CN104184149B - Voltage fluctuation stabilizing method based on sliding mode control and super-capacitor - Google Patents
Voltage fluctuation stabilizing method based on sliding mode control and super-capacitor Download PDFInfo
- Publication number
- CN104184149B CN104184149B CN201410413831.1A CN201410413831A CN104184149B CN 104184149 B CN104184149 B CN 104184149B CN 201410413831 A CN201410413831 A CN 201410413831A CN 104184149 B CN104184149 B CN 104184149B
- Authority
- CN
- China
- Prior art keywords
- sliding mode
- control
- voltage
- converter
- bidirectional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000000087 stabilizing effect Effects 0.000 title description 2
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 56
- 238000004146 energy storage Methods 0.000 claims abstract description 13
- 230000005540 biological transmission Effects 0.000 claims abstract description 6
- 230000001939 inductive effect Effects 0.000 claims abstract 12
- 230000010349 pulsation Effects 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 238000009415 formwork Methods 0.000 claims 1
- 238000011084 recovery Methods 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本发明涉及一种基于滑模控制和超级电容的平抑电压波动方法,超级电容作为储能装置并联连接在双向DC‑DC变换器的输出端,超级电容通过双向DC‑DC变换器连接到直流母线上,形成能量双向传输回路;将双向DC‑DC变换器的电感电流及直流母线上的电容电压作为双向DC‑DC变换器内部滑模变结构控制器的控制参量,输入到滑模变结构控制器中;经滑模变结构控制器处理,产生控制信号,控制双向DC‑DC变换器的工作模式及其功率开关管的导通占空比,即可控制超级电容的充放电;形成直流动态电压恢复器系统,平抑直流母线上的电压波动。本发明简化了控制算法,增强了系统的鲁棒性,抑制直流母线上的电压波动,为负荷提供稳定可靠的电压。
The invention relates to a method for suppressing voltage fluctuations based on sliding mode control and a supercapacitor. The supercapacitor is connected in parallel to the output end of a bidirectional DC-DC converter as an energy storage device, and the supercapacitor is connected to a DC bus through the bidirectional DC-DC converter. above, a bidirectional energy transmission loop is formed; the inductive current of the bidirectional DC‑DC converter and the capacitor voltage on the DC bus are used as the control parameters of the internal sliding mode variable structure controller of the bidirectional DC‑DC converter, and are input to the sliding mode variable structure control In the device; processed by the sliding mode variable structure controller, a control signal is generated to control the working mode of the bidirectional DC-DC converter and the conduction duty cycle of the power switch tube, so as to control the charging and discharging of the supercapacitor; form a DC dynamic The voltage restorer system stabilizes the voltage fluctuation on the DC bus. The invention simplifies the control algorithm, enhances the robustness of the system, suppresses the voltage fluctuation on the direct current bus, and provides stable and reliable voltage for the load.
Description
技术领域technical field
本发明涉及一种调整电力电压波动技术,特别涉及一种基于滑模控制和超级电容的平抑电压波动方法。The invention relates to a technology for adjusting power voltage fluctuations, in particular to a method for suppressing voltage fluctuations based on sliding mode control and supercapacitors.
背景技术Background technique
随着社会经济的发展,人类的生活和生产对电力的需求越来越高,同时,随着高科技精密电子设备在生活和生产中的广泛应用,电力用户对电能质量的要求越来越高。电能质量如果受到破坏,则会严重威胁电力系统的安全运行、扰乱电力用户的正常生活和生产,甚至造成不可估量的经济损失和社会影响。With the development of social economy, the demand for electric power in human life and production is getting higher and higher. At the same time, with the wide application of high-tech precision electronic equipment in life and production, power users have higher and higher requirements for power quality. . If the power quality is damaged, it will seriously threaten the safe operation of the power system, disrupt the normal life and production of power users, and even cause immeasurable economic losses and social impacts.
