CN104182939A - 一种医疗影像图像细节增强方法 - Google Patents

一种医疗影像图像细节增强方法 Download PDF

Info

Publication number
CN104182939A
CN104182939A CN201410409682.1A CN201410409682A CN104182939A CN 104182939 A CN104182939 A CN 104182939A CN 201410409682 A CN201410409682 A CN 201410409682A CN 104182939 A CN104182939 A CN 104182939A
Authority
CN
China
Prior art keywords
image
frequency
low
layer
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410409682.1A
Other languages
English (en)
Other versions
CN104182939B (zh
Inventor
曲建明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU GOLDISC UESTC MULTIMEDIA TECHNOLOGY Co Ltd
Original Assignee
CHENGDU GOLDISC UESTC MULTIMEDIA TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU GOLDISC UESTC MULTIMEDIA TECHNOLOGY Co Ltd filed Critical CHENGDU GOLDISC UESTC MULTIMEDIA TECHNOLOGY Co Ltd
Priority to CN201410409682.1A priority Critical patent/CN104182939B/zh
Publication of CN104182939A publication Critical patent/CN104182939A/zh
Application granted granted Critical
Publication of CN104182939B publication Critical patent/CN104182939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种医疗影像图像细节增强方法,该方法包括以下步骤:对每层图像进行高斯金字塔分解,得到下一层图像、本层高频信息;分别统计高频图像、低频图像每个像素周边N*N模板的系数平均值,得到第i层图像信息区域统计矩阵;重复上述步骤,进行逐层分解,直到分解到所要求的分解级数;对每层高频图像和低频图像按照一定的方式进行增强,得到增强后的图像;将增强后的低频和高频图像进行相加,得到当前层的输出图像,将输出图像上采样后便得到下输入图像,直到重构出顶层图像。本发明能更好地利用每一层图像的高频和低频信息,根据图像局部特点,对图像细节加以增强,控制图像噪声。

Description

一种医疗影像图像细节增强方法
技术领域
本发明涉及数字化图像处理领域,尤其涉及一种医疗影像图像细节增强方法。
背景技术
随着网络技术的迅速发展,医学领域中医学影像数字化已是大势所趋,然而医学图像在摄取、传输、处理过程中,难免会受到各种因素的影响,导致图像质量下降,这样影像可能不能够很好的被利用,为了实现数字图像的存储、利用的最优化,需要对图像进行处理。
对医学图像进行处理,首要目的是对图像进行增强信噪比的工作,目前应用的图像处理方法基本都是在空间域内,对像素本身进行各种灰度处理和空间频率处理。空间与图像增强主要包括灰度变换、直方图出理、图像平滑、图像锐化等方法。频率域处理的关键是变换处理,即首先将图像由空间域变换至频率域,然后在频率域进行各种处理,再将处理结果进行反变换,从频率域变换到空间域,达到图像处理的目的。
传统的拉普拉斯金字塔算法通过对原始图像进行缩小处理,获得低频代图像,根据通过放大低频带图像所获得的原始图像的差,获得高频带图像。通过重复对于低频带图像的缩小处理和根据与原始图像的差生成都高频带图像,逐层将图像分割成频率信号,抑制各分离图像中的噪声,然后再合成图像。该方法不易发生合成不均匀,但难以提高噪声抑制效果,且没有考虑图像区域的局部特征,没有很好利用图像的高频与低频信息。
发明内容
本发明的目的在于克服现有技术的不足,提供一种医疗影像图像细节增强方法,该方法能更好地利用每一层图像的高频和低频信息,根据图像局部特点,对图像细节加以增强,控制图像噪声。
本发明的目的是通过以下技术方案来实现的:
一种医疗影像图像细节增强方法,该方法包括以下步骤:
S1:对每层图像Fi(x,y)进行逐层高斯金字塔分解,得到下一层图像Fi+1(x,y)和本层高频信息fhi(x,y),其中,i为图像层数,第一层图像为原始图像F0(x,y),计算过程为:
S101:采用拉普拉斯金字塔算法先对每一层输入图像进行高斯滤波:
Fi′(x,y)=W(m,n)*Fi(x,y)
公式中,*表示卷积,W(m,n)高斯滤波模板;
S102:对Fi′(x,y)进行一次降2下采样,得到下一层图像Fi+1(x,y):Fi+1(x,y)=Fi′(2x,2y);
S103:对Fi+1(x,y)进行隔行插0上采样,得到Fi″(x,y):
S104:对Fi″(x,y)进行一次高斯滤波,即:
Fi″′(x,y)=W(m,n)*Fi″(x,y)
S105:计算本层高频信息fhi(x,y):
fhi(x,y)=Fi(x,y)-Fi″′(x,y)
S2:统计高频图像fhi(x,y)每个像素周边NxN模板的高频系数平均值,得到第i层图像高频信息区域统计矩阵Ei(x,y):
E i ( x , y ) = Σ ( i , j ) ∈ B | f h i ( x + i , y + j ) | / 9
其中,B为坐标为NxN模板所包含的区域;
S3:统计低频图像每个像素周边NxN模板的低频系数平均值,得到第i层图像低频信息区域统计矩阵Ii(x,y):
I i ( x , y ) = Σ ( i , j ) ∈ B | F i ′ ′ ′ ( x + i , y + j ) | / 9
其中,Fi″′是S1中计算得到的每一层的低频图像系数,B为坐标为NxN模板所包含的区域;
S4:重复S1~S3进行逐层分解,并计算得到每一层的数据信息,直到分解到所要求的分解级数;
S5:对每层高频图像fhi(x,y)进行指数增强算法,输出增强后的图像fhi′(x,y)=G(fhi′(x,y)),其中G(x)表达式如下:
G ( x ) = a l &CenterDot; k &CenterDot; x x &le; X 0 a l &CenterDot; x | x | ( | x | M ) P X 0 < x &le; M a l &CenterDot; x other
其中,al为不同层的增强系数,k,p为固定常数,X0和M为像素阈值;
S6:将fhi′(x,y)按照高频信息区域统计矩阵Ei(x,y)进行增强,得到再次增强后图像fhi″(x,y),增强公式如下:
fh i &prime; &prime; ( x , y ) = R ( fh i &prime; ( x , y ) ) = a &CenterDot; fh i &prime; ( x , y ) T 1 < E i ( x , y ) < t 2 fh i &prime; ( x , y ) others
当fhi′(x,y)所在临域的高频能量E大于T1且小于T2时,对高频系数做增强处理(a>1),能量小于T1时,所处区域平滑,不做细节增强处理,避免对噪声进行增强,大于T2时,图像细节已经足够清晰,也不做处理;
S7:将fli(x,y)按照Ii(x,y)进行增强,得到增强后的低频图像fli′(x,y),计算公式如下:
对于低频图像,当其所在临域高频能量Ei(x,y)小于T3时,说明像素所在图像区域处于平缓区,此时对该像素进行平缓操作,用于提高图像的层次感和图像去噪,公式中b<1;
S8:对图像进行重构:
将增强后的低频和高频图像进行相加,得到这一层的输出图像:
FCi(x,y)=fli′(x,y)+fhi″(x,y)
S9:将输出图像FCi(x,y)上采样,得到下输入图像fli-1(x,y),计算过程为:
S901:将图像FCi(x,y)间隙插0,长宽放大一倍,得到图像FCi′(x,y),计算公式如下:
S902:用高斯滤波模板对图像FCi′(x,y)进行滤波,得到低频图像fli-1(x,y):
FCi″(x,y)=W(m,n)*FCi′(x,y)
其中,符号“*”表示卷积,W(m,n)为高斯滤波模板;
S10:重复S6~S9,直到重构出顶层图像FC0(x,y)。
本发明的有益效果是:可以摆脱传统的拉普拉斯金字塔增强算法中没有考虑图像区域的局部特征,没有很好地利用图像的高频和低频信息的特点,本发明可以更好地利用每一层图像的高频和低频信息,根据图像局部特点的不同,进行不同的增强强度,能很好的增强细节,控制图像噪声。
附图说明
图1为本发明的处理示意图;
图2为本发明的处理流程图。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
图1为本发明对图像进行拉普拉斯金字塔分阶段结构图,
如图2所示,一种医疗影像图像细节增强方法,该方法包括以下步骤:
S1:对每层图像Fi(x,y)进行逐层高斯金字塔分解,得到下一层图像Fi+1(x,y)和本层高频信息fhi(x,y),其中,i为图像层数,第一层图像为原始图像F0(x,y),计算过程为:
S101:采用拉普拉斯金字塔算法先对每一层输入图像进行高斯滤波:
Fi′(x,y)=W(m,n)*Fi(x,y)
公式中,*表示卷积,W(m,n)高斯滤波模板,m、n表示为高斯滤波模板的位置,W(m,n)其实质上为一个低通滤波器,可以采用以下典型的5*5子窗口:
W ( m , n ) = 1 256 1 4 6 4 1 4 16 24 16 4 6 24 36 24 6 4 16 24 16 4 1 4 6 4 1 ;
在具体实施中,原图像为F0(x,y)(x≤X,y≤Y),X、Y为图像的行、列数,原图F0为高斯金字塔的最底层,则把原图像分解到所要求的级数具有相同过程;
S102:对Fi′(x,y)进行一次降2下采样,得到下一层图像Fi+1(x,y):Fi+1(x,y)=Fi′(2x,2y);
S103:对Fi+1(x,y)进行隔行插0上采样,得到Fi″(x,y):
S104:对Fi″(x,y)进行一次高斯滤波,即:
Fi″′(x,y)=W(m,n)*Fi″(x,y)
S105:计算本层高频信息fhi(x,y):
fhi(x,y)=Fi(x,y)-Fi″′(x,y)
S2:统计高频图像fhi(x,y)每个像素周边NxN模板的高频系数平均值,得到第i层图像高频信息区域统计矩阵Ei(x,y):
E i ( x , y ) = &Sigma; ( i , j ) &Element; B | f h i ( x + i , y + j ) | / 9
其中,B为坐标为NxN模板所包含的区域;
S3:统计低频图像每个像素周边NxN模板的低频系数平均值,得到第i层图像低频信息区域统计矩阵Ii(x,y):
I i ( x , y ) = &Sigma; ( i , j ) &Element; B | F i &prime; &prime; &prime; ( x + i , y + j ) | / 9
其中,Fi″′是S1中计算得到的每一层的低频图像系数,B为坐标为NxN模板所包含的区域;
S4:重复S1~S3进行逐层分解,并计算得到每一层的数据信息,直到分解到所要求的分解级数;
S5:对每层高频图像fhi(x,y)进行指数增强算法,输出增强后的图像fhi′(x,y)=G(fhi′(x,y)),其中G(x)表达式如下:
G ( x ) = a l &CenterDot; k &CenterDot; x x &le; X 0 a l &CenterDot; x | x | ( | x | M ) P X 0 < x &le; M a l &CenterDot; x other
其中,al为不同层的增强系数,k,p为固定常数,X0和M为像素阈值;
S6:将fhi′(x,y)按照高频信息区域统计矩阵Ei(x,y)进行增强,得到再次增强后图像fhi″(x,y),增强公式如下:
fh i &prime; &prime; ( x , y ) = R ( fh i &prime; ( x , y ) ) = a &CenterDot; fh i &prime; ( x , y ) T 1 < E i ( x , y ) < t 2 fh i &prime; ( x , y ) others
当fhi′(x,y)所在临域的高频能量E大于T1且小于T2时,对高频系数做增强处理(a>1),能量小于T1时,所处区域平滑,不做细节增强处理,避免对噪声进行增强,大于T2时,图像细节已经足够清晰,也不做处理;
S7:将fli(x,y)按照Ii(x,y)进行增强,得到增强后的低频图像fli′(x,y),计算公式如下:
对于低频图像,当其所在临域高频能量Ei(x,y)小于T3时,说明像素所在图像区域处于平缓区,此时对该像素进行平缓操作,用于提高图像的层次感和图像去噪,公式中b<1;
S8:对图像进行重构:
将增强后的低频和高频图像进行相加,得到这一层的输出图像:
FCi(x,y)=fli′(x,y)+fhi″(x,y)
S9:将输出图像FCi(x,y)上采样,得到下输入图像fli-1(x,y),计算过程为:
S901:将图像FCi(x,y)间隙插0,长宽放大一倍,得到图像FCi′(x,y),计算公式如下:
S902:用高斯滤波模板对图像FCi′(x,y)进行滤波,得到低频图像fli-1(x,y):FCi″(x,y)=W(m,n)*FCi′(x,y)
其中,符号“*”表示卷积,W(m,n)为高斯滤波模板;
S10:重复S6~S9,直到重构出顶层图像FC0(x,y)。

Claims (1)

1.一种医疗影像图像细节增强方法,其特征在于:该方法包括以下步骤:
S1:对每层图像Fi(x,y)进行逐层高斯金字塔分解,得到下一层图像Fi+1(x,y)和本层高频信息fhi(x,y),其中,i为图像层数,第一层图像为原始图像F0(x,y),计算过程为:
S101:采用拉普拉斯金字塔算法先对每一层输入图像进行高斯滤波:
Fi′(x,y)=W(m,n)*Fi(x,y)
公式中,*表示卷积,W(m,n)高斯滤波模板;
S102:对Fi′(x,y)进行一次降2下采样,得到下一层图像Fi+1(x,y):
Fi+1(x,y)=Fi′(2x,2y);
S103:对Fi+1(x,y)进行隔行插0上采样,得到Fi″(x,y):
S104:对Fi″(x,y)进行一次高斯滤波,即:
Fi″′(x,y)=W(m,n)*Fi″(x,y)
S105:计算本层高频信息fhi(x,y):
fhi(x,y)=Fi(x,y)-Fi″′(x,y)
S2:统计高频图像fhi(x,y)每个像素周边NxN模板的高频系数平均值,得到第i层图像高频信息区域统计矩阵Ei(x,y):
E i ( x , y ) = &Sigma; ( i , j ) &Element; B | f h i ( x + i , y + j ) | / 9
其中,B为坐标为NxN模板所包含的区域;
S3:统计低频图像每个像素周边NxN模板的低频系数平均值,得到第i层图像低频信息区域统计矩阵Ii(x,y):
I i ( x , y ) = &Sigma; ( i , j ) &Element; B | F i &prime; &prime; &prime; ( x + i , y + j ) | / 9
其中,Fi″′是S1中计算得到的每一层的低频图像系数,B为坐标为NxN模板所包含的区域;
S4:重复S1~S3进行逐层分解,并计算得到每一层的数据信息,直到分解到所要求的分解级数;
S5:对每层高频图像fhi(x,y)进行指数增强算法,输出增强后的图像fhi′(x,y)=G(fhi′(x,y)),其中G(x)表达式如下:
G ( x ) = a l &CenterDot; k &CenterDot; x x &le; X 0 a l &CenterDot; x | x | ( | x | M ) P X 0 < x &le; M a l &CenterDot; x other
其中,al为不同层的增强系数,k,p为固定常数,X0和M为像素阈值;
S6:将fhi′(x,y)按照高频信息区域统计矩阵Ei(x,y)进行增强,得到再次增强后图像fhi″(x,y),增强公式如下:
fh i &prime; &prime; ( x , y ) = R ( fh i &prime; ( x , y ) ) = a &CenterDot; fh i &prime; ( x , y ) T 1 < E i ( x , y ) < t 2 fh i &prime; ( x , y ) others
当fhi′(x,y)所在临域的高频能量E大于T1且小于T2时,对高频系数做增强处理(a>1),能量小于T1时,所处区域平滑,不做细节增强处理,避免对噪声进行增强,大于T2时,图像细节已经足够清晰,也不做处理;
S7:将fli(x,y)按照Ii(x,y)进行增强,得到增强后的低频图像fli′(x,y),计算公式如下:
对于低频图像,当其所在临域高频能量Ei(x,y)小于T3时,说明像素所在图像区域处于平缓区,此时对该像素进行平缓操作,用于提高图像的层次感和图像去噪,公式中b<1;
S8:对图像进行重构:
将增强后的低频和高频图像进行相加,得到这一层的输出图像:
FCi(x,y)=fli′(x,y)+fhi″(x,y)
S9:将输出图像FCi(x,y)上采样,得到下输入图像fli-1(x,y),计算过程为:
S901:将图像FCi(x,y)间隙插0,长宽放大一倍,得到图像FCi′(x,y),计算公式如下:
S902:用高斯滤波模板对图像FCi′(x,y)进行滤波,得到低频图像fli-1(x,y):
FCi″(x,y)=W(m,n)*FCi′(x,y)
其中,符号“*”表示卷积,W(m,n)为高斯滤波模板;
S10:重复S6~S9,直到重构出顶层图像FC0(x,y)。
CN201410409682.1A 2014-08-18 2014-08-18 一种医疗影像图像细节增强方法 Active CN104182939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410409682.1A CN104182939B (zh) 2014-08-18 2014-08-18 一种医疗影像图像细节增强方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410409682.1A CN104182939B (zh) 2014-08-18 2014-08-18 一种医疗影像图像细节增强方法

Publications (2)

Publication Number Publication Date
CN104182939A true CN104182939A (zh) 2014-12-03
CN104182939B CN104182939B (zh) 2017-02-15

Family

ID=51963958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410409682.1A Active CN104182939B (zh) 2014-08-18 2014-08-18 一种医疗影像图像细节增强方法

Country Status (1)

Country Link
CN (1) CN104182939B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106875359A (zh) * 2017-02-16 2017-06-20 阜阳师范学院 一种基于分层引导策略的样本块图像修复方法
WO2017166301A1 (zh) * 2016-04-01 2017-10-05 华为技术有限公司 一种图像处理方法、电子设备以及存储介质
CN107566740A (zh) * 2017-10-18 2018-01-09 维沃移动通信有限公司 一种图像处理方法及移动终端
CN108009992A (zh) * 2016-10-28 2018-05-08 北京东软医疗设备有限公司 一种图像调整的方法和装置
CN108780571A (zh) * 2015-12-31 2018-11-09 上海联影医疗科技有限公司 一种图像处理方法和系统
CN111640126A (zh) * 2020-05-29 2020-09-08 成都金盘电子科大多媒体技术有限公司 基于医学影像的人工智能诊断辅助方法
CN113469919A (zh) * 2021-07-27 2021-10-01 深圳市赛禾医疗技术有限公司 超声图像的处理方法、装置及电子设备
CN113469919B (zh) * 2021-07-27 2024-05-28 深圳市赛禾医疗技术有限公司 超声图像的处理方法、装置及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410969C (zh) * 2006-07-26 2008-08-13 深圳市蓝韵实业有限公司 一种医疗放射图像的细节增强方法
CN102646269B (zh) * 2012-02-29 2015-09-23 中山大学 一种拉普拉斯金字塔的图像处理方法及其装置
CN103034986A (zh) * 2012-11-29 2013-04-10 奇瑞汽车股份有限公司 一种基于曝光融合的夜视图像增强方法
CN103500442B (zh) * 2013-09-29 2017-06-06 华南理工大学 集成电路封装中的x射线图像多尺度细节增强方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780571A (zh) * 2015-12-31 2018-11-09 上海联影医疗科技有限公司 一种图像处理方法和系统
US11880978B2 (en) 2015-12-31 2024-01-23 Shanghai United Imaging Healthcare Co., Ltd. Methods and systems for image processing
CN108780571B (zh) * 2015-12-31 2022-05-31 上海联影医疗科技股份有限公司 一种图像处理方法和系统
WO2017166301A1 (zh) * 2016-04-01 2017-10-05 华为技术有限公司 一种图像处理方法、电子设备以及存储介质
CN108009992A (zh) * 2016-10-28 2018-05-08 北京东软医疗设备有限公司 一种图像调整的方法和装置
CN108009992B (zh) * 2016-10-28 2020-06-16 北京东软医疗设备有限公司 一种图像调整的方法和装置
CN106875359B (zh) * 2017-02-16 2019-12-03 阜阳师范学院 一种基于分层引导策略的样本块图像修复方法
CN106875359A (zh) * 2017-02-16 2017-06-20 阜阳师范学院 一种基于分层引导策略的样本块图像修复方法
CN107566740A (zh) * 2017-10-18 2018-01-09 维沃移动通信有限公司 一种图像处理方法及移动终端
CN111640126A (zh) * 2020-05-29 2020-09-08 成都金盘电子科大多媒体技术有限公司 基于医学影像的人工智能诊断辅助方法
CN111640126B (zh) * 2020-05-29 2023-08-22 成都金盘电子科大多媒体技术有限公司 基于医学影像的人工智能诊断辅助方法
CN113469919A (zh) * 2021-07-27 2021-10-01 深圳市赛禾医疗技术有限公司 超声图像的处理方法、装置及电子设备
CN113469919B (zh) * 2021-07-27 2024-05-28 深圳市赛禾医疗技术有限公司 超声图像的处理方法、装置及电子设备

Also Published As

Publication number Publication date
CN104182939B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN104182939B (zh) 一种医疗影像图像细节增强方法
CN107016642B (zh) 用于对有噪输入图像进行分辨率上调的方法和装置
CN104715461B (zh) 图像去噪方法
CN104463804B (zh) 一种基于直觉模糊集的图像增强方法
CN103093433B (zh) 基于区域划分和字典学习的自然图像去噪方法
Suganya et al. Survey on image enhancement techniques
CN101980284A (zh) 基于两尺度稀疏表示的彩色图像降噪方法
CN101944230B (zh) 基于多尺度的自然图像非局部均值去噪方法
CN103186888A (zh) 一种去除ct图像噪声的方法及装置
CN104680485A (zh) 一种基于多分辨率的图像去噪方法及装置
CN110322404B (zh) 一种图像增强方法及系统
CN106709891A (zh) 基于小波变换与自适应变换结合的图像处理方法
CN104103041B (zh) 超声图像混合噪声自适应抑制方法
CN104881847A (zh) 一种基于小波分析和伪彩色处理的比赛视频图像增强方法
CN107292316B (zh) 一种基于稀疏表示的提升图像清晰度的方法
CN106097274A (zh) 一种自适应分数阶微分图像增强算法
CN110992295A (zh) 基于小波-red卷积神经网络的低剂量ct重建方法
CN103310414B (zh) 基于方向波变换和模糊理论的图像增强方法
CN104616259B (zh) 一种噪声强度自适应的非局部均值图像去噪方法
CN103400358A (zh) 一种基于小波信息冗余的红外图像去噪算法
CN104240208A (zh) 非制冷红外焦平面探测器图像细节增强方法
CN104754183B (zh) 一种实时监控视频自适应滤波方法及其系统
CN102314675B (zh) 基于小波高频的贝叶斯去噪方法
CN103679648B (zh) 一种基于空间分割的矩匹配卫星影像条带噪声去除方法
CN110175959B (zh) 一种台风云图增强方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant