕捉到中子探测影像。
如此设置,使测量精度大大提高,从外部入射的光会严重影响示踪仪器性能,严重时,甚至使仪器无法工作。
本实施例中,所述单向透光膜6b为的铝膜,加上上所述的单向透光膜6b,不但能够提高测量精度,消除外界干扰,还可以略微提升荧光屏的机械性能,由于显示屏幕主体材料为玻璃,所以有些时候非常脆弱,所述单向透光膜6b能够略微提升所述显示屏5b的机械性能,包括韧性、抗拉,提升机械性能的同时不会使整体变得更加沉重。
本实施例中,所述入射窗2b为铝窗,厚度为5mm,所述底电极31b、所述顶电极34b为铝板,厚度1mm,所述显示屏5b厚度2mm。
所述微通道板4b为掺杂10B的微通道板,所述微通道截面形状为方形,所述微通道板4b直径为15μm,通道壁厚为3μm,上述微通道板4b厚度为3mm。
实施例四
请参见图5所示,图5为本发明实施例四探头的结构图。
如上述的实施例所述,实施例四探头A1包括一壳体1c、一入射窗2c、高压极、一微通道板4c、一显示屏5c;高压极包括一顶电极34c、一底电极31c与一单向透光膜6c。
实施例四中,所述微通道板4c包括一第一微通道板与一第二微通道板,所述两个微通道板平行设置,在中子通过所述入射窗2c进入到所述壳体1c的腔体内后,先进入所述第一微通道板中,在所述第一微通道板中初次产生雪崩电子团,随后,产生的电子团离开所述第一微通道板,进入所述第二微通道板,在所述第二微通道板的微通道壁上进行二次雪崩效应,产生更大的雪崩电子团,打到所述显示屏5c上。经过两次微通道板的放大,雪崩电子团的质量显著提高,显示屏5c上显示的示踪点会变得更加清晰,特别有利于中子束质量较低的情形,能够敏锐地探测到极少量的中子放射。
本实施例中,本实施例中,所述入射窗2c为铝窗,厚度为2mm,所述底电极31c、所述顶电极34c为铝板,厚度0.2mm,所述显示屏5c厚度1mm。
所述微通道板4c为掺杂10B的微通道板,所述微通道截面形状为方形,所述微通道板4c直径为6μm,通道壁厚为3μm,上述微通道板4c厚度为3mm。所述单向透光膜6c为铝膜,厚度为
实施例五
请参见图6所示,图6为本发明实施例五探头的结构图。
如上述的实施例所述,实施例五探头A1包括一壳体1d、一入射窗2d、高压极、一微通道板4d、一显示屏5d与一单向透光膜6d;高压极包括一顶电极34d、一底电极31d与一单向透光膜6d。其还包括一密封玻璃板7d,所示密封玻璃板7d位于所述单向透光膜6d之外,可以对所述显示屏5d、所述单向透光膜6d起到保护的作用。
本实施例中,本实施例中,所述入射窗2d为铝窗,厚度为2mm,所述底电极31d、所述顶电极34d为铝板,厚度0.2mm,所述显示屏5d厚度1mm。
所述微通道板4c为掺杂10B的微通道板,所述微通道截面形状为方形,所述微通道板4d直径为6μm,通道壁厚为2μm,上述微通道板4d厚度为0.3mm。所述单向透光膜6d为铝膜,厚度为
实施例六
请参见图7所示,图7为本发明实施例六探头的结构图。
如上述的实施例所述,实施例六探头A1包括一壳体1f、一入射窗2f、高压极、一微通道板4f、一显示屏5f与一单向透光膜6f、一密封玻璃板7f;高压极包括一顶电极34f、一底电极31f。所述高压级还包括一微通道顶电极33f与一微通道底电极32f。
所述微通道顶电极33f与所述微通道底电极32f为与所述微通道板4f上下表面紧密贴合的具有与微通道相匹配形状的孔的网格的极薄金属板,本实施例中,厚度为0.5mm。
本实施例中,所述高压极包括所述顶电极34f、所述微通道顶电极33f、所述微通道底电极32f与所述底电极31f,四个电极形成一电极梯度,本实施例中,所述顶电极34f接入0V、所述微通道顶电极33f接入300V、所述微通道底电极接入2000V、所述底电极接入5000V。如此设置电压值,可以在非微通道部降低不必要的电场,可以最大限度的降低需要的电压,并将电场尽量集中在需要电场高度集中的位置,以减少功耗。
实施例七
请参见图8所示,图8为本发明实施例七探头的结构图。
如上述的实施例所述,实施例六探头A1包括一壳体1g、一入射窗2g、高压极、一微通道板4g、一显示屏5g与一单向透光膜6g;高压极包括一顶电极34g、一底电极31g、一微通道顶电极33g与一微通道底电极32g。
实施例八中,所述探头A1还包括一记录部8g,所述记录部8g用于处理所述显示屏5g上面显示的影像,并且形成记录文件。
所述处理部8g包括一摄像头、一处理器、和一存储器,所述摄像头可以捕捉在所述显示器5g上显示的点,将其转变为电能信号送至所述处理器中,所述处理器将中子出现的时间与坐标记录,送至所述存储器存储,便于操作人员在后期进行复查与统计。
所述微通道顶电极33g与所述微通道底电极32g,厚度为0.2~1mm。
以上所述仅为本发明的较佳实施例,对发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (10)