目前国内防治电网电压波动的主要方法是加装UPS电源。但是UPS电源有使用寿命短,放电电流小等缺点,使系统的性价比降低。本发明提出基于超级电容储能装置与滑模变结构控制器结合,构成直流DVR系统。该系统不仅结合了超级电容在储能方面的诸多优点,同时兼备了滑模变结构控制对于非线性系统的控制优势。该系统通过调整直流母线电压,为负荷提供高质量,高稳定性的电压。At present, the main method to prevent and control the voltage fluctuation of the power grid in China is to install UPS power supply. However, the UPS power supply has disadvantages such as short service life and small discharge current, which reduce the cost performance of the system. The present invention proposes a DC DVR system based on the combination of a super capacitor energy storage device and a sliding mode variable structure controller. The system not only combines many advantages of supercapacitors in energy storage, but also has the control advantages of sliding mode variable structure control for nonlinear systems. The system provides high-quality, high-stability voltage for the load by adjusting the DC bus voltage.
超级电容器作为一种新型的电力储能元件,具有功率密度大、充电时间短、使用寿命长、充放电效率高等特性;故而在储能方面得到了广泛的研究和应用。基于超级电容的直流DVR装置,能够有效保护敏感负荷,使其免受电压波动带来的危害,滑模变结构控制能够克服系统的不确定性,算法简单,响应速度快,对干扰和未建模动态具有很强的鲁棒性。尤其是对非线性系统的控制具有良好的控制效果。所以滑模变结构控制作为非线性控制的重要方法近年来得到了广泛深入的研究。As a new type of electric energy storage element, supercapacitor has the characteristics of high power density, short charging time, long service life and high charging and discharging efficiency; therefore, it has been widely researched and applied in energy storage. The DC DVR device based on the supercapacitor can effectively protect the sensitive load from the harm caused by the voltage fluctuation. The sliding mode variable structure control can overcome the uncertainty of the system. The algorithm is simple and the response speed is fast. Modular dynamics have strong robustness. Especially for the control of nonlinear systems, it has a good control effect. Therefore, sliding mode variable structure control, as an important method of nonlinear control, has been extensively and deeply studied in recent years.
发明内容Contents of the invention
本发明是针对现在为克服电网电压波动使用的UPS电源寿命短、放电电流小的问题,提出了一种基于滑模控制和超级电容的平抑电压波动方法,解决电网电压波动问题。The present invention aims at the problems of short service life and small discharge current of the UPS power supply currently used for overcoming grid voltage fluctuations, and proposes a method for suppressing voltage fluctuations based on sliding mode control and supercapacitors to solve the problem of grid voltage fluctuations.
本发明的技术方案为:一种基于滑模控制和超级电容的平抑电压波动方法,超级电容作为储能装置并联连接在双向DC-DC变换器的输出端,超级电容通过双向DC-DC变换器连接到直流母线上,形成能量双向传输回路;将双向DC-DC变换器的电感电流及直流母线上的电容电压作为双向DC-DC变换器内部滑模变结构控制器的控制参量,输入到滑模变结构控制器中;经滑模变结构控制器处理,产生控制信号,控制双向DC-DC变换器的工作模式及其功率开关管的导通占空比,即可控制超级电容的充放电;超级电容和双向DC-DC变换器形成直流动态电压恢复器系统,实现平抑直流母线上的电压波动。The technical solution of the present invention is: a method for suppressing voltage fluctuations based on sliding mode control and a supercapacitor, the supercapacitor is connected in parallel to the output end of the bidirectional DC-DC converter as an energy storage device, and the supercapacitor passes through the bidirectional DC-DC converter Connected to the DC bus to form a bidirectional energy transmission loop; the inductance current of the bidirectional DC-DC converter and the capacitor voltage on the DC bus are used as the control parameters of the sliding mode variable structure controller inside the bidirectional DC-DC converter, and input to the sliding In the modulus variable structure controller, after processing by the sliding mode variable structure controller, a control signal is generated to control the working mode of the bidirectional DC-DC converter and the conduction duty cycle of the power switch tube, so as to control the charge and discharge of the supercapacitor ; Supercapacitors and bidirectional DC-DC converters form a DC dynamic voltage restorer system to stabilize voltage fluctuations on the DC bus.
所述双向DC-DC变换器采用双向半桥变换器拓扑结构,直流母线上的电容两端并联两个串联的功率开关管,两个串联功率开关管中间点通过电感接超级电容,基于趋近律的位置跟踪滑模变结构控制器输出控制信号到两个功率开关管控制端,滑模变结构控制器采用双环控制,内环跟踪控制双向DC-DC变换器的电感电流,外环跟踪控制直流母线上的电容电压。The bidirectional DC-DC converter adopts a bidirectional half-bridge converter topology. Two power switch tubes in series are connected in parallel at both ends of the capacitor on the DC bus, and the middle point of the two series power switch tubes is connected to a super capacitor through an inductor. The position tracking sliding mode variable structure controller of the law outputs control signals to the control terminals of the two power switch tubes. The sliding mode variable structure controller adopts double-loop control, the inner loop tracking controls the inductance current of the bidirectional DC-DC converter, and the outer loop tracking control Capacitive voltage on the DC bus.
所述滑模变结构控制器包括外环电压滑模控制器和内环电流滑模控制器,The sliding mode variable structure controller includes an outer loop voltage sliding mode controller and an inner loop current sliding mode controller,
参考电压信号v ref 和直流母线电容电压v c 的差值作为输入,供给外环电压滑模控制器,经过滑模控制器的计算,输出电感电流参考信号i ref ;电感电流参考信号i ref 和双向DC-DC变换器的电感电流i L 的差值作为输入,提供给内环电流滑模控制器,经滑模控制器计算,输出功率开关管的占空比控制信号u;占空比控制信号u控制双向DC-DC变换器两个功率开关的导通和关断,从而调节电感电流i L ,使其跟踪给定的参考电流信号;外环电压滑模控制器输出电感电流参考信号i ref 经过滞环控制环节,控制双向 DC-DC变换器的工作方式,调节直流母线上的电容电压。The difference between the reference voltage signal v ref and the DC bus capacitor voltage v c is used as an input, which is supplied to the outer loop voltage sliding mode controller. After calculation by the sliding mode controller, the inductor current reference signal i ref is output; the inductor current reference signal i ref and The difference value of the inductance current i L of the bidirectional DC-DC converter is used as an input, which is provided to the inner loop current sliding mode controller, and is calculated by the sliding mode controller to output the duty ratio control signal u of the power switch tube; the duty ratio control The signal u controls the turn-on and turn-off of the two power switches of the bidirectional DC-DC converter, thereby adjusting the inductor current i L to make it track a given reference current signal; the outer loop voltage sliding mode controller outputs the inductor current reference signal i ref controls the working mode of the bidirectional DC-DC converter through the hysteresis control link, and adjusts the capacitor voltage on the DC bus.
本发明的有益效果在于:本发明基于滑模控制和超级电容的平抑电压波动方法,该方法是使用滑模变结构控制器和超级电容储能系统实现直流DVR系统,抑制直流母线上的电压波动,为负荷提供稳定可靠的电压。采用滑模变结构控制方法,简化了控制算法,增强了系统的鲁棒性。同时采用了超级电容作为储能元件,结合了超级电容和滑模变结构控制的诸多优点,使得本发明具有广泛的适用性。The beneficial effects of the present invention are: the present invention is based on the sliding mode control and supercapacitor voltage fluctuation method, the method is to use the sliding mode variable structure controller and the supercapacitor energy storage system to realize the DC DVR system, and suppress the voltage fluctuation on the DC bus , to provide a stable and reliable voltage for the load. The sliding mode variable structure control method is adopted, which simplifies the control algorithm and enhances the robustness of the system. At the same time, a supercapacitor is used as an energy storage element, and many advantages of the supercapacitor and sliding mode variable structure control are combined, so that the present invention has wide applicability.
附图说明Description of drawings
图1为本发明直流VAR系统框图;Fig. 1 is the block diagram of DC VAR system of the present invention;
图2为本发明基于滑模控制和超级电容的平抑电压波动系统结构框图;Fig. 2 is the block diagram of the present invention's smooth voltage fluctuation system based on sliding mode control and supercapacitor;
图3为本发明双向DC-DC变换器能量传输示意图。Fig. 3 is a schematic diagram of energy transmission of the bidirectional DC-DC converter of the present invention.
具体实施方式detailed description
如图1所示本发明直流VAR系统框图,选用超级电容作为能量储存装置,超级电容通过双向DC-DC变换器连接到直流母线上,形成能量双向传输回路。将双向DC-DC变换器的电感电流及直流母线上的电容电压作为滑模变结构控制器的控制参量,输入到滑模变结构控制器中。经滑模变结构控制器处理,产生控制信号,控制双向DC-DC变换器的工作模式及其功率开关管的导通占空比,即可控制超级电容的充放电;形成直流动态电压恢复器系统,实现平抑直流母线上的电压波动。As shown in Figure 1, the block diagram of the DC VAR system of the present invention uses a supercapacitor as the energy storage device, and the supercapacitor is connected to the DC bus through a bidirectional DC-DC converter to form a bidirectional energy transmission circuit. The inductance current of the bidirectional DC-DC converter and the capacitor voltage on the DC bus are used as the control parameters of the sliding mode variable structure controller and input into the sliding mode variable structure controller. After being processed by the sliding mode variable structure controller, a control signal is generated to control the working mode of the bidirectional DC-DC converter and the conduction duty cycle of the power switch tube, so as to control the charging and discharging of the supercapacitor; form a DC dynamic voltage restorer system to stabilize the voltage fluctuation on the DC bus.
利用超级电容的储能特性以及双向DC-DC变换器的能量双向流动特性,采用滑模控制,根据直流母线电压的值,控制超级电容的充放电,以达到稳定直流母线电压波动的目的。Utilizing the energy storage characteristics of the supercapacitor and the energy bidirectional flow characteristics of the bidirectional DC-DC converter, the sliding mode control is adopted to control the charging and discharging of the supercapacitor according to the value of the DC bus voltage to achieve the purpose of stabilizing the fluctuation of the DC bus voltage.
双向DC-DC变换器采用双向半桥变换器拓扑结构。可以实现能量在输入端和输出端之间双向传输,功率不仅可以从输入端流向输出端,也能从输出端流向输入端。直流母线连接在双向DC-DC变换器的输入端;超级电容连接在双向DC-DC变换器的输出端。双向DC-DC变换器与直流母线以及超级电容的连接关系如图2所示系统结构框图。The bidirectional DC-DC converter adopts a bidirectional half-bridge converter topology. Energy can be transmitted bidirectionally between the input end and the output end, and power can flow not only from the input end to the output end, but also from the output end to the input end. The DC bus is connected to the input end of the bidirectional DC-DC converter; the supercapacitor is connected to the output end of the bidirectional DC-DC converter. The connection relationship between the bidirectional DC-DC converter, the DC bus and the supercapacitor is shown in Figure 2 as a system structure diagram.
超级电容作为储能装置连接在双向DC-DC变换器的输出端。双向 DC-DC 变换器工作在降压(Buck)模式时,超级电容作为负载,从直流母线吸收富裕电能进行充电,储存富裕电能。双向 DC-DC 变换器工作在升压(Boost)模式时,超级电容作为电源,向直流母线提供电能,稳定直流母线上的电压。The supercapacitor is connected to the output end of the bidirectional DC-DC converter as an energy storage device. When the bidirectional DC-DC converter works in buck mode, the supercapacitor acts as a load, absorbing abundant electric energy from the DC bus for charging and storing the abundant electric energy. When the bidirectional DC-DC converter works in boost (Boost) mode, the supercapacitor acts as a power source to provide power to the DC bus to stabilize the voltage on the DC bus.
基于趋近律的位置跟踪滑模变结构控制器采用双环控制;内环跟踪控制双向DC-DC变换器的电感电流,外环跟踪控制直流母线上的电容电压。The position tracking sliding mode variable structure controller based on reaching law adopts double-loop control; the inner loop tracks and controls the inductor current of the bidirectional DC-DC converter, and the outer loop tracks and controls the capacitor voltage on the DC bus.
其中,参考电压信号v ref 和直流母线电容电压v c 的差值作为输入,供给外环电压滑模控制器,经过滑模控制器的计算,输出电感电流参考信号i ref 。Among them, the difference between the reference voltage signal v ref and the DC bus capacitor voltage v c is used as an input, which is supplied to the outer loop voltage sliding mode controller. After calculation by the sliding mode controller, the inductor current reference signal i ref is output.
电感电流参考信号i ref 和双向 DC-DC变换器的电感电流i L 的差值作为输入,提供给内环电流滑模控制器,经滑模控制器计算,输出主电路功率开关管的占空比控制信号u。The difference between the inductance current reference signal i ref and the inductance current i L of the bidirectional DC-DC converter is used as an input, which is provided to the inner loop current sliding mode controller, and is calculated by the sliding mode controller to output the duty of the power switch tube of the main circuit than the control signal u .
占空比控制信号u控制双向DC-DC变换器功率开关的导通和关断,从而调节电感电流i L ,使其跟踪给定的参考电流信号,形成电流内环控制器。在此基础上,外环电压控制器调节直流母线上的电容电压,使其等于参考电压信号,构成电压外环控制器。The duty cycle control signal u controls the turn-on and turn-off of the power switch of the bidirectional DC-DC converter, thereby adjusting the inductor current i L to make it track a given reference current signal, forming a current inner loop controller. On this basis, the outer loop voltage controller adjusts the capacitor voltage on the DC bus to make it equal to the reference voltage signal, forming a voltage outer loop controller.
同时,参考电流信号i ref 经过滞环控制环节,控制双向 DC-DC变换器的工作方式:Buck工作方式(参考电流i ref > 0)和Boost工作方式(参考电流i ref < 0)。双向DC-DC变换器的工作方式和能量传输方向如图3所示。At the same time, the reference current signal i ref passes through the hysteresis control link to control the working mode of the bidirectional DC-DC converter: Buck working mode (reference current i ref > 0) and Boost working mode (reference current i ref < 0). The working mode and energy transmission direction of the bidirectional DC-DC converter are shown in Figure 3.
本发明的具体实施如下:The concrete implementation of the present invention is as follows:
1、双向DC-DC变换器建模分析1. Modeling analysis of bidirectional DC-DC converter
根据状态空间平均法,对功率级主电路建模,分别建立双向DC-DC变换器在Buck和Boost工作模式下的状态空间方程。According to the state space averaging method, the main circuit of the power stage is modeled, and the state space equations of the bidirectional DC-DC converter in Buck and Boost working modes are respectively established.
2、对超级电容进行充电时,双向DC-DC变换器工作于降压(Buck)模式。设功率开关管VT1的导通占空比为D1,此时功率开关管VT2的占空比D2为0。同时取电感电流和直流母线电容端电压为状态变量,并设定电流、电压方向为关联参考方向。根据状态空间平均法,建立Buck电路的状态空间方程为:2. When charging the supercapacitor, the bidirectional DC-DC converter works in Buck mode. Let the on-duty ratio of the power switch VT1 be D 1 , and the duty ratio D 2 of the power switch VT2 is 0 at this time. At the same time, the inductor current and DC bus capacitor terminal voltage are taken as state variables, and the direction of current and voltage is set as the associated reference direction. According to the state space averaging method, the state space equation of the Buck circuit is established as:
(1-1) (1-1)
v uc 是超级电容两端电压,i bus 为直流母线电流,L是双向 DC-DC变换器的电感值,C是超级电容值。 v uc is the voltage across the super capacitor, i bus is the DC bus current, L is the inductance of the bidirectional DC-DC converter, and C is the value of the super capacitor.
3、超级电容进行放电时,双向DC-DC变换器工作于升压(Boost)模式。此时设功率开关管VT2的导通占空比D2,功率开关管VT1的占空比D1为0。根据状态空间平均法,建立的Boost电路状态空间方程为:3. When the supercapacitor is discharging, the bidirectional DC-DC converter works in Boost mode. At this time, it is assumed that the conduction duty cycle D 2 of the power switch tube VT2 and the duty cycle D 1 of the power switch tube VT1 are 0. According to the state space averaging method, the established Boost circuit state space equation is:
(1-2) (1-2)
4、结合式(1-1)和式(1-2)可得到双向DC-DC的统一状态空间方程:4. Combining formula (1-1) and formula (1-2), the unified state space equation of bidirectional DC-DC can be obtained:
(1-3) (1-3)
其中: (1-4)in: (1-4)
5、滑模控制器设计5. Design of sliding mode controller
选用滑模控制器的趋近律为:The reaching law of the sliding mode controller is:
(1-5) (1-5)
其中:sgn(s)为符号函数。Among them: sgn(s) is a symbolic function.
6、直流母线电容电压外环滑模变结构控制器设计6. Design of sliding mode variable structure controller for DC bus capacitor voltage outer loop
在电感电流内环控制的基础上设计双向DC-DC的直流母线电容电压外环滑模变结构控制器。设。根据式(1-3)可得:On the basis of the inner loop control of the inductor current, a bidirectional DC-DC DC bus capacitor voltage outer loop sliding mode variable structure controller is designed. Assume . According to formula (1-3), we can get:
(1-6) (1-6)
按照电流控制器的设计方法,同理可推导出电压控制器的控制律。设参考电压为v ref 。取误差为: ,电压误差的一阶导为:According to the design method of the current controller, the control law of the voltage controller can be deduced similarly. Let the reference voltage be v ref . Take the error as: , the first derivative of the voltage error is:
。 .
取电压误差向量:Take the voltage error vector:
7、取电压切换函数为:7. Take the voltage switching function as:
(1-7) (1-7)
则有:Then there are:
(1-8) (1-8)
其中:为系数。in: is the coefficient.
将状态方程(1-3)带入S1中,可计算出θ的控制律。即:Bringing the state equation (1-3) into S1 , the control law of θ can be calculated. which is:
(1-9) (1-9)
8、确定控制律中的参数的值。由θ的控制律可以推导出电感电流参考值i ref :。从而可有电压外环控制生成电流内环控制的参考信号i ref 。8. Determine the parameters in the control law value. The inductor current reference value i ref can be deduced from the control law of θ : . Thus, the voltage outer loop control can generate the reference signal i ref for the current inner loop control.
9、电感电流内环滑模变结构控制器设计9. Design of sliding mode variable structure controller for inner loop of inductor current
设参考电流为i ref ,则电流误差为:;误差的一阶导为:。Assuming the reference current is i ref , the current error is: ; The first derivative of the error is: .
取误差向量为:,则电感电流的切换函数为:Take the error vector as: , then the switching function of the inductor current is:
(1-10) (1-10)
则:but:
(1-11) (1-11)
其中:为系数。in: is the coefficient.
10、将状态方程(1-3)带入中,可计算出占空比u的控制律为:10. Bring the state equation (1-3) into , the control law of the duty cycle u can be calculated as:
(1-12) (1-12)
确定控制律中的参数的值。实现内环滑模控制。Determining the parameters in the control law value. Realize inner loop sliding mode control.
将按照上述设置的滑模控制器作为补偿回路,与双向DC-DC变换器连接,形成闭环系统,对超级电容储能装置的充放电进行控制,形成直流动态电压恢复器(VAR)系统,从而平抑直流母线上的电压波动。The sliding mode controller set according to the above is used as a compensation loop, connected with the bidirectional DC-DC converter to form a closed-loop system, and controls the charging and discharging of the supercapacitor energy storage device to form a DC dynamic voltage restorer (VAR) system, thereby Smooth voltage fluctuations on the DC bus.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410413831.1A CN104184149B (en) | 2014-08-21 | 2014-08-21 | Voltage fluctuation stabilizing method based on sliding mode control and super-capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410413831.1A CN104184149B (en) | 2014-08-21 | 2014-08-21 | Voltage fluctuation stabilizing method based on sliding mode control and super-capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104184149A CN104184149A (en) | 2014-12-03 |
CN104184149B true CN104184149B (en) | 2017-05-24 |
Family
ID=51964989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410413831.1A Active CN104184149B (en) | 2014-08-21 | 2014-08-21 | Voltage fluctuation stabilizing method based on sliding mode control and super-capacitor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104184149B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105098786A (en) * | 2015-09-18 | 2015-11-25 | 许昌学院 | System and method for stabilizing voltage fluctuation of wind power micro-grid employing super capacitors |
CN105720801B (en) * | 2016-03-14 | 2018-03-13 | 上海理工大学 | A kind of insulated gate bipolar transistor series average-voltage method based on Smooth Sliding-Mode control |
CN107196506A (en) * | 2017-07-07 | 2017-09-22 | 华南理工大学 | A kind of three-level Boost converter repeats dead beat Compound Control Strategy |
CN107732893B (en) * | 2017-10-27 | 2021-06-04 | 许继电气股份有限公司 | A dynamic voltage restorer for DC system based on energy storage |
CN109962614B (en) * | 2017-12-26 | 2020-10-30 | 天津工业大学 | Sliding Mode Control Method of Buck Converter |
CN108946353A (en) * | 2018-03-13 | 2018-12-07 | 南京理工大学 | DC converter control method based on the single-ended constant pressure of elevator |
CN108566086B (en) * | 2018-04-13 | 2019-09-17 | 杭州电子科技大学 | Two close cycles RBF neural sliding moding structure adaptive control system |
CN108695996B (en) * | 2018-06-26 | 2020-11-17 | 重庆大学 | Buck link-based sliding mode control method for wireless power transmission system |
CN110011294B (en) * | 2019-05-05 | 2024-05-24 | 珠海格力电器股份有限公司 | Voltage compensation circuit, control method thereof and air conditioner driving system |
CN112217219B (en) * | 2019-07-11 | 2023-11-10 | 华北电力大学(保定) | A supercapacitor-based DC transient power quality management and recovery method |
CN111355372B (en) * | 2020-03-22 | 2021-07-02 | 北京工业大学 | A Linear and Nonlinear Hybrid Control Method for Buck Converters |
CN112039319A (en) | 2020-08-13 | 2020-12-04 | 矽力杰半导体技术(杭州)有限公司 | Drive circuit and drive method |
CN112186845B (en) * | 2020-09-23 | 2022-04-01 | 中南大学 | Sliding mode guide control method and device for super capacitor energy storage system |
CN113572353A (en) * | 2021-07-16 | 2021-10-29 | 浙江国研智能电气有限公司 | A bidirectional boost converter, control system and control method |
CN115065238B (en) * | 2022-08-18 | 2022-11-18 | 南京信息工程大学 | Integral sliding mode control method and system for DC step-down converter with constant power load |
CN115693632B (en) * | 2022-09-07 | 2023-06-16 | 广东工业大学 | A control method for a DC microgrid power oscillation suppression device |
CN118473017A (en) * | 2023-03-20 | 2024-08-09 | 曲阜师范大学 | A method for current synchronization control of parallel converters |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102201675A (en) * | 2011-04-28 | 2011-09-28 | 同济大学 | Method for controlling recycling and releasing of braking energy of metro vehicle |
CN102655327A (en) * | 2012-05-11 | 2012-09-05 | 江苏大学 | Control method for sliding mode converter control structure of active power filter containing parameter perturbation |
CN102664440A (en) * | 2012-05-18 | 2012-09-12 | 西安交通大学 | Sliding-mode-principle-based rapid charging control method for hybrid energy storage system of electric automobile |
CN102983604A (en) * | 2012-11-23 | 2013-03-20 | 国家电网公司 | Photovoltaic and fuel cell combined generating system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103812127A (en) * | 2014-02-25 | 2014-05-21 | 同济大学 | Controller and control method for voltage stabilization of wind power DC (direct current) bus based on hybrid system |
CN103986173B (en) * | 2014-04-08 | 2016-06-29 | 广西电网公司电力科学研究院 | The control method of a kind of electric power electric transformer and system |
-
2014
- 2014-08-21 CN CN201410413831.1A patent/CN104184149B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102201675A (en) * | 2011-04-28 | 2011-09-28 | 同济大学 | Method for controlling recycling and releasing of braking energy of metro vehicle |
CN102655327A (en) * | 2012-05-11 | 2012-09-05 | 江苏大学 | Control method for sliding mode converter control structure of active power filter containing parameter perturbation |
CN102664440A (en) * | 2012-05-18 | 2012-09-12 | 西安交通大学 | Sliding-mode-principle-based rapid charging control method for hybrid energy storage system of electric automobile |
CN102983604A (en) * | 2012-11-23 | 2013-03-20 | 国家电网公司 | Photovoltaic and fuel cell combined generating system |
Also Published As
Publication number | Publication date |
---|---|
CN104184149A (en) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104184149B (en) | Voltage fluctuation stabilizing method based on sliding mode control and super-capacitor | |
CN102222958B (en) | Vehicle-mounted bidirectional charger for electric automobile | |
CN101599710B (en) | Monopole inverter capable of boosting voltage | |
CN104158405A (en) | Two-way DC/DC converter for micro-grid and magnetic bias digital suppression method | |
CN102969730B (en) | A kind of control method of double stage chain type energy storage converter | |
CN103647302A (en) | Multi-sub microgrid-contained mixed microgrid system and control method thereof | |
CN105656022B (en) | A kind of distribution light storage DC power-supply system non-linear differential smooth control method | |
CN103532388B (en) | Storage battery charging and discharging control method based on full bridge isolation two-way converter | |
CN108288917B (en) | Triple phase shift dead-beat optimization control method of full-bridge DC-DC converter | |
Yuan et al. | Maximum efficiency point tracking of the wireless power transfer system for the battery charging in electric vehicles | |
CN106786485A (en) | For the mains ripple suppressing method of direct-current grid under unbalanced load | |
CN105790293B (en) | The micro-capacitance sensor energy storage device and control method of a kind of combination accumulator and super capacitor | |
CN101651349B (en) | Fuel cell generator | |
CN105356752B (en) | A kind of two-way DC DC control systems based on hybrid terminal sliding formwork | |
CN104868773A (en) | Single-phase grid-connected inverter control device based on Lyapunov state function | |
CN103401416B (en) | A kind of main circuit structure eliminating high boost DC-DC current transformer Right-half-plant zero and determination method for parameter thereof | |
Hegazy et al. | Analysis and modeling of a bidirectional multiport DC/DC power converter for battery electric vehicle applications | |
CN203607860U (en) | Bidirectional energy storage current transformer main power circuit | |
Tao et al. | Control loop design and bidirectional control strategy of a bidirectional DC/DC converter | |
CN106877651A (en) | A kind of MMC bidirectional DC/DC converters for super capacitor energy-storage system | |
CN205490225U (en) | Two -way ACDC circuit of high -frequency chopper isolated form | |
CN203660918U (en) | Single-phase photovoltaic grid connected inverter | |
CN204707045U (en) | A kind of power distribution network electric power electric transformer | |
CN203967994U (en) | Unity power factor single-stage AC-DC converter | |
CN202737762U (en) | DSP-based DC charging power supply system for electric automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |