CN104215319B - 可调节动态范围的微分干涉仪及测量方法 - Google Patents

可调节动态范围的微分干涉仪及测量方法 Download PDF

Info

Publication number
CN104215319B
CN104215319B CN201410440329.XA CN201410440329A CN104215319B CN 104215319 B CN104215319 B CN 104215319B CN 201410440329 A CN201410440329 A CN 201410440329A CN 104215319 B CN104215319 B CN 104215319B
Authority
CN
China
Prior art keywords
optical fiber
photodetector
fiber coupler
dynamic range
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410440329.XA
Other languages
English (en)
Other versions
CN104215319A (zh
Inventor
甄胜来
陈剑
俞本立
李辉
曹志刚
朱军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201410440329.XA priority Critical patent/CN104215319B/zh
Publication of CN104215319A publication Critical patent/CN104215319A/zh
Application granted granted Critical
Publication of CN104215319B publication Critical patent/CN104215319B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种可调节动态范围的微分干涉仪,包括ASE光源1、光纤环形器2、第一光纤耦合器3、第一延迟光纤4、第二延迟光纤5、光开关6、三个光电探测器、第二光纤耦合器8、法拉第旋转镜10;所述三个光电探测器分别与第一光纤耦合器3连接,所述光纤环形器2串接在第二光电探测器7.2与第一光纤耦合器3连接的通路上,所述光纤环形器2还与ASE光源1连接,所述第一光纤耦合器3还分别与第一延迟光纤4、第二延迟光纤5、第二光纤耦合器8连接,三个光电探测器分别与光开关6连接,所述光开关6还与第二光纤耦合器8连接,所述第二光纤耦合器8与法拉第旋转镜10相连,所述第一延迟光纤4、第二延迟光纤5长度不同。

Description

可调节动态范围的微分干涉仪及测量方法
技术领域
本发明涉及相位测量系统,具体是指一种可调节动态范围的微分干涉仪及测量方法。
背景技术
自1975年,白光干涉原理被提出并得到广泛应用;直至1983年,白光干涉原理首次在光纤传感技术中得到应用;并在1985至1989年,被广泛用于压力、温度和应变测量的研究中;自1990年后,随光纤白光测量技术持续发展,其优点被众多研究者认可。目前白光干涉技术可测量的物理量明显增多,例如:位移、压力、振动、应力、应变、湿度、温度等物理参量以及生化参量的绝对测量。
微分干涉仪是基于白光干涉原理制成的测量仪器,并在远距离测量和大范围区域监测领域(如电力传输线、油气管线监测)有广泛应用。微分干涉仪是基于干涉原理的时间相干性,通过使两路光的信号源送达时间不同,从而产生干涉信号。微分干涉仪具有的优点:1、提供了位移,温度,压力等多种绝对物理量的测量方法;2、采用低相干光源,系统抗干扰能力很强,结构简单成本低;3、无相位衰落,受环境扰动影响小;4、不受光源相干长度限制,实现大动态范围测量。
在实际测量振动信息时,为测量出振幅和频率,需对光电转换输出进行信号解调。较常见的解调法,有经典外差解调法,伪外差解调法、合成外差法和PGC(相位生成载波)解调技术,但以上解调法都需外加调制元件,从而使得测量装置的动态范围受调制频率限制。
微分干涉仪采用相位压缩原理,输出信号的相位量相比于实际相位变化量被压缩了许多倍,这样拓宽了输出的线性范围,同时降低了电路带宽的要求。但当被测信号频率高或相位变化量大时,干涉仪输出信号仍会超出线性范围。
综上所述,目前现有技术的微分干涉仪由于线性范围不可调使得对大振幅信号响应较差。
发明内容
针对现有技术中的问题,本发明提供一种线性范围可调从而对大振幅信号响应较好的一种可调节动态范围的微分干涉仪。
为了达到上述目的,本发明的技术方案是:一种可调节动态范围的微分干涉仪,包括ASE光源、光纤环形器、第一光纤耦合器、第一延迟光纤、第二延迟光纤、光开关、第一光电探测器、第二光电探测器、第三光电探测器、第二光纤耦合器、法拉第旋转镜;所述第一光电探测器、第二光电探测器、第三光电探测器分别与第一光纤耦合器连接,所述光纤环形器串接在第二光电探测器与第一光纤耦合器连接的通路上,所述光纤环形器还与ASE光源连接,所述第一光纤耦合器还分别与第一延迟光纤、第二延迟光纤、第二光纤耦合器连接,所述第一延迟光纤、第二延迟光纤分别与光开关连接,所述光开关还与第二光纤耦合器连接,所述第二光纤耦合器与法拉第旋转镜相连,所述第一延迟光纤、第二延迟光纤长度不同。
根据上述方案可以看出本实用具有如下优点:
第一、本发明光学结构为马赫曾德和赛格纳克混合型微分干涉仪结合光开关与多段延迟光纤。
第二、所述ASE光源为宽带光源,使用宽带光源和单模光纤器件,结构简单成本低。
第三、所述第一光纤耦合器为3x3光纤耦合器,所述第二光纤耦合器为2x2光纤耦合器。3x3光纤耦合器将干涉光分为强度相同相位差互为2/3π的三路光,结合光纤环形器实现三路探测无源解调。2x2光纤耦合器分光比为50∶50。
第四、所述可调节动态范围的微分干涉仪使用光开关选择光路通过第一延迟光纤或者第二延迟光纤,进而改变光纤延迟线的长度,实现调节干涉仪测量的动态范围。
第五、所述可调节动态范围的微分干涉仪还包括用于调节光开关选通光路的单片机系统,所述光开关还与单片机系统相连。
第六、所述可调节动态范围的微分干涉仪还包括数据采集卡与计算机,所述第一光电探测器、第二光电探测器、第三光电探测器均通过数据线与数据采集卡输入端相连。信号通过数据采集卡实现模数转换后输入计算机,采用三路探测解调算法进行解调。
第七、使用三路探测的无源解调方法即可测量出振动信息,大幅增加对信号的可测量范围,同时信号解调不受电路带宽的限制。
本发明针对微分干涉仪由于线性范围不可调使得对大振幅信号响应较差这一技术问题,同时提出了该可调节动态范围的微分干涉仪的测量方法,现技术方案如下:
一种可调节动态范围的微分干涉仪操作方法,其具体步骤如下:
步骤一、安装信号源,将信号源串接在第二光纤耦合器与法拉第旋转镜连接的通路上;
步骤二、打开ASE光源,使ASE光源发出的光经第一光纤耦合器和第二光纤耦合器至法拉第旋转镜,法拉第旋转镜将光反射回第一光纤耦合器和第二光纤耦合器并分别进入第一光电探测器、第二光电探测器、第三光电探测器;
步骤三、通过单片机系统调整光开关,所述第一延迟光纤、第二延迟光纤长度不同,通过单片机系统调节光开关连通第一延迟光纤或连通第二延迟光纤;
步骤四、数据转换,通过数据采集卡采集第一光电探测器、第二光电探测器、第三光电探测器上信号并进行A/D转换,信号输入计算机运行解调算法,经过消直流、减法、取反正弦再积分获得待测振动信号。
附图说明
附图1为本发明的可调节动态范围的微分干涉仪的结构框图。
附图2为本发明的可调节动态范围的微分干涉仪的解调流程图。
附图3A为本发明的可调节动态范围的微分干涉仪以压电陶瓷(PZT),驱动信号为f=1KHz,V=20mV、使用40m长光纤延迟线的解调结果频谱图。
附图3B为本发明的可调节动态范围的微分干涉仪以压电陶瓷(PZT)为目标,驱动信号为f=1KHz,V=20mV、使用730m长光纤延迟线的解调结果频谱图。
附图4A为本发明的可调节动态范围的微分干涉仪以压电陶瓷(PZT)为目标,驱动信号为f=5KHz时,使用40m长延迟线时,最大可测量相位变化为32.2rad时的频谱图。
附图4B为本发明的可调节动态范围的微分干涉仪以压电陶瓷(PZT)为目标,驱动信号为f=5KHz时,使用730m长延迟线时,最大可测量相位变化为1.93rad时的频谱图
附图5A为本发明的可调节动态范围的微分干涉仪使用40m长延迟线时的频谱图。
附图5B为本发明的可调节动态范围的微分干涉仪使用730m长延迟线时的频谱图。图中所示:1、ASE光源,2、光纤环形器,3、第一光纤耦合器,4、第一延迟光纤,5、第二延迟光纤,6、光开关,7.1、第一光电探测器,7.2、第二光电探测器,7.3、第三光电探测器,8、第二光纤耦合器,9、信号源,10、法拉第旋转镜,11、单片机系统,12、数据采集卡。
具体实施方式
下面结合附图和实施例对本发明进行进一步说明。
如图1所示,一种可调节动态范围的微分干涉仪,包括ASE光源1、光纤环形器2、第一光纤耦合器3、第一延迟光纤4、第二延迟光纤5、光开关6、第一光电探测器7.1、第二光电探测器7.2、第三光电探测器7.3、第二光纤耦合器8、法拉第旋转镜10;所述第一光电探测器7.1、第二光电探测器7.2、第三光电探测器7.3分别与第一光纤耦合器3连接,所述光纤环形器2串接在第二光电探测器7.2与第一光纤耦合器3连接的通路上,所述光纤环形器2还与ASE光源1连接,所述第一光纤耦合器3还分别与第一延迟光纤4、第二延迟光纤5、第二光纤耦合器8连接,所述第一延迟光纤4、第二延迟光纤5分别与光开关6连接,所述光开关6还与第二光纤耦合器8连接,所述第二光纤耦合器8与法拉第旋转镜10相连,所述第一延迟光纤4、第二延迟光纤5长度不同。
本发明的光学结构为马赫曾德和赛格纳克混合型微分干涉仪结合光开关与多段延迟光纤。
本发明的光干涉原理为:由3ASE光源1发出的光经光纤环形器2进入第一光纤耦合器3分为三束光,一束进入第二光纤耦合器8,另两束分别进入第一延迟光纤4与第二延迟光纤5;通过光开关6选择光路通过第一延迟光纤4或第二延迟光纤5,光通过光开关6后进入第二光纤耦合器8,第二光纤耦合器8的另一端输出光进入信号源9;经过法拉第旋转镜反射后,再次通过信号源9;光回传至第二光纤耦合器8,最终通过第一光纤耦合器3分为三路光分别进入第一光电探测器7.1、第二光电探测器7.2和第三光电探测器7.3。光从ASE光源1射出经过信号源9,被法拉第旋转镜反射后传至三个光电探测器,通过的路径共有四条:(a)D→L1→D;(b)D→L1→F;(c)F→L1→D;(d)F→L1→F。四路光在光纤耦合器中a和d两路光程太大不满足干涉条件,不能发生干涉;只有b、c两束光通过相同的光程通过振源的先后顺序不同,这两路光满足干涉条件,能够发生干涉;利用延时光纤4或5带来的时间差,干涉信号被三个光电探测器7接收后,光电探测器7的输出电信号包含信号源9的振动信息,使用三路探测解调算法进行信号解调。
如图2所示,本发明的解调原理:第一光电探测器7.1、第二光电探测器7.2和第三光电探测器7.3的输出电信号通过NI的PCI-6521数据采集卡实现A/D转换,输入PC机中。通过LabVIEW软件做运算,获得解调结果以及振动目标8的振动信息。
本发明的动态范围调节原理:微分干涉仪解调出的信号表达式中含有一个参数称为相位压缩系数(PCF)。相位压缩系数可以将实际的相位变化量压缩许多倍,使得干涉仪输出信号的相位变化量缩小,这一缩小量与光纤延迟线的长度线性相关,如果延迟线的长度已知,原信号就可以在解调中还原出来。通过光开关6选择光路通过不同长度的光纤延迟线,会改变干涉仪的相位压缩系数。当使用长的光纤延迟线,使得相位压缩系数减小时,解调信号具有更小的相位分辨率,更大的信噪比,对弱信号分辨率提高。当使用短的光纤延迟线,使得相位压缩系数增大,干涉仪可以测量出更大的相位变化量。这样,就实现了微分干涉仪光动态范围的调节。光开关6装在单片机系统中,连接在PC机上,通过LabVIEW软件控制光开关6光路的选通。
入射三个光电探测器7的光生电流分别为:
I n = 4 E 0 2 + 2 E 0 2 cos [ 4 Δφ cos ω ( t - τ T 2 ) sin ω τ d 2 cos ωτ x - ( n - 1 ) 2 π 3 ] - - - ( 1 )
上式中,n=1、2、3,E0是光源光强的1/36,ω为调制信号的角频率。为简化表达式,定义D=4E0 2,E=2E0 2通过光电二级管和前置放大器后上式可简化为:
Vn=D+Ecos[φ-(n-1)2π/3] (2)
V1,V2,V3为输出的电压值,φ即是待解调信号。
解调的算法如图2所示,包括以下步骤:
1、计算三路信号的直流量D的平均值:
D=(V1+V2+V3)/3
2、三路信号消去直流项D后得:
a=Ecos(φ-2π/3)
b=Ecosφ
c=Ecos(φ+2π/3)
3、为得到正弦信号,a与c相减:
a - c = 3 E sin φ
4、为了计算出系数E,求a、b、c三项平方求和后开根号
a 2 + b 2 + c 2 = 3 2 E
5、除消去E后得到解调信号的正弦量。求反正弦后得到信号的速度量,再积分一次得到解调信号的位移量:
V out = ∫ φ ( t ) dt = Δφ sin ω t sin ( ωτ d 2 ) cos ( ωτ x ) / ω
和cos(ωτx)都非常小,可以近似计算为和cos(ωτx)≈1
上式可简化为:
Vout=∫φ(t)dt=τdΔsinωt。
Δφsinωt为被测信号,Δφ即为信号的振动幅值。
在公式(1)中,PCF=1/ωτd是相位压缩系数,τd与光纤长度成正比。在ω恒定时,光纤延迟线越短,τd越小,PCF越大,相位的压缩程度越高。光纤延迟线越长,τd越大,PCF越小,相位的压缩程度越低。相位信息压缩程度高,测量的最大相位变化量越大,相位的压缩程度低,信噪比提高,对小信号的分辨率越高。
以上实验数据结合实验图3A、3B、4A、4B、5A、5B可以看出本发明的可调节动态范围的微分干涉仪可得到稳定的解调结果,测出了振动的绝对振幅,验证了光纤白光微分干涉非接触测振的方法及装置的有效性;其中,5A中曲线一表示动态范围的上限,曲线二表示动态范围的下限;5B中曲线一表示动态范围的上限,曲线二表示动态范围的下限。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (6)

1.一种可调节动态范围的微分干涉仪,其特征在于:包括ASE光源(1)、光纤环形器(2)、第一光纤耦合器(3)、第一延迟光纤(4)、第二延迟光纤(5)、光开关(6)、第一光电探测器(7.1)、第二光电探测器(7.2)、第三光电探测器(7.3)、第二光纤耦合器(8)、法拉第旋转镜(10);所述第一光电探测器(7.1)、第二光电探测器(7.2)、第三光电探测器(7.3)分别与第一光纤耦合器(3)连接,所述光纤环形器(2)串接在第二光电探测器(7.2)与第一光纤耦合器(3)连接的通路上,所述光纤环形器(2)还与ASE光源(1)连接,所述第一光纤耦合器(3)还分别与第一延迟光纤(4)、第二延迟光纤(5)、第二光纤耦合器(8)连接,所述第一延迟光纤(4)、第二延迟光纤(5)分别与光开关(6)连接,所述光开关(6)还与第二光纤耦合器(8)连接,所述第二光纤耦合器(8)与法拉第旋转镜(10)相连,所述第一延迟光纤(4)、第二延迟光纤(5)长度不同。
2.根据权利要求1所述的可调节动态范围的微分干涉仪,其特征在于:所述ASE光源(1)为宽带光源。
3.根据权利要求1所述的干涉仪,其特征在于:所述第一光纤耦合器(3)为3x3光纤耦合器,所述第二光纤耦合器(5)为2x2光纤耦合器。
4.根据权利要求1所述的干涉仪,其特征在于:所述可调节动态范围的微分干涉仪还包括用于调节光开关(6)开关与闭合的单片机系统(11),所述光开关(6)还与单片机系统(11)相连。
5.根据权利要求1所述的干涉仪,其特征在于:所述可调节动态范围的微分干涉仪还包括数据采集卡(12),所述第一光电探测器(7.1)、第二光电探测器(7.2)、第三光电探测器(7.3)均安装有数据采集卡(12)。
6.一种根据权利要求1所述的可调节动态范围的微分干涉仪的操作方法,其具体步骤如下:
步骤一、安装信号源,将信号源(9)串接在第二光纤耦合器(8)与法拉第旋转镜(10)连接的通路上;
步骤二、打开ASE光源,使ASE光源(1)发出的光经第一光纤耦合器(3)和第二光纤耦合器(8)至法拉第旋转镜(10),法拉第旋转镜(10)将光反射回第一光纤耦合器(3)和第二光纤耦合器(8)并分别进入第一光电探测器(7.1)、第二光电探测器(7.2)、第三光电探测器(7.3);
步骤三、调整光开关,所述第一延迟光纤(4)、第二延迟光纤(5)长度不同,通过单片机系统(11)调节光开关(6)连通第一延迟光纤(4)或连通第二延迟光纤(5);
步骤四、数据转换,通过数据采集卡(12)采集第一光电探测器(7.1)、第二光电探测器(7.2)、第三光电探测器(7.3)上信号,并进行A/D转换、消直流、减法、取反正弦再积分获得待测振动信号。
CN201410440329.XA 2014-09-01 2014-09-01 可调节动态范围的微分干涉仪及测量方法 Expired - Fee Related CN104215319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410440329.XA CN104215319B (zh) 2014-09-01 2014-09-01 可调节动态范围的微分干涉仪及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410440329.XA CN104215319B (zh) 2014-09-01 2014-09-01 可调节动态范围的微分干涉仪及测量方法

Publications (2)

Publication Number Publication Date
CN104215319A CN104215319A (zh) 2014-12-17
CN104215319B true CN104215319B (zh) 2017-01-11

Family

ID=52097048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410440329.XA Expired - Fee Related CN104215319B (zh) 2014-09-01 2014-09-01 可调节动态范围的微分干涉仪及测量方法

Country Status (1)

Country Link
CN (1) CN104215319B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111207821B (zh) * 2020-01-19 2022-05-17 国兴汇金(深圳)科技有限公司 一种可调标距长度的光纤分布式振动传感系统
CN111307270B (zh) * 2020-03-27 2021-07-06 武汉理工大学 一种提高振动测量灵敏度的分布式光纤传感系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111679A (en) * 1998-04-21 2000-08-29 Optimight Communications, Inc. Method and system for optical multichannel transmission using coherence division multiplexing with optical filtering
CN102095486A (zh) * 2010-09-02 2011-06-15 上海华魏光纤传感技术有限公司 全光纤单端闭合型微分干涉仪
CN102162749A (zh) * 2010-09-02 2011-08-24 上海华魏光纤传感技术有限公司 全光纤对称型微分干涉仪
CN103759804A (zh) * 2014-01-23 2014-04-30 安徽大学 光纤白光微分干涉非接触测振的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111679A (en) * 1998-04-21 2000-08-29 Optimight Communications, Inc. Method and system for optical multichannel transmission using coherence division multiplexing with optical filtering
CN102095486A (zh) * 2010-09-02 2011-06-15 上海华魏光纤传感技术有限公司 全光纤单端闭合型微分干涉仪
CN102162749A (zh) * 2010-09-02 2011-08-24 上海华魏光纤传感技术有限公司 全光纤对称型微分干涉仪
CN103759804A (zh) * 2014-01-23 2014-04-30 安徽大学 光纤白光微分干涉非接触测振的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
相位压缩技术在光纤应变传感器中的应用;赵新秋等;《光电子.激光》;20040430;第15卷(第4期);505-506 *

Also Published As

Publication number Publication date
CN104215319A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
CN106248247B (zh) 一种基于拉曼-布里渊分布式温度、应力双参量检测的传感装置
CN105424605B (zh) 基于低相干光纤微分干涉非接触测振的光声光谱测量装置及方法
CN101629855B (zh) 分布式光纤传感系统及利用其的检测方法
CN101231367A (zh) 高分辨率波长解调系统及其解调方法
CN104567959B (zh) 基于双通道非平衡干涉仪的大动态干涉型光纤传感器
CN101701819B (zh) 一种双轴复用光纤陀螺及其信号调制解调方法
CN107340050A (zh) 一种光纤分布式振动传感系统及鉴相非线性误差修正方法
CN104215368A (zh) 一种f-p腔光纤压力传感装置及其解调方法
CN209296053U (zh) 一种分布式检测管道及系统
CN206974448U (zh) 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置
CN103115633A (zh) 利用相位生成载波降低干涉路径散(反)射光干扰的方法
CN100533063C (zh) 光纤陀螺热噪声、散粒噪声及强度噪声分离的方法
CN104215319B (zh) 可调节动态范围的微分干涉仪及测量方法
CN103759804A (zh) 光纤白光微分干涉非接触测振的方法及装置
CN109084883A (zh) 基于相位-botdr光纤分布式布里渊振动传感测量方法
CN101799610B (zh) 外差式相位干涉型光纤传感器的正交解调装置
CN201903351U (zh) 一种光纤光栅动态变化解调装置
CN109831249A (zh) 一种保偏光纤主轴差分延时的测量装置
CN107727122A (zh) 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置
CN101706278B (zh) 一种可监控光功率大小的调制解调方法
CN205785095U (zh) 一种高精度动态光纤应变传感装置
CN105466410B (zh) 基于光纤环形谐振腔的灵敏度可调干涉式光纤陀螺
CN104848879A (zh) 基于线性工作匹配光栅法的光纤布拉格光栅传感器信号解调方法
CN206891574U (zh) 一种光纤分布式振动传感系统
CN206161145U (zh) 一种分布式光纤振动传感系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170111

Termination date: 20190901