CN104182597B - The check method of vehicle suspension roll angular rigidity - Google Patents

The check method of vehicle suspension roll angular rigidity Download PDF

Info

Publication number
CN104182597B
CN104182597B CN201410476073.8A CN201410476073A CN104182597B CN 104182597 B CN104182597 B CN 104182597B CN 201410476073 A CN201410476073 A CN 201410476073A CN 104182597 B CN104182597 B CN 104182597B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mfrac
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410476073.8A
Other languages
Chinese (zh)
Other versions
CN104182597A (en
Inventor
周长城
郭剑
提艳
安艳
高炳凯
于曰伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201410476073.8A priority Critical patent/CN104182597B/en
Publication of CN104182597A publication Critical patent/CN104182597A/en
Application granted granted Critical
Publication of CN104182597B publication Critical patent/CN104182597B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention relates to the check method of vehicle suspension roll angular rigidity, belongs to vehicle suspension technical field.Previously fail to provide the parsing calculation and check method of roll angular rigidity always.The present invention utilizes the deformation coefficient G of end part of stabilizer rod according to vehicle and suspension parameter, and the structure and material characterisitic parameter of designed stabiliser bar and rubber bushingWAnd rubber bushing radial rigidity KxAnalytical formula, calculation and check is carried out to forward and backward suspension roll angular rigidity and the total roll angular rigidity of vehicle.Using the calculation and check value of the available accurately and reliably vehicle roll angular rigidity of this method, vehicle suspension and the design level and quality of stabilizer bar system can be not only improved, improves the ride performance and security of vehicle;Meanwhile design and testing expenses can be reduced using this method, accelerate product development speed, and reliable technical support is improved for the exploitation of stabiliser bar CAD software.

Description

The check method of vehicle suspension roll angular rigidity
Technical field
The present invention relates to the check method of vehicle suspension, particularly vehicle suspension roll angular rigidity.
Background technology
Vehicle suspension and stabiliser bar design must are fulfilled for when turn inside diameter travels to the design requirement of roll angular rigidity.But Due to being deformed analytical Calculation by stabiliser bar, rubber bushing deforms analytical Calculation and the key issue that intercouples is restricted, for car The calculation and check of roll angular rigidity, fails to provide reliable Analytic Calculation Method always.At present, both at home and abroad for vehicle roll Angular rigidity is checked, and is mostly to utilize ANSYS simulation softwares, is carried out simulation analysis to roll angular rigidity by solid modelling and is tested Card, this method is although can obtain reliable simulation numerical, yet with accurate analytical formula can not be provided, therefore, The requirement of suspension stabilizer bar system CAD software exploitation can not be met.As Vehicle Industry is fast-developing and Vehicle Speed Improve constantly, higher requirement is proposed to vehicle suspension system and stabiliser bar design, there is an urgent need to stable for vehicle manufacture producer Lever system CAD software.Therefore, it is necessary to establish a kind of check method of accurate, reliable vehicle suspension roll angular rigidity, production is improved Product design level and quality, improve vehicle ride performance and security;Meanwhile design and testing expenses are reduced, accelerate product Development rate.
The content of the invention
For defect present in above-mentioned prior art, the technical problems to be solved by the invention be to provide it is a kind of easy, The check method of reliable vehicle suspension roll angular rigidity, its calculation and check flow chart is as shown in figure 1, vehicle roll motion model Figure is as shown in Fig. 2 the structural representation of stabiliser bar is as shown in Figure 3.
In order to solve the above technical problems, the check method of vehicle suspension roll angular rigidity provided by the present invention, its feature It is to use following calculation procedure.
(1) total roll angular rigidity required for vehicle suspensionCalculating:
According to automobile body quality ms, the distance h of vehicle body barycenter and inclination between centerss, radius of wheel r, side acceleration ay, And the vehicle body max. roll required by Car designTotal roll angular rigidity required for vehicle suspension is calculated, i.e.,:
Wherein, g is acceleration of gravity;
(2) roll angular rigidity of forward and backward bearing springWithCalculating:
According to the front tread B of vehiclefWith rear tread Br, forward swing arm lengths T1f, rear-swing arm length T1r, forward and backward bearing spring Installation site is to the distance between swing arm hinge point T2fAnd T2r, and the Line stiffness k of forward and backward bearing springsfAnd ksr, to forward and backward outstanding The roll angular rigidity of frame spring is respectively calculated, i.e.,:
(3) the deformation coefficient G of forward and backward suspension end part of stabilizer rod vertical deviationwfAnd GwrCalculating:
According to the total length l of forward and backward suspension stabiliser barcfAnd lcr, the mounting distance l of middle two rubber bushings0fAnd l0r, The brachium l of forward and backward stabiliser bar1fAnd l1r, the transition arc radius R of forward and backward stabiliser barfAnd Rr, the central angle θ of transition arcfWith θr, and elastic properties of materials model E and Poisson's ratio μ, to the deformation coefficient G of forward and backward suspension end part of stabilizer rod vertical deviationwfAnd GwrCarry out Calculate, be respectively:
In formula,
Q6f=32 (μ+1) [Rf(cosθf-1)-l1fsinθf]2[2l1fcosθf-lcf+2Rfsinθf];
Q6r=32 (u+1) [Rr(cosθr-1)-l1rsinθr]2[2l1rcosθr-lcr+2Rrsinθr];
(4) forward and backward stabiliser bar rubber bushing RADIAL stiffness KxfAnd KxrAnalytical Calculation:
According to the inner circle radius r of forward and backward rubber bushingafAnd rar, exradius rbfAnd rbr, axial length LfAnd Lr, and rubber The elastic modulus E of glue bushingx, Poisson's ratio μx, the radial direction Line stiffness of forward and backward rubber bushing of hanger bracket is respectively calculated, i.e.,:
Wherein,
Bessel correction functions I (0, αfrbf), K (0, αfrbf), I (1, αfrbf), K (1, αfrbf);
I(1,αfraf), K (1, αfraf), I (0, αfraf), K (0, αfraf);
Wherein,
Bessel correction functions I (0, αrrbr), K (0, αrrbr), I (1, αrrbr), K (1, αrrbr);
I(1,αrrar), K (1, αrrar), I (0, αrrar), K (0, αrrar);
(5) roll angular rigidity of forward and backward stabilizer bar systemWithCalculation and check:
According to the wheelspan B of the forward and backward bridge of vehiclefAnd Br, the diameter d of forward and backward suspension stabiliser barfAnd dr, length lcfAnd lcr, preceding, Rear stabilizer bar rubber bushing mounting distance length l0fAnd l0r, at the end points of the forward and backward stabiliser bar obtained by calculating in step (3) Deformation coefficient GwfAnd Gwr, the middle radial rigidity K for calculating resulting forward and backward rubber bushing of step (4)xfAnd Kxr, to forward and backward The roll angular rigidity of stabilizer bar systemWithCalculation and check is carried out respectively, i.e.,:
(6) the total roll angular rigidity of vehicleCalculation and check:
According to the roll angular rigidity of forward and backward bearing spring resulting in step (2)WithGained in step (5) The roll angular rigidity of the forward and backward stabilizer bar system arrivedWithCalculation and check is carried out to the total roll angular rigidity of vehicle, i.e.,
If the calculation and check value of the total roll angular rigidity of vehicleResulting more than or equal to calculating in step (1) Design load required by vehicleI.e.Then vehicle roll angular rigidity meets Car design requirement;Otherwise, ifThen vehicle roll angular rigidity is unsatisfactory for Car design requirement, it is necessary to be adjusted to fore suspension and rear suspension stabilizer bar system Design.
The present invention has the advantage that than prior art:
Home and abroad is checked for vehicle suspension roll angular rigidity at present, is mostly to utilize simulation software, is passed through modeling and simulating Check analysis is carried out to vehicle roll angular rigidity, but this method can not provide analytical formula, it is thus impossible to meet stabiliser bar The requirement of the CAD software exploitation of system.The present invention can be according to vehicle parameter and suspension parameter, and designed stabiliser bar and rubber The structural parameters and material characteristic parameter of bushing, utilize the deformation system of the roll angular rigidity of forward and backward bearing spring, end part of stabilizer rod Number GwAnd rubber bushing radial rigidity KxAnalytical formula, forward and backward suspension roll angular rigidity and the total roll angular rigidity of vehicle are entered Row calculation and check.The calculation and check value of the available accurately and reliably vehicle roll angular rigidity of this method, for vehicle suspension and stably The design of bar provides reliable roll angular rigidity calculation and check method, and has established technology for the exploitation of stabiliser bar CAD software Basis.Using this method, vehicle suspension and the design level and quality of stabilizer bar system can be not only improved, improves the traveling of vehicle Ride comfort and security;Meanwhile design and testing expenses can be reduced using this method, accelerate product development speed.
Brief description of the drawings
In order to more fully understand that invention is described further below in conjunction with the accompanying drawings.
Fig. 1 is the flow chart of vehicle suspension roll angular rigidity calculation and check;
Fig. 2 is vehicle roll motion illustraton of model;
Fig. 3 is the structural representation of stabilizer bar system;
Fig. 4 is the structural representation of rubber bushing.
Embodiment
The present invention is described in further detail below by embodiment.
Embodiment one:The body quality m of certain vehicles=4690kg, side acceleration ay=0.4g, vehicle body barycenter is with rolling The distance h of between centerss=1069mm, the design requirement value of vehicle roll angleFront suspension pendulum arm length T1f=675mm, bullet Spring Line stiffness ksf=102.45N/mm, spring center to distance T between swing arm hinge point2f=430mm;Rear suspension pendulum arm length T1r=650mm, spring wire stiffness Ksr=261N/mm, spring center to distance T between swing arm hinge point2r=400mm;The vehicle Front axle wheel is away from Bf=1650mm, rear axle wheel is away from Br=1485mm;The vehicle only sets stabilizer bar system in front suspension, and its structure is shown It is intended to as shown in figure 3, wherein, the diameter d of stabiliser barf=20mm, total length lcf=800mm, brachium l1f=150mm, transition circle Arc radius Rf=50mm, transition arc central angle θf=60 °, the mounting distance l between two rubber bushings0f=400mm, stabiliser bar Elastic modulus E=210GPa of material, Poisson's ratio μ=0.3.The structure of front stabilizer rubber bushing as shown in figure 4, stabiliser bar 1, Interior round buss 2, rubber bushing 3, outer round buss 4, outer round buss 4 and interior round buss 2 and rubber bushing 3 are as one, by interior Round buss 2 matches with stabiliser bar 1 and merged on stabiliser bar 1, wherein, the axial length L of rubber bushing 1f=25mm, thickness hf=10mm, the wall thickness Δ l of interior round buss 2f=2.0mm, i.e. rubber bushing inner circle radius raf=12mm, exradius rbf= 22mm, elastic modulus Ex=7.84MPa, Poisson's ratio μx=0.47.Check meter is carried out to the roll angular rigidity of the vehicle suspension system Calculate.
The check method for the vehicle suspension roll angular rigidity that present example is provided, its calculation and check flow such as Fig. 1 institutes Show, comprise the following steps that:
(1) total roll angular rigidity required for vehicle suspensionCalculating:
According to automobile body quality ms=4690kg, side acceleration ay=0.4g, vehicle body barycenter and the distance for rolling between centers hs=1069mm, vehicle roll angleIgnoring unsprung mass muIn the case of, to total angle of heel required for vehicle suspension Rigidity is calculated, i.e.,:
(2) roll angular rigidity of the forward and backward bearing spring of vehicleWithCalculating:
According to the front tread B of vehiclef=1650mm and rear tread Br=1485mm, forward swing arm lengths T1f=675mm, rear pendulum Arm lengths T1r=650mm, forward and backward bearing spring installation site to the distance between swing arm hinge point T2f=430mm and T2r= 400mm, and the Line stiffness k of forward and backward bearing springsf=102.45N/mm and ksr=261N/mm, to the side of forward and backward bearing spring Inclination angle rigidity is respectively calculated, i.e.,:
(3) the deformation coefficient G of front suspension end part of stabilizer rodwfCalculating:
According to the total length l of front suspension stabiliser barcf=800mm, the mounting distance l of middle two rubber bushings0f= 400mm, the brachium l of front stabilizer1f=150mm, the transition arc radius R of front stabilizerf=50mm, the central angle of transition arc θf=60 °, elastic properties of materials model E=210GPa and Poisson's ratio μ=0.3, the deformation coefficient of front suspension end part of stabilizer rod is carried out Calculate, i.e.,:
In formula,
Q6f=32 (u+1) [Rf(cosθf-1)-l1fsinθf]2[2l1fcosθf-lcf+2Rfsinθf]=- 0.5624m3
(4) front suspension stabiliser bar rubber bushing RADIAL stiffness KxfAnalytical Calculation:
According to the inner circle radius r of front suspension stabiliser bar rubber bushingaf=12mm, exradius rbf=22mm, axial length Lf=25mm, and the elastic modulus E of rubber bushingx=7.84MPa, Poisson's ratio μx=0.47, to the radial direction of front suspension rubber bushing Line stiffness KxfCalculated, i.e.,:
Wherein,
Bessel correction functions:
I(0,αfrbf)=25.0434, K (0, αfrbf)=0.0041,
I(1,αfrbf)=22.3175, K (1, αfrbf)=0.0045,
I(1,αfraf)=2.1439, K (1, αfraf)=0.0922,
I(0,αfraf)=2.8801, K (0, αfraf)=0.0769;
(5) roll angular rigidity of front stabilizer systemCalculation and check:
According to the wheelspan B of vehicle proponsf=1650mm, the diameter d of stabiliser barf=20mm, length lcf=800mm, two rubbers Mounting distance l between glue bushing0f=400mm, the middle deformation coefficient calculated at resulting front stabilizer end points of step (3) Gwf=1.5935 × 10-12m5The radial rigidity K of preceding rubber bushing obtained by being calculated in/N, and step (4)xf=2106.8N/ Roll angular rigidities of the mm to front stabilizer systemCalculation and check is carried out, i.e.,:
(6) the total roll angular rigidity of vehicleCalculation and check:
According to the roll angular rigidity for the forward and backward bearing spring being calculated in step (2)With
The roll angular rigidity of front stabilizer system obtained by being calculated in step (5)Calculation and check is carried out to the total roll angular rigidity of vehicle, i.e.,
Understand the calculation and check value of the total roll angular rigidity of the vehicleFallen into a trap more than step (1) The design load required by vehicle obtained by calculatingI.e.The vehicle roll angular rigidity is expired Sufficient Car design requirement.
Embodiment two:Known certain automobile body quality ms=5000kg, side acceleration ay=0.4g, vehicle body barycenter and side Incline the distance h of between centerss=1150mm, vehicle roll angleThe spring Line stiffness k of vehicle front suspensionsf=90.761N/mm, The spring Line stiffness k of rear suspensionsr=176.23N/mm;Front tread Bf=1650mm, rear tread Br=1600mm;Front suspension swing arm Length T1f=660mm, front suspension spring center to distance T between homonymy swing arm hinge point2f=450mm;Rear-swing arm length T1r= 650mm, rear suspension spring installation center to distance T between homonymy transverse arm pin joint2r=400mm.Forward and backward suspension stabiliser bar and rubber Glue bushing, in addition to diameter differs, other parameters are all identical with embodiment one, wherein, front stabilizer diameter df= 22mm, rear stabilizer bar diameter dr=19mm;The inside radius r of preceding rubber bushingaf=13mm, outer radius rbf=23mm, rear rubber lining The inner circle radius r of setar=11.5mm.Exradius rbr=21.5mm.School is carried out to the roll angular rigidity of the vehicle suspension system Assess calculation.
The step of using embodiment one, calculation and check is carried out to the roll angular rigidity of the vehicle suspension system, i.e.,:
(1) total roll angular rigidity required for vehicle suspensionCalculating:
According to automobile body quality ms=5000kg, side acceleration ay=0.4g, vehicle body barycenter and the distance for rolling between centers hs=1150mm, the max. roll required by vehicle body designTotal roll angular rigidity required for vehicle suspension is carried out Calculate, i.e.,:
In formula, g acceleration of gravity, g=9.8m/s2
(2) roll angular rigidity of the forward and backward bearing spring of vehicleWithCalculating:
According to the front tread B of vehiclef=1650mm and rear tread Br=1600mm, forward swing arm lengths T1f=660mm, rear pendulum Arm lengths T1r=650mm, forward and backward bearing spring installation site to the distance between swing arm hinge point T2f=450mm and T2r= 400mm, and the Line stiffness k of forward and backward bearing springsf=90.761N/mm and ksr=176.23N/mm, to forward and backward bearing spring Roll angular rigidity be respectively calculated, i.e.,:
(3) the deformation coefficient G of forward and backward suspension end part of stabilizer rodwfAnd GwrCalculating:
Because the Chinese herbaceous peony, rear suspension stabiliser bar are in addition to diameter, other parameters are all identical with embodiment one, because This, the deformation coefficient of the Chinese herbaceous peony rear suspension end part of stabilizer rod is also all identical with embodiment one, i.e.,:
(4) forward and backward suspension stabiliser bar rubber bushing RADIAL stiffness KxfAnd KxrAnalytical Calculation:
Because the inner circle radius and exradius of the stable shank diameter of forward and backward suspension and rubber bushing differ, therefore, rubber The RADIAL stiffness K of bushingxfAnd KxrAlso differ.According to the inside radius r of preceding rubber bushingaf=13mm, outer radius rbf= 23mm, the inner circle radius r of rear rubber bushingar=11.5mm, exradius rbr=21.5mm, and the length L of rubber bushingf= 25mm, elastic modulus Ex=7.84MPa, Poisson's ratio μx=0.47, it is stable to forward and backward suspension using the computational methods of embodiment one Bar rubber bushing RADIAL stiffness KxfAnd KxrIt is respectively calculated, i.e.,:
Wherein,
(5) roll angular rigidity of forward and backward stabilizer bar systemWithCalculation and check:
According to the wheelspan B of the forward and backward bridge of vehiclef=1650mm and Br=1600mm, the diameter d of forward and backward stabiliser barf=22mm And dr=19mm, length lcf=lcr=800mm, the mounting distance l between two rubber bushings0f=l0r=400mm, in step (3) The deformation coefficient G at forward and backward stabiliser bar end points obtained by calculatingwf=Gwr=1.5935 × 10-12m5/ N, and step (4) are fallen into a trap The radial rigidity K of forward and backward rubber bushing obtained by calculatingxf=2267.0N/mm and Kxr=2026.7N/mm, to forward and backward stabilization The roll angular rigidity of lever systemWithCalculation and check is carried out respectively, i.e.,:
(6) the total roll angular rigidity of vehicleCalculation and check:
According to the roll angular rigidity for the forward and backward bearing spring being calculated in step (2)WithThe roll angular rigidity of forward and backward stabilizer bar system obtained by being calculated in step (5)WithCalculation and check is carried out to the total roll angular rigidity of vehicle, i.e.,
Understand the calculation and check value of the total roll angular rigidity of the vehicleFallen into a trap more than step (1) The design load required by vehicle obtained by calculatingI.e.The vehicle roll angular rigidity meets Car design requirement.
Embodiment three:Certain vehicle is except the stable shank diameter d of front suspensionfAnd the inner circle radius r of rubber bushingafAnd exradius rbfOutside differing, other all parameters are identical with embodiment two, wherein, the diameter d of front stabilizerf=21mm, rubber The inner circle radius r of glue bushingaf=12.5mm, and exradius rbf=22.5mm.To the roll angular rigidity of the vehicle suspension system Carry out calculation and check.
The step of using example one is applied, calculation and check is carried out to the roll angular rigidity of the vehicle suspension system:
(1) total roll angular rigidity required for vehicle suspensionCalculating:
Because vehicle parameter is identical with embodiment two, therefore, total roll angular rigidity required for the vehicle suspension, Also it is identical with embodiment two, i.e.,:
(2) roll angular rigidity of the forward and backward bearing spring of vehicleWithCalculating:
It is identical with embodiment two due to the vehicle parameter and suspension stiffness of the vehicle, therefore, before vehicle, The roll angular rigidity of rear suspension spring, it is also identical with embodiment two respectively, i.e.,:
(3) the deformation coefficient G of forward and backward suspension end part of stabilizer rodwfAnd GwrCalculating:
Because the forward and backward suspension stabiliser bar of the vehicle is in addition to diameter, other parameters are all identical with embodiment two, Therefore, the Chinese herbaceous peony, the deformation coefficient of rear suspension end part of stabilizer rod, it is also all identical with embodiment two, i.e.,:
(4) forward and backward suspension stabiliser bar rubber bushing RADIAL stiffness KxfAnd KxrAnalytical Calculation:
Due to the stable shank diameter of rear suspension and the inner circle radius and exradius of rubber bushing, the complete phase with embodiment two Together, therefore, rear suspension stabiliser bar rubber bushing RADIAL stiffness KxrAlso it is all identical with embodiment two, i.e.,:
The inner circle radius and exradius of the stable shank diameter of the vehicle front suspension and rubber bushing, the not phase with embodiment two Together.According to the inside radius r of preceding rubber bushingaf=12.5mm, outer radius rbf=22.5mm, elastic modulus Ex=7.84MPa, Poisson Compare μx=0.47, using the computational methods of embodiment one to front suspension stabiliser bar rubber bushing RADIAL stiffness KxfCalculated, I.e.:
Wherein,
(5) roll angular rigidity of forward and backward stabilizer bar systemWithCalculation and check:
Because the stable shank diameter of the vehicle rear suspension and rubber bushing are identical with embodiment two, therefore, rear suspension The roll angular rigidity of stabilizer bar systemAlso it is identical with embodiment two, i.e.,:
According to the wheelspan B of vehicle proponsf=1650mm, the diameter d of stabiliser barf=21mm, length lcf=800mm, two rubbers Mounting distance l between glue bushing0f=400mm, the middle deformation coefficient calculated at resulting front stabilizer end points of step (3) Gwf=1.5935 × 10-12m5The radial rigidity K of preceding rubber bushing obtained by being calculated in/N, and step (4)xf=2186.9N/ Mm, to the roll angular rigidity of front stabilizer systemCalculation and check is carried out, i.e.,:
(6) the total roll angular rigidity of vehicleCalculation and check:
According to the roll angular rigidity for the forward and backward bearing spring being calculated in step (2)WithThe roll angular rigidity of forward and backward stabilizer bar system obtained by being calculated in step (5)WithCalculation and check is carried out to the total roll angular rigidity of vehicle, i.e.,
Understand the calculation and check value of the total roll angular rigidity of the vehicleFallen into a trap less than step (1) The design load required by vehicle obtained by calculatingI.e.The vehicle roll angular rigidity is discontented with Sufficient Car design requirement.
Design is adjusted to the stable shank diameter of front suspension, i.e., is d by the diameter adjusted design of front suspension stabiliser barf= 22mm, makes the roll angular rigidity of vehicle can increase toMeet that the design of vehicle roll angular rigidity will Evaluation;Design can also be adjusted to the mounting distance between the rubber bushing of front suspension stabiliser bar two, by two rubber bushings it Between l0Mounting distance adjusted design be l0=420mm, clipping room make the roll angular rigidity of vehicle can increase to away from increase 10mmMeet the design requirement value of vehicle roll angular rigidity.

Claims (1)

1. the check method of vehicle suspension roll angular rigidity, it is comprised the following steps that:
(1) total roll angular rigidity required for vehicle suspensionCalculating:
According to automobile body quality ms, the distance h of vehicle body barycenter and inclination between centerss, radius of wheel r, side acceleration ay, and car The required vehicle body max. roll of designTotal roll angular rigidity required for vehicle suspension is calculated, i.e.,:
Wherein, g is acceleration of gravity;
(2) roll angular rigidity of forward and backward bearing springWithCalculating:
According to the front tread B of vehiclefWith rear tread Br, forward swing arm lengths T1f, rear-swing arm length T1r, forward and backward bearing spring installation Position is to the distance between swing arm hinge point T2fAnd T2r, and the Line stiffness k of forward and backward bearing springsfAnd ksr, to forward and backward suspension bullet The roll angular rigidity of spring is respectively calculated, i.e.,:
(3) the deformation coefficient G of forward and backward suspension end part of stabilizer rod vertical deviationwfAnd GwrCalculating:
According to the total length l of forward and backward suspension stabiliser barcfAnd lcr, the mounting distance l of middle two rubber bushings0fAnd l0r, it is forward and backward The brachium l of stabiliser bar1fAnd l1r, the transition arc radius R of forward and backward stabiliser barfAnd Rr, the central angle θ of transition arcfAnd θr, and material Elastic model E and Poisson's ratio μ is expected, to the deformation coefficient G of forward and backward suspension end part of stabilizer rod vertical deviationwfAnd GwrCalculated, Respectively:
<mrow> <msub> <mi>G</mi> <mrow> <mi>w</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>Q</mi> <mrow> <mn>1</mn> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mn>2</mn> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>3</mn> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>4</mn> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>5</mn> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mn>6</mn> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <mi>&amp;pi;</mi> <mi>E</mi> </mrow> </mfrac> <mo>,</mo> </mrow>
<mrow> <msub> <mi>G</mi> <mrow> <mi>w</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>Q</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mn>2</mn> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>3</mn> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>4</mn> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>5</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mn>6</mn> <mi>r</mi> </mrow> </msub> </mrow> <mrow> <mi>&amp;pi;</mi> <mi>E</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
In formula,
<mrow> <msub> <mi>Q</mi> <mrow> <mn>3</mn> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>64</mn> <msub> <mi>R</mi> <mi>f</mi> </msub> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>l</mi> <mrow> <mn>1</mn> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>R</mi> <mi>f</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mn>1</mn> <mi>f</mi> </mrow> </msub> <msub> <mi>R</mi> <mi>f</mi> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> <mo>&amp;rsqb;</mo> <mo>,</mo> <msub> <mi>Q</mi> <mrow> <mn>4</mn> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <msub> <mi>l</mi> <mrow> <mn>0</mn> <mi>f</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mrow> <mn>0</mn> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>3</mn> </mfrac> <mo>,</mo> </mrow>
<mrow> <msub> <mi>Q</mi> <mrow> <mn>5</mn> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>64</mn> <msub> <mi>R</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msup> <msub> <mi>R</mi> <mi>f</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>3</mn> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> </mrow> <mn>4</mn> </mfrac> <mo>-</mo> <mn>2</mn> <msub> <mi>sin&amp;theta;</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>l</mi> <mrow> <mn>1</mn> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <msub> <mi>l</mi> <mrow> <mn>1</mn> <mi>f</mi> </mrow> </msub> <msub> <mi>R</mi> <mi>f</mi> </msub> <msup> <mi>sin</mi> <mn>4</mn> </msup> <mfrac> <msub> <mi>&amp;theta;</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
Q6f=32 (μ+1) [Rf(cosθf-1)-l1fsinθf]2[2l1fcosθf-lcf+2Rfsinθf];
<mrow> <msub> <mi>Q</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>64</mn> <msubsup> <mi>l</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> <mn>3</mn> </msubsup> </mrow> <mn>3</mn> </mfrac> <mo>,</mo> <msub> <mi>Q</mi> <mrow> <mn>2</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>64</mn> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>cos&amp;theta;</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>r</mi> </msub> <msub> <mi>sin&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mrow> <mn>0</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mn>3</mn> </mfrac> <mo>,</mo> </mrow>
<mrow> <msub> <mi>Q</mi> <mrow> <mn>3</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>64</mn> <msub> <mi>R</mi> <mi>r</mi> </msub> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>l</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>R</mi> <mi>r</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>R</mi> <mi>r</mi> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>&amp;rsqb;</mo> <mo>,</mo> <msub> <mi>Q</mi> <mrow> <mn>4</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <msub> <mi>l</mi> <mrow> <mn>0</mn> <mi>r</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mrow> <mn>0</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>3</mn> </mfrac> <mo>,</mo> </mrow>
<mrow> <msub> <mi>Q</mi> <mrow> <mn>5</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>64</mn> <msub> <mi>R</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>R</mi> <mi>r</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>3</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> </mrow> <mn>4</mn> </mfrac> <mo>-</mo> <mn>2</mn> <msub> <mi>sin&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>l</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <msub> <mi>l</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>R</mi> <mi>r</mi> </msub> <msup> <mi>sin</mi> <mn>4</mn> </msup> <mfrac> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
Q6r=32 (u+1) [Rr(cosθr-1)-l1rsinθr]2[2l1rcosθr-lcr+2Rrsinθr];
(4) forward and backward stabiliser bar rubber bushing RADIAL stiffness KxfAnd KxrAnalytical Calculation:
According to the inner circle radius r of forward and backward rubber bushingafAnd rar, exradius rbfAnd rbr, axial length LfAnd Lr, and rubber lining The elastic modulus E of setx, Poisson's ratio μx, the radial direction Line stiffness of forward and backward rubber bushing of hanger bracket is respectively calculated, i.e.,:
<mrow> <msub> <mi>K</mi> <mrow> <mi>x</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>u</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>y</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <msub> <mi>K</mi> <mrow> <mi>x</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>u</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>y</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow>
Wherein,
<mrow> <mi>y</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow> <mn>1</mn> <mi>f</mi> </mrow> </msub> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow> <mn>2</mn> <mi>f</mi> </mrow> </msub> <mi>K</mi> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow> <mn>3</mn> <mi>f</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;mu;</mi> <mi>x</mi> </msub> </mrow> <mrow> <mn>5</mn> <msub> <mi>&amp;pi;E</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mi> </mi> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mn>1</mn> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;mu;</mi> <mi>x</mi> </msub> <mo>)</mo> <mo>&amp;lsqb;</mo> <mi>K</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>-</mo> <mi>K</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>(</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>5</mn> <msub> <mi>&amp;pi;E</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>f</mi> </msub> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mn>2</mn> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>&amp;lsqb;</mo> <mi>I</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>-</mo> <mi>I</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>(</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>5</mn> <msub> <mi>&amp;pi;E</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>f</mi> </msub> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mn>3</mn> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;mu;</mi> <mi>x</mi> </msub> <mo>)</mo> <mo>(</mo> <msub> <mi>b</mi> <mrow> <mn>1</mn> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>b</mi> <mrow> <mn>2</mn> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mn>3</mn> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mn>5</mn> <msub> <mi>&amp;pi;E</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>f</mi> </msub> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mn>1</mn> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mn>2</mn> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mn>3</mn> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>f</mi> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mi> </mi> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>2</mn> <msqrt> <mn>15</mn> </msqrt> <mo>/</mo> <msub> <mi>L</mi> <mi>f</mi> </msub> <mo>,</mo> </mrow>
Bessel correction functions I (0, αfrbf), K (0, αfrbf), I (1, αfrbf), K (1, αfrbf);
I(1,αfraf), K (1, αfraf), I (0, αfraf), K (0, αfraf);
Wherein,
<mrow> <mi>y</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow> <mn>2</mn> <mi>r</mi> </mrow> </msub> <mi>K</mi> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow> <mn>3</mn> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;mu;</mi> <mi>x</mi> </msub> </mrow> <mrow> <mn>5</mn> <msub> <mi>&amp;pi;E</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mi> </mi> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;mu;</mi> <mi>x</mi> </msub> <mo>)</mo> <mo>&amp;lsqb;</mo> <mi>K</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>-</mo> <mi>K</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>(</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>5</mn> <msub> <mi>&amp;pi;E</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mn>2</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>&amp;lsqb;</mo> <mi>I</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>-</mo> <mi>I</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>(</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>5</mn> <msub> <mi>&amp;pi;E</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mn>3</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;mu;</mi> <mi>x</mi> </msub> <mo>)</mo> <mo>(</mo> <msub> <mi>b</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>b</mi> <mrow> <mn>2</mn> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mn>3</mn> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mn>5</mn> <msub> <mi>&amp;pi;E</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mn>2</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mn>3</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>K</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mi>ln</mi> <mi> </mi> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
<mrow> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>2</mn> <msqrt> <mn>15</mn> </msqrt> <mo>/</mo> <msub> <mi>L</mi> <mi>r</mi> </msub> <mo>;</mo> </mrow>
Bessel correction functions I (0, αrrbr), K (0, αrrbr), I (1, αrrbr), K (1, αrrbr);
I(1,αrrar), K (1, αrrar), I (0, αrrar), K (0, αrrar);
(5) roll angular rigidity of forward and backward stabilizer bar systemWithCalculation and check:
According to the wheelspan B of the forward and backward bridge of vehiclefAnd Br, the diameter d of forward and backward suspension stabiliser barfAnd dr, length lcfAnd lcr, it is forward and backward steady Fixed pole rubber bushing mounting distance length l0fAnd l0r, the change at the end points of the forward and backward stabiliser bar obtained by calculating in step (3) Shape coefficient GwfAnd Gwr, the middle radial rigidity K for calculating resulting forward and backward rubber bushing of step (4)xfAnd Kxr, to forward and backward stabilization The roll angular rigidity of lever systemWithCalculation and check is carried out respectively, i.e.,:
(6) the total roll angular rigidity of vehicleCalculation and check:
According to the roll angular rigidity of forward and backward bearing spring resulting in step (2)WithObtained by step (5) The roll angular rigidity of forward and backward stabilizer bar systemWithCalculation and check is carried out to the total roll angular rigidity of vehicle, i.e.,
If the calculation and check value of the total roll angular rigidity of vehicleMore than or equal to the vehicle institute obtained by being calculated in step (1) It is required that design loadI.e.Then vehicle roll angular rigidity meets Car design requirement;Otherwise, ifThen vehicle roll angular rigidity is unsatisfactory for Car design requirement, it is necessary to be adjusted to fore suspension and rear suspension stabilizer bar system Design.
CN201410476073.8A 2014-09-18 2014-09-18 The check method of vehicle suspension roll angular rigidity Expired - Fee Related CN104182597B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410476073.8A CN104182597B (en) 2014-09-18 2014-09-18 The check method of vehicle suspension roll angular rigidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410476073.8A CN104182597B (en) 2014-09-18 2014-09-18 The check method of vehicle suspension roll angular rigidity

Publications (2)

Publication Number Publication Date
CN104182597A CN104182597A (en) 2014-12-03
CN104182597B true CN104182597B (en) 2018-04-10

Family

ID=51963633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410476073.8A Expired - Fee Related CN104182597B (en) 2014-09-18 2014-09-18 The check method of vehicle suspension roll angular rigidity

Country Status (1)

Country Link
CN (1) CN104182597B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105718706B (en) * 2016-04-27 2018-12-28 山东理工大学 End contact lacks the design method of the reinforced auxiliary spring root thickness in piece root
CN105912804A (en) * 2016-04-28 2016-08-31 王炳超 Method for determining endpoint force of end contact type few-leaf slash type variable-section main/auxiliary springs
CN108959748A (en) * 2018-06-22 2018-12-07 上海思致汽车工程技术有限公司 A kind of stiffness analysis method of subframe and the attachment point of vehicle body flexible connection
CN111337275B (en) * 2020-02-25 2022-03-22 威马智慧出行科技(上海)有限公司 Vehicle-mounted suspension positioning error detection method and device, storage medium and electronic equipment
CN113268811B (en) * 2021-05-26 2022-11-22 江西五十铃汽车有限公司 Method for calculating torsional rigidity of stabilizer bar by utilizing multi-body dynamics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU481171A1 (en) * 1971-03-26 1985-08-23 Краснодарский политехнический институт Centrifuge blade with inertial unloading of sediment
CN101284487A (en) * 2008-04-29 2008-10-15 奇瑞汽车股份有限公司 Torsion girder-like rear suspension
CN101966804A (en) * 2010-10-27 2011-02-09 江苏大学 Vehicle suspension control device and method based on automaton technology
CN102402644A (en) * 2011-08-11 2012-04-04 西北工业大学 Dynamical model modeling method of vehicle driven on mountainous road

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU481171A1 (en) * 1971-03-26 1985-08-23 Краснодарский политехнический институт Centrifuge blade with inertial unloading of sediment
CN101284487A (en) * 2008-04-29 2008-10-15 奇瑞汽车股份有限公司 Torsion girder-like rear suspension
CN101966804A (en) * 2010-10-27 2011-02-09 江苏大学 Vehicle suspension control device and method based on automaton technology
CN102402644A (en) * 2011-08-11 2012-04-04 西北工业大学 Dynamical model modeling method of vehicle driven on mountainous road

Also Published As

Publication number Publication date
CN104182597A (en) 2014-12-03

Similar Documents

Publication Publication Date Title
CN104200040B (en) The design method of vehicle suspension stabilizer bar Rigidity Matching and diameter
CN104182597B (en) The check method of vehicle suspension roll angular rigidity
CN107662468B (en) Vehicle roll motion safety H for active suspension2/H∞Controller design method
CN104890461B (en) A kind of double cross arm independent suspension and knuckle assembly
CN106476554B (en) Swing arm structure, wishbone type independent front suspension and automobile
CN206141251U (en) Independent suspension structure after last transverse leaf spring formula
CN107380336A (en) A kind of damping balance car
CN104268357B (en) Coaxial-type driver&#39;s cabin stablizes the design method of shank diameter
CN104331575B (en) The design method of the outer amount of bias of torsion tube of outer biasing non-coaxial driver&#39;s cabin stabiliser bar
CN104281759B (en) The design method of interior biasing non-coaxial driver&#39;s cabin stabiliser bar rubber sleeve length
CN107506560A (en) The method of calibration of driver&#39;s cabin stabilizer bar system roll angular rigidity
CN104239657B (en) Coaxial-type driver&#39;s cabin stabiliser bar suspension clipping room away from design method
CN104200050B (en) The design method of suspension stabiliser bar rubber bushing thickness
Sun et al. Design and strength analysis of FSAE suspension
CN107679284A (en) The computational methods of coaxial-type driver&#39;s cabin stabilizer bar system deformation
CN104361164B (en) The design method of the torsion tube outer diameter of interior biasing non-coaxial driver&#39;s cabin stabilizer bar system
CN104175831B (en) The design method of the inner circle sleeve thickness of suspension stabiliser bar rubber bushing
CN104281758B (en) The design method of the torsion tube length of interior biasing non-coaxial driver&#39;s cabin stabilizer bar system
CN104268359B (en) The design method of coaxial-type driver&#39;s cabin stabiliser bar rubber sleeve length
CN104268360B (en) The design method of coaxial-type driver&#39;s cabin stabiliser bar rubber sleeve exradius
CN103935421A (en) Design method for rigidity of spiral spring of car
CN104200043B (en) The design method of suspension stabiliser bar rubber bushing length
CN204452655U (en) A kind of adjustment structure of stabilizer rod assembly
CN104361175B (en) The design method of the torsion tube internal diameter of outer biasing non-coaxial driver&#39;s cabin stabiliser bar
CN104200123A (en) Method for calculating rigidity of transverse stabilizer bar system on basis of radial deformation of rubber bushing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180410

Termination date: 20200918