1.一种微通道中子示踪仪,包括一探头、一高压部与一供电部,所述高压部连接所述供电部与所述探头,接受所述供电部供给的电能为所述探头提供高压电平,其特征在于:
所述探头包括一壳体、一入射窗、一高压极、一微通道板与一显示屏;
所述壳体两侧分别设置有供待测中子束射入的所述入射窗与显示中子位置的显示屏,所述微通道板与所述入射窗平行设置于所述壳体内用于将检测到的中子转换为电子团;
所述高压极包括一顶电极与一底电极,设置于所述入射窗后方的所述底电极上施加零电压,与设置于所述显示屏后方的所述顶电极施加正电压配合,在所述探头内形成电场;
所述微通道板为掺杂10B的微通道板。
2.如权利要求1所述的微通道中子示踪仪,其特征在于,所述微通道板包括若干微通道,所述微通道为中端弯折的长方体,径向截面为正方形。
3.如权利要求1所述的微通道中子示踪仪,其特征在于,所述探头还包括一单向透射窗口,位于所述显示屏之外,用于阻挡外界光源入射至所述壳体内部。
4.如权利要求3所述的微通道中子示踪仪,其特征在于,所述探头还包括一玻璃密封层,位于所述单向透射窗口之外,用于保护所述显示屏与所述单向透射窗口。
5.如权利要求1至4中任一项所述的微通道中子示踪仪,其特征在于,所述高压极还包括紧贴于所述微通道板上下表面的一微通道顶电极与一微通道底电极,所述微通道顶电极与所述微通道底电极为带有与所述微通道径向截面相同形状通孔的金属层;
所述微通道顶电极位于靠近所述顶电极的一侧,所述微通道底电极位于靠近所述底电极的一侧,所述微通道顶电极电压高于所述微通道底电极。
6.如权利要求3所述的微通道中子示踪仪,其特征在于,所述探头还包括一第二微通道板,与所述微通道板平行设置。
7.如权利要求3或6所述的微通道中子示踪仪,其特征在于,所述探头还包括一记录部,所述记录部包括一捕捉所述显示屏上中子踪迹的摄像头、一将所述摄像头捕捉图像处理成数据的处理器与一存储器。
8.如权利要求3或6所述的微通道中子示踪仪,其特征在于,其还包括一手柄,所述手柄与所述探头固定连接,并将所述高压部与所述供电部包裹在内。
9.如权利要求3或6中任一项权利要求所述的微通道中子示踪仪,其特征在于,所述入射窗口为铝板,厚度2~5mm;
所述单向透射窗口为铝镀膜,厚度为
所述微通道板厚度为0.3~3mm,所述微通道直径6~15μm,微通道壁掺10B,厚2~3μm。
10.如权利要求9所述的微通道中子示踪仪,其特征在于,所述底电极、微通道底电极、微通道顶电极与顶电极所施加电压分别为0V、300V、2000V、5000V。
CN201410412062.3A 2014-08-20 2014-08-20 一种微通道中子示踪仪 Active CN104215998B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410412062.3A CN104215998B (zh) 2014-08-20 2014-08-20 一种微通道中子示踪仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410412062.3A CN104215998B (zh) 2014-08-20 2014-08-20 一种微通道中子示踪仪

Publications (2)

Publication Number Publication Date
CN104215998A CN104215998A (zh) 2014-12-17
CN104215998B true CN104215998B (zh) 2017-03-22

Family

ID=52097693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410412062.3A Active CN104215998B (zh) 2014-08-20 2014-08-20 一种微通道中子示踪仪

Country Status (1)

Country Link
CN (1) CN104215998B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031047B (zh) * 2021-03-02 2022-11-08 中国科学院近代物理研究所 双向残余气体电离剖面探测器系统及其探测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183988A (ja) * 1984-09-29 1986-04-28 Toshiba Corp 放射線検出装置
JPS62174679A (ja) * 1986-01-28 1987-07-31 Hamamatsu Photonics Kk 中性子検出器
US8507872B2 (en) * 2010-03-23 2013-08-13 Nova Scientific, Inc. Neutron detection
CN102313898A (zh) * 2010-06-30 2012-01-11 清华大学 热中子探测器及其制造方法
CN103630133B (zh) * 2013-12-05 2016-01-20 中国航天科技集团公司第五研究院第五一三研究所 一种基于微通道板的大面阵探测器系统
CN204044370U (zh) * 2014-08-20 2014-12-24 中国原子能科学研究院 一种微通道中子示踪仪

Also Published As

Publication number Publication date
CN104215998A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
US20060056573A1 (en) Micro neutron detectors
US8173967B2 (en) Radiation detectors and related methods
US9170340B1 (en) Compact ion chamber based neutron detector
JP2010503873A (ja) 一致信号に基づく中性子検出方法および中性子検出装置
CN106597521A (zh) 一种抗强伽玛射线干扰的快中子探测器及其应用方法
Miller et al. SONTRAC: An imaging spectrometer for MeV neutrons
CN104215998B (zh) 一种微通道中子示踪仪
CN113885069A (zh) 一种α探测器及D-T中子标记装置
CN109799527B (zh) 一种中子能谱测量装置及邦纳球谱仪系统
CN111045073A (zh) 一种可同时测量低能和高能中子的探测器
US8729489B2 (en) Radiation detecting device to measure gamma-ray and neutron discriminately
CN204044370U (zh) 一种微通道中子示踪仪
Worstell et al. First results developing time-of-flight proton radiography for proton therapy applications
CN113219517A (zh) 一种高精度聚变中子能谱测量装置及方法
CN107765287A (zh) 一种核泄漏探测仪及其探测污染源的方法
CN101403766A (zh) 一种新型快中子探测器
CN209373136U (zh) 集碲锌镉晶体和塑料闪烁体为一体的γ辐射探测装置
Gadey et al. Using Cosmic Ray Muons to Assess Geological Characteristics in the Subsurface
CN207165513U (zh) 一种多通道硬x射线探测光阴极
Ruirui et al. Detector development at the Back-n white neutron source
RU2593433C1 (ru) Способ и устройство для измерения профиля нейтронного пучка (пучков)
Nakamura Recent development of advanced neutron detection technology
CN109116402A (zh) 一种新型的椭球面聚焦型镜像塑料闪烁体飞行时间探测器
Peng et al. Application of a BC501A Liquid Scintillation Detector with a Gain Stabilization System on the EAST Tokamak
WO2024048761A1 (ja) 検出装置、放射線特定装置及び中性子画像化装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant