CN104167294A - A broadband semiconductor photoanode sensitized by thin layer of In2S3/CuInS2 and its preparation method - Google Patents
A broadband semiconductor photoanode sensitized by thin layer of In2S3/CuInS2 and its preparation method Download PDFInfo
- Publication number
- CN104167294A CN104167294A CN201410302030.8A CN201410302030A CN104167294A CN 104167294 A CN104167294 A CN 104167294A CN 201410302030 A CN201410302030 A CN 201410302030A CN 104167294 A CN104167294 A CN 104167294A
- Authority
- CN
- China
- Prior art keywords
- cuins
- broadband semiconductor
- layer
- thin
- semiconductor film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 80
- 238000002360 preparation method Methods 0.000 title claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 42
- 239000000243 solution Substances 0.000 claims abstract description 40
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000001179 sorption measurement Methods 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 206010070834 Sensitisation Diseases 0.000 claims abstract description 4
- 230000008313 sensitization Effects 0.000 claims abstract description 4
- 239000007853 buffer solution Substances 0.000 claims description 32
- 238000010438 heat treatment Methods 0.000 claims description 26
- 229910052717 sulfur Inorganic materials 0.000 claims description 23
- 239000011593 sulfur Substances 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 13
- 229910001449 indium ion Inorganic materials 0.000 claims description 13
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 12
- 229910001431 copper ion Inorganic materials 0.000 claims description 12
- 239000012528 membrane Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 11
- 150000002500 ions Chemical class 0.000 claims description 11
- -1 sulfide ions Chemical class 0.000 claims description 10
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 6
- 229910052979 sodium sulfide Inorganic materials 0.000 claims description 6
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 claims description 5
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims description 5
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 4
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 4
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 4
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 4
- 229940045803 cuprous chloride Drugs 0.000 claims description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 4
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 claims description 3
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 3
- VBXWCGWXDOBUQZ-UHFFFAOYSA-K diacetyloxyindiganyl acetate Chemical compound [In+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VBXWCGWXDOBUQZ-UHFFFAOYSA-K 0.000 claims description 3
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 3
- 229960003280 cupric chloride Drugs 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims 1
- 239000000872 buffer Substances 0.000 abstract description 7
- 238000005215 recombination Methods 0.000 abstract description 7
- 230000006798 recombination Effects 0.000 abstract description 7
- 230000007547 defect Effects 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 6
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000004151 rapid thermal annealing Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229910000337 indium(III) sulfate Inorganic materials 0.000 description 2
- XGCKLPDYTQRDTR-UHFFFAOYSA-H indium(iii) sulfate Chemical compound [In+3].[In+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O XGCKLPDYTQRDTR-UHFFFAOYSA-H 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000224 chemical solution deposition Methods 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 208000017983 photosensitivity disease Diseases 0.000 description 1
- 231100000434 photosensitization Toxicity 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 1
Landscapes
- Hybrid Cells (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种In2S3/CuInS2薄层敏化的宽带半导体光阳极,由导电基片、宽带半导体膜层和In2S3/CuInS2薄层组成,在导电基片表面沉积有宽带半导体膜层以构成宽带半导体膜电极,在宽带半导体膜电极表面先后包覆In2S3与CuInS2薄层,In2S3的厚度在1-5nm之间,CuInS2的厚度在2-15nm之间。采用连续离子层吸附反应法制备。本发明的In2S3/CuInS2薄层敏化光阳极结构不仅制备工艺简便,可通过控制溶液浓度及敏化次数控制晶粒大小,优化CuInS2的化学计量比,减少材料缺陷,而且引入的缓冲层In2S3能有效抑制电子复合,有利于电子注入,并可以有效避免因CuInS2中的Cu扩散到TiO2而带来的污染和其化学计量比的变化,对于提高CuInS2半导体纳米晶敏化太阳电池光电转换效率具有积极意义。
The invention discloses a broadband semiconductor photoanode sensitized by an In 2 S 3 /CuInS 2 thin layer, which is composed of a conductive substrate, a broadband semiconductor film layer and an In 2 S 3 /CuInS 2 thin layer, deposited on the surface of the conductive substrate There is a broadband semiconductor film layer to form a broadband semiconductor film electrode. The surface of the broadband semiconductor film electrode is coated with In 2 S 3 and CuInS 2 thin layers. The thickness of In 2 S 3 is between 1-5nm, and the thickness of CuInS 2 is between 2 Between -15nm. Prepared by continuous ion layer adsorption reaction method. The In 2 S 3 /CuInS 2 thin-layer sensitized photoanode structure of the present invention not only has a simple preparation process, but also can control the grain size by controlling the solution concentration and the sensitization times, optimize the stoichiometric ratio of CuInS 2 , reduce material defects, and introduce The buffer layer of In 2 S 3 can effectively inhibit electron recombination, is conducive to electron injection, and can effectively avoid the pollution caused by the diffusion of Cu in CuInS 2 to TiO 2 and the change of its stoichiometric ratio, which is very important for improving CuInS 2 semiconductor The photoelectric conversion efficiency of nanocrystalline sensitized solar cells has positive significance.
Description
技术领域technical field
本发明属于太阳能利用技术领域,尤其涉及基于薄层敏化的宽带半导体光阳极的太阳能光电化学池的研究领域。The invention belongs to the technical field of solar energy utilization, in particular to the research field of solar photoelectrochemical pools based on thin-layer sensitized broadband semiconductor photoanodes.
技术背景technical background
基于薄层敏化多孔纳米晶宽带半导体光阳极的光电化学电池具有三维的体结结构,对材料缺陷要求较低,制备工艺简单、成本低廉,自其发明以来受到各国研究者的广泛关注。其中CuInS2光学吸收系数高(达6×105cm-1),导带位置与纳米TiO2等宽带半导体相匹配,禁带宽度(Eg为1.50eV)接近太阳能电池材料的最佳禁带宽度(1.45eV),原料较为丰富毒性低,且具有较好的光化学稳定性,是理想的光敏化材料。The photoelectrochemical cell based on the thin-layer sensitized porous nanocrystalline broadband semiconductor photoanode has a three-dimensional bulk junction structure, has low requirements for material defects, simple preparation process, and low cost. Since its invention, it has attracted extensive attention from researchers from all over the world. Among them, CuInS 2 has a high optical absorption coefficient (up to 6×10 5 cm -1 ), the position of the conduction band matches that of nano-TiO 2 and other broadband semiconductors, and the band gap (Eg is 1.50eV) is close to the optimal band gap of solar cell materials. (1.45eV), the raw material is abundant, low in toxicity, and has good photochemical stability, so it is an ideal photosensitization material.
CuInS2薄层敏化的宽带半导体光阳极的制备方法包括原子层沉积法、化学浴沉积法、以及连续离子层吸附反应法等,其中连续离子层吸附反应法具有成本低廉、容易控制的特点。但是采用传统的离子层吸附反应法制备获得的CuInS2化学计量比难以控制,材料内部缺陷多,电子复合较为严重,光电化学电池的量子效率较低。此外,CuInS2中的Cu+离子容易扩散到宽带半导体晶格间隙,造成宽带半导体/CuInS2界面的缺陷与电子复合。The preparation methods of CuInS 2 thin-layer sensitized broadband semiconductor photoanodes include atomic layer deposition, chemical bath deposition, and continuous ion layer adsorption reaction, among which the continuous ion layer adsorption reaction has the characteristics of low cost and easy control. However, the stoichiometric ratio of CuInS 2 prepared by the traditional ion layer adsorption reaction method is difficult to control, the material has many internal defects, the electronic recombination is serious, and the quantum efficiency of the photoelectrochemical cell is low. In addition, Cu + ions in CuInS2 easily diffuse into the broadband semiconductor lattice gap, causing defects and electron recombination at the broadband semiconductor/ CuInS2 interface.
发明内容Contents of the invention
本发明针对现有技术的不足,提供了一种In2S3/CuInS2薄层敏化的宽带半导体光阳极及其制备方法,在宽带半导体膜层和CuInS2之间设置一层In2S3缓冲层,以阻止Cu+离子的扩散、降低界面电子的复合。Aiming at the deficiencies of the prior art, the present invention provides a thin-layer In 2 S 3 /CuInS 2 sensitized broadband semiconductor photoanode and its preparation method. A layer of In 2 S is arranged between the broadband semiconductor film layer and CuInS 2 3 buffer layer to prevent the diffusion of Cu + ions and reduce the recombination of interface electrons.
本发明的另一个目的是提供制备上述In2S3/CuInS2薄层敏化的宽带半导体光阳极的方法。Another object of the present invention is to provide a method for preparing the broadband semiconductor photoanode sensitized by the above-mentioned In 2 S 3 /CuInS 2 thin layer.
本发明In2S3/CuInS2薄层敏化的宽带半导体光阳极,其特征在于由导电基片、宽带半导体膜层和In2S3/CuInS2薄层组成,在导电基片表面沉积有宽带半导体膜以构成宽带半导体膜电极,在宽带半导体膜电极表面先后包覆In2S3与CuInS2薄层,In2S3的厚度在1-5nm之间,CuInS2的厚度在2-15nm之间。所述宽带半导体膜层,可以是多孔的纳米晶宽带半导体膜层,或者是致密的纳米晶宽带半导体膜层,优选的是多孔的纳米晶宽带半导体膜层;宽带半导体选自TiO2、ZnO和SnO2中的一种或多种。The broadband semiconductor photoanode sensitized by the In 2 S 3 /CuInS 2 thin layer of the present invention is characterized in that it is composed of a conductive substrate, a broadband semiconductor film layer and an In 2 S 3 /CuInS 2 thin layer, and deposited on the surface of the conductive substrate. The broadband semiconductor film is used to form the broadband semiconductor film electrode, and the surface of the broadband semiconductor film electrode is covered with thin layers of In 2 S 3 and CuInS 2 successively. The thickness of In 2 S 3 is between 1-5nm, and the thickness of CuInS 2 is between 2-15nm. between. The broadband semiconductor film layer can be a porous nanocrystalline broadband semiconductor film layer, or a dense nanocrystalline broadband semiconductor film layer, preferably a porous nanocrystalline broadband semiconductor film layer; the broadband semiconductor film is selected from TiO 2 , ZnO and One or more of SnO 2 .
所述的In2S3/CuInS2薄层敏化的宽带半导体光阳极的制备方法,采用改进的连续离子层吸附反应法,在宽带半导体膜表面先后沉积InxS与CuyS,且In-S沉积次数多于Cu-S的沉积数,然后通过在硫气氛中进行真空热处理得到In2S3/CuInS2薄层敏化宽带半导体光阳极。The preparation method of the In 2 S 3 /CuInS 2 thin-layer sensitized broadband semiconductor photoanode adopts an improved continuous ion layer adsorption reaction method to successively deposit In x S and Cu y S on the surface of the broadband semiconductor film, and In -S deposition number is more than that of Cu-S, and then vacuum heat treatment is carried out in sulfur atmosphere to obtain In 2 S 3 /CuInS 2 thin-layer sensitized broadband semiconductor photoanode.
具体包括如下步骤:Specifically include the following steps:
(1)先将宽带半导体膜电极在铟离子溶液中浸渍30-360秒;(1) first immerse the broadband semiconductor film electrode in the indium ion solution for 30-360 seconds;
(2)用溶剂洗涤宽带半导体膜电极,除去表面多余的铟离子,吹干;(2) Wash the broadband semiconductor film electrode with a solvent, remove excess indium ions on the surface, and blow dry;
(3)将吸附了铟离子的宽带半导体膜电极在硫离子溶液中浸渍30-240秒;(3) immerse the broadband semiconductor film electrode having adsorbed indium ions in the sulfide ion solution for 30-240 seconds;
(4)用溶剂洗涤宽带半导体膜电极,除去表面多余的硫离子,并吹干;(4) Wash the broadband semiconductor membrane electrode with a solvent, remove excess sulfide ions on the surface, and blow dry;
(5)重复步骤(1)至(4)3-15次;(5) Repeat steps (1) to (4) 3-15 times;
(6)然后将宽带半导体膜电极在铜离子溶液中浸渍30-240秒;(6) Then the broadband semiconductor film electrode is immersed in the copper ion solution for 30-240 seconds;
(7)用溶剂洗涤宽带半导体膜电极,除去表面多余的铜离子,吹干;(7) Wash the broadband semiconductor membrane electrode with a solvent, remove excess copper ions on the surface, and dry it;
(8)接着将吸附了铜离子的宽带半导体膜电极在硫离子溶液中浸渍20-240秒;(8) then immerse the broadband semiconductor membrane electrode that has adsorbed copper ions in the sulfur ion solution for 20-240 seconds;
(9)用溶剂洗涤宽带半导体膜电极,除去表面多余的硫离子,并吹干;(9) Wash the broadband semiconductor membrane electrode with a solvent to remove excess sulfide ions on the surface, and dry it;
(10)重复步骤(6)至(9)2-7次;(10) Repeat steps (6) to (9) 2-7 times;
(11)热处理:将上述宽带半导体膜电极在真空条件下硫或者硫化氢气氛中进行热处理.(11) Heat treatment: The above broadband semiconductor film electrode is heat treated in a sulfur or hydrogen sulfide atmosphere under vacuum conditions.
热处理的方法是:真空度控制在1×10-4Pa~100Pa之间,优选的是在1×10-3Pa~1×10-2Pa之间,热处理温度在450℃-550℃之间,热处理时间在10分钟-60分钟之间。The method of heat treatment is: the degree of vacuum is controlled between 1×10 -4 Pa to 100Pa, preferably between 1×10 -3 Pa to 1×10 -2 Pa, and the heat treatment temperature is between 450°C and 550°C , the heat treatment time is between 10 minutes and 60 minutes.
所述的热处理也可以在真空条件下进行快速热退火,真空度控制在1×10-4Pa~1×10- 2Pa之间,热处理温度在450℃-550℃之间,热处理时间在2分钟-10分钟之间。The heat treatment can also be carried out rapid thermal annealing under vacuum conditions, the vacuum degree is controlled between 1× 10-4 Pa~1× 10-2 Pa, the heat treatment temperature is between 450°C- 550 °C, and the heat treatment time is 2 minutes to 10 minutes.
所说的采用改进的连续离子层吸附反应法,是在宽带半导体膜表面先后沉积InxS与CuyS,然后在真空硫气氛中热处理使部分InxS与CuyS反应生成CuInS2,而另一部分InxS转化成缓冲层In2S3。由于In-S沉积次数多于Cu-S的沉积次数,避免了铟的挥发导致的化学计量比的偏离,且可在宽带半导体/CuInS2界面得到In2S3缓冲层;通过精确控制In-S和Cu-S的沉积次数,可控制In2S3的厚度以及CuInS2的晶粒尺寸和化学计量比。所说的在硫气氛中进行真空热处理,是为了补充高温热处理过程损失的硫组分。The said improved continuous ion layer adsorption reaction method is to deposit In x S and Cu y S successively on the surface of the broadband semiconductor film, and then heat treatment in a vacuum sulfur atmosphere to make part of the In x S and Cu y S react to form CuInS2, while Another part of In x S is converted into buffer layer In 2 S 3 . Since the deposition times of In-S are more than that of Cu-S, the deviation of the stoichiometric ratio caused by the volatilization of indium is avoided, and an In 2 S 3 buffer layer can be obtained at the broadband semiconductor/CuInS 2 interface; by precisely controlling the In- The deposition times of S and Cu-S can control the thickness of In2S3 as well as the grain size and stoichiometry of CuInS2 . The said vacuum heat treatment in a sulfur atmosphere is to supplement the sulfur components lost in the high temperature heat treatment process.
所述铟离子溶液为氯化铟、醋酸铟、硝酸铟或者是硫酸铟的水溶液,或其醇溶液中的任意一种。The indium ion solution is an aqueous solution of indium chloride, indium acetate, indium nitrate or indium sulfate, or any one of alcohol solutions thereof.
所述铜离子溶液为氯化亚铜、氯化铜、醋酸铜、硫酸铜的水溶液或其醇溶液中的任意一种。The copper ion solution is any one of aqueous solutions of cuprous chloride, cupric chloride, copper acetate, copper sulfate or alcoholic solutions thereof.
所说的硫离子溶液可以为硫化钠的缓冲溶液,缓冲溶液pH值在8-12之间。或者为硫代乙酰胺的缓冲溶液,缓冲溶液pH值在2-6之间,溶液温度在40℃-90℃之间。或者为硫脲的缓冲溶液,缓冲溶液pH值在8-12之间,溶液温度在40℃-90℃之间。The sulfide ion solution may be a buffer solution of sodium sulfide, and the pH value of the buffer solution is between 8-12. Or it is a buffer solution of thioacetamide, the pH value of the buffer solution is between 2-6, and the solution temperature is between 40°C and 90°C. Or it is a buffer solution of thiourea, the pH value of the buffer solution is between 8-12, and the solution temperature is between 40°C and 90°C.
所述的铟离子溶液的浓度在50mmol/L至200mmol/L之间,铜离子的浓度在5mmol/L至50mmol/L之间,硫离子的浓度在10mmol/L至100mmol/L之间。铟离子的浓度要高于铜离子及硫离子的浓度,因为铜属软酸,铟属硬酸,硫属软碱,据软硬酸碱原理,铟难与硫结合,因而铟离子浓度高有利于吸附铟离子,优化化学计量比。The concentration of the indium ion solution is between 50mmol/L and 200mmol/L, the concentration of copper ions is between 5mmol/L and 50mmol/L, and the concentration of sulfur ions is between 10mmol/L and 100mmol/L. The concentration of indium ions is higher than that of copper ions and sulfur ions, because copper is a soft acid, indium is a hard acid, and sulfur is a soft base. According to the principle of soft and hard acids and bases, indium is difficult to combine with sulfur, so high indium ion concentration is It is beneficial to adsorb indium ions and optimize the stoichiometric ratio.
本发明同现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明In2S3/CuInS2薄层敏化的宽带半导体光阳极,在宽带半导体与CuInS2界面引入了In2S3缓冲层,可有效避免CuInS2中的Cu离子扩散到宽带半导体晶格中而带来的污染与缺陷,可有效地抑制界面电子复合,提高光电化学池的量子效率。1. The In 2 S 3 /CuInS 2 thin-layer sensitized broadband semiconductor photoanode of the present invention introduces an In 2 S 3 buffer layer at the interface between the broadband semiconductor and CuInS 2 , which can effectively prevent Cu ions in CuInS 2 from diffusing into the broadband semiconductor The pollution and defects in the crystal lattice can effectively inhibit the recombination of interface electrons and improve the quantum efficiency of the photoelectrochemical cell.
2、本发明的In2S3/CuInS2薄层敏化的宽带半导体光阳极的制备方法,即采用改进的离子层吸附反应法,在宽带半导体膜表面先后沉积InxS与CuyS,然后在真空硫气氛中热处理使部分InxS与CuyS反应生成CuInS2,而另一部分InxS转化成缓冲层In2S3,避免了铟的挥发导致的化学计量比的偏离,通过精确控制In-S和Cu-S的沉积次数,控制In2S3的厚度以及CuInS2的晶粒尺寸和化学计量比,实现一步法得到In2S3/CuInS2敏化的宽带半导体,操作简便,且不易引入杂质。2. The preparation method of the In 2 S 3 /CuInS 2 thin-layer sensitized broadband semiconductor photoanode of the present invention, that is, adopting the improved ion layer adsorption reaction method, depositing In x S and Cu y S successively on the surface of the broadband semiconductor film, Then heat treatment in a vacuum sulfur atmosphere to make part of In x S react with Cu y S to form CuInS 2 , while the other part of In x S is converted into buffer layer In 2 S 3 , avoiding the deviation of the stoichiometric ratio caused by the volatilization of indium, by Precisely control the deposition times of In-S and Cu-S, control the thickness of In 2 S 3 as well as the grain size and stoichiometric ratio of CuInS 2 , realize the broadband semiconductor sensitized by In 2 S 3 /CuInS 2 in one step, operation Simple and not easy to introduce impurities.
本发明的In2S3/CuInS2薄层敏化光阳极结构不仅制备工艺简便,可通过控制溶液浓度及敏化次数控制晶粒大小,优化CuInS2的化学计量比,减少材料缺陷,而且引入的缓冲层In2S3能有效抑制电子复合,有利于电子注入,并可以有效避免因CuInS2中的Cu扩散到TiO2而带来的污染和其化学计量比的变化,因此,本发明对于优化CuInS2化学计量比,有效抑制界面电子复合,提高基于CuInS2敏化宽带半导体光阳极的光电化学池的量子效率具有积极意义。The In 2 S 3 /CuInS 2 thin-layer sensitized photoanode structure of the present invention not only has a simple preparation process, but also can control the grain size by controlling the solution concentration and the sensitization times, optimize the stoichiometric ratio of CuInS 2 , reduce material defects, and introduce The buffer layer In 2 S 3 can effectively inhibit electron recombination, is conducive to electron injection, and can effectively avoid the pollution caused by the diffusion of Cu in CuInS 2 to TiO 2 and the change of its stoichiometric ratio. Therefore, the present invention is for It is of positive significance to optimize the stoichiometric ratio of CuInS2 , effectively suppress interfacial electron recombination, and improve the quantum efficiency of photoelectrochemical cells based on CuInS2 sensitized broadband semiconductor photoanodes.
附图说明Description of drawings
图1是本发明实施例1In2S3/CuInS2薄层敏化纳米晶TiO2光阳极的吸收光谱,其中InaCub中的a、b分别代表In-S和Cu-S的沉积次数。图中表明In2S3/CuInS2薄层敏化光阳极吸收边在820nm左右,与CuInS2的禁带宽度相吻合。Figure 1 is the absorption spectrum of In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline TiO 2 photoanode in Example 1 of the present invention, where a and b in In a Cu b represent the deposition times of In-S and Cu-S respectively . The figure shows that the absorption edge of In 2 S 3 /CuInS 2 thin layer sensitized photoanode is around 820nm, which coincides with the forbidden band width of CuInS 2 .
图2是本发明实施例1基于In2S3/CuInS2薄层敏化纳米晶TiO2光阳极的太阳电池的J-V曲线,其中J是光电流密度,V是光电压,该图中In2S3/CuInS2薄层敏化纳米晶TiO2光阳极所制备的太阳能电池的光电转换效率最高的为0.92%(In10Cu5),电池开路电压为0.35V,短路电流为8.49mA/cm2,填充因子为0.31。Fig. 2 is the JV curve of the solar cell based on the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline TiO 2 photoanode in Example 1 of the present invention, wherein J is the photocurrent density, V is the photovoltage, and In 2 The highest photoelectric conversion efficiency of the solar cell prepared by S 3 /CuInS 2 thin-layer sensitized nanocrystalline TiO 2 photoanode is 0.92% (In10Cu5), the cell open circuit voltage is 0.35V, the short circuit current is 8.49mA/cm 2 , the filling The factor is 0.31.
具体实施方式Detailed ways
下面结合附图和实施例对本发明内容进行进一步说明Below in conjunction with accompanying drawing and embodiment the content of the present invention will be further described
In2S3/CuInS2敏化的宽带半导体光阳极的光吸收特性采用紫外-可见-近红外分光光度计测量;以In2S3/CuInS2敏化的宽带半导体光阳极为工作电极,Cu2S电极为对电极,以水基多硫电解质为电解质,以DupontTM 1702热熔胶(厚度50μm)密封剂组装成太阳电池,测定太阳电池的J-V曲线,计算太阳电池光电转换效率。The light absorption characteristics of the In 2 S 3 /CuInS 2 sensitized broadband semiconductor photoanode were measured by UV-Vis-NIR spectrophotometer; the In 2 S 3 /CuInS 2 sensitized broadband semiconductor photoanode was used as the working electrode, Cu 2 S electrode as counter electrode, water-based polysulfide electrolyte as electrolyte, Dupont TM 1702 hot melt adhesive (thickness 50μm) sealant is assembled into a solar cell, the JV curve of the solar cell is measured, and the photoelectric conversion efficiency of the solar cell is calculated.
实施例1Example 1
将纳米二氧化钛浆料(纳米TiO2平均粒径为15nm,空隙率为65%)以刮涂的方式涂覆在掺氟氧化锡透明导电玻璃基片上,在450℃下热处理30分钟,得到纳米TiO2光阳极,膜厚为5微米。然后按照如下步骤制备In2S3/CuInS2薄层敏化的纳米TiO2光阳极:The nano-titanium dioxide slurry (nano-TiO 2 with an average particle size of 15nm and a porosity of 65%) was coated on a fluorine-doped tin oxide transparent conductive glass substrate by scraping, and heat-treated at 450°C for 30 minutes to obtain nano-TiO 2 photoanodes with a film thickness of 5 microns. Then prepare In 2 S 3 /CuInS 2 thin-layer sensitized nano-TiO 2 photoanode according to the following steps:
(1)先将纳米TiO2光阳极在浓度为100mmol/L的氯化铟水溶液中浸渍120秒;(1) earlier nanometer TiO photoanode is immersed in the indium chloride aqueous solution of 100mmol/L in concentration for 120 seconds;
(2)用蒸馏水洗涤纳米TiO2光阳极,除去表面多余的In3+离子,吹干;(2) Wash the nano TiO 2 photoanode with distilled water, remove excess In 3+ ions on the surface, and dry it;
(3)将吸附了铟离子的纳米TiO2光阳极在浓度为80mmol/L的硫化钠缓冲液中浸渍180秒,缓冲溶液pH值为10,溶液温度60℃;(3) The nano - TiO photoanode that has adsorbed indium ions is immersed in a sodium sulfide buffer solution with a concentration of 80mmol/L for 180 seconds, the pH value of the buffer solution is 10, and the solution temperature is 60°C;
(4)用蒸馏水洗涤宽带半导体膜电极,除去表面多余的硫离子,并吹干;(4) Wash the broadband semiconductor membrane electrode with distilled water, remove excess sulfide ions on the surface, and blow dry;
(5)重复步骤(1)至(4)10次(5) Repeat steps (1) to (4) 10 times
(6)然后将宽带半导体膜电极在浓度为10mmol/L的氯化亚铜的水溶液中浸渍60秒;(6) Then the broadband semiconductor film electrode is immersed in an aqueous solution of cuprous chloride with a concentration of 10mmol/L for 60 seconds;
(7)用蒸馏水洗涤宽带半导体膜电极,除去表面多余的铜离子,吹干;(7) Wash the broadband semiconductor membrane electrode with distilled water, remove excess copper ions on the surface, and dry it;
(8)接着将吸附了铜离子的宽带半导体膜电极在浓度为80mmol/L的硫化钠缓冲液中浸渍180秒,缓冲溶液pH值为10,溶液温度60℃;(8) Next, immerse the broadband semiconductor membrane electrode having adsorbed copper ions in a sodium sulfide buffer solution with a concentration of 80 mmol/L for 180 seconds, the pH value of the buffer solution is 10, and the solution temperature is 60° C.;
(9)用蒸馏水洗涤宽带半导体膜电极,除去表面多余的硫离子,并吹干;(9) Wash the broadband semiconductor membrane electrode with distilled water, remove excess sulfide ions on the surface, and blow dry;
(10)重复步骤(6)至(9)5次;(10) Repeat steps (6) to (9) 5 times;
(11)热处理:将上述宽带半导体膜电极在真空条件下硫气氛中进行热处理,真空度控制在6×10-2Pa,热处理温度在520℃,热处理时间为30分钟。(11) Heat treatment: The above broadband semiconductor film electrode was heat treated in a sulfur atmosphere under vacuum, the vacuum degree was controlled at 6×10 −2 Pa, the heat treatment temperature was 520° C., and the heat treatment time was 30 minutes.
所制备的In2S3厚度为3nm,CuInS2厚度为10nm,该In2S3/CuInS2薄层敏化纳米TiO2太阳电池的光电转换效率约为0.92%(如图2)。The prepared In 2 S 3 thickness is 3nm, and the CuInS 2 thickness is 10nm. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nano-TiO 2 solar cell is about 0.92% (as shown in FIG. 2 ).
实施例2Example 2
与实施例1不同的是在制备过程的步骤(1)中采用的是50mmol/L的硫酸铟的甲醇溶液。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.8%。The difference from Example 1 is that the methanol solution of 50 mmol/L indium sulfate is used in the step (1) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.8%.
实施例3Example 3
与实施例1不同的是在制备过程的步骤(1)中采用的是200mmol/L的硝酸铟的乙醇溶液。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为1.1%。The difference from Example 1 is that the ethanol solution of 200 mmol/L indium nitrate is used in the step (1) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 1.1%.
实施例4Example 4
与实施例1不同的是在制备过程的步骤(1)中采用的是200mmol/L的醋酸铟的乙醇溶液。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为1.0%。The difference from Example 1 is that the ethanol solution of 200 mmol/L indium acetate is used in the step (1) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 1.0%.
实施例5Example 5
与实施例1不同的是在制备过程的步骤(6)中采用的是5mmol/L的氯化亚铜的氨水溶液。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.7%。The difference from Example 1 is that the ammonia solution of 5mmol/L cuprous chloride is adopted in the step (6) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.7%.
实施例6Example 6
与实施例1不同的是在制备过程的步骤(6)中采用的是50mmol/L的硫酸铜的水溶液。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.6%。The difference from Example 1 is that the aqueous solution of copper sulfate of 50 mmol/L is adopted in the step (6) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.6%.
实施例7Example 7
与实施例1不同的是在制备过程的步骤(6)中采用的是20mmol/L的醋酸铜的水溶液。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.8%。The difference from Example 1 is that the aqueous solution of copper acetate of 20mmol/L is adopted in the step (6) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.8%.
实施例8Example 8
与实施例1不同的是在制备过程的步骤(6)中采用的是30mmol/L的硝酸铜的乙醇溶液。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.8%。The difference from Example 1 is that the ethanol solution of 30mmol/L copper nitrate was adopted in the step (6) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.8%.
实施例9Example 9
与实施例1不同的是在制备过程的步骤(6)中采用的是10mmol/L的醋酸铜的乙醇溶液。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为1.1%。The difference from Example 1 is that the ethanol solution of 10mmol/L copper acetate is adopted in the step (6) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 1.1%.
实施例10Example 10
与实施例1不同的是在制备过程的步骤(3)和步骤(8)中采用的是40mmol/L的硫化钠的缓冲溶液,缓冲溶液的pH值为8,溶液温度为25℃。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为2.0%。The difference from Example 1 is that a buffer solution of 40 mmol/L sodium sulfide is used in steps (3) and (8) of the preparation process, the pH of the buffer solution is 8, and the solution temperature is 25°C. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 2.0%.
实施例11Example 11
与实施例1不同的是在制备过程的步骤(3)和步骤(8)中采用的是100mmol/L的硫化钠的缓冲溶液,缓冲溶液的pH值为12,溶液温度为80℃。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为2.3%。The difference from Example 1 is that a buffer solution of 100 mmol/L sodium sulfide is used in steps (3) and (8) of the preparation process, the pH value of the buffer solution is 12, and the solution temperature is 80°C. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 2.3%.
实施例12Example 12
与实施例1不同的是在制备过程的步骤(3)和步骤(8)中采用的是50mmol/L的硫代乙酰胺的缓冲溶液,缓冲溶液的pH值为3,溶液温度为60℃。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为1.0%。The difference from Example 1 is that a buffer solution of 50 mmol/L thioacetamide is used in steps (3) and (8) of the preparation process, the pH value of the buffer solution is 3, and the solution temperature is 60° C. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 1.0%.
实施例13Example 13
与实施例1不同的是在制备过程的步骤(3)和步骤(8)中采用的是10mmol/L的硫代乙酰胺的缓冲溶液,缓冲溶液的pH值为6,溶液温度为90℃。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.7%。The difference from Example 1 is that a buffer solution of 10 mmol/L thioacetamide is used in steps (3) and (8) of the preparation process, the pH value of the buffer solution is 6, and the solution temperature is 90° C. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.7%.
实施例14Example 14
与实施例1不同的是在制备过程的步骤(3)和步骤(8)中采用的是100mmol/L的硫代乙酰胺的缓冲溶液,缓冲溶液的pH值为2,溶液温度为40℃。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.8%。The difference from Example 1 is that a buffer solution of 100 mmol/L thioacetamide is used in steps (3) and (8) of the preparation process, the pH value of the buffer solution is 2, and the solution temperature is 40° C. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.8%.
实施例15Example 15
与实施例1不同的是在制备过程的步骤(3)和步骤(8)中采用的是80mmol/L的硫脲缓冲液溶液,缓冲溶液的pH值为10,溶液温度为60℃。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.9%。The difference from Example 1 is that 80mmol/L thiourea buffer solution is used in steps (3) and (8) of the preparation process, the pH value of the buffer solution is 10, and the solution temperature is 60°C. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.9%.
实施例16Example 16
与实施例1不同的是在制备过程的步骤(3)和步骤(8)中采用的是10mmol/L的硫脲缓冲液溶液,缓冲溶液的pH值为12,溶液温度为90℃。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.8%。The difference from Example 1 is that a 10 mmol/L thiourea buffer solution is used in steps (3) and (8) of the preparation process, the pH of the buffer solution is 12, and the solution temperature is 90°C. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.8%.
实施例17Example 17
与实施例1不同的是在制备过程的步骤(3)和步骤(8)中采用的是100mmol/L的硫脲缓冲液溶液,缓冲溶液的pH值为8,溶液温度为40℃。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.7%。The difference from Example 1 is that a 100 mmol/L thiourea buffer solution is used in steps (3) and (8) of the preparation process, the pH of the buffer solution is 8, and the solution temperature is 40°C. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.7%.
实施例18Example 18
与实施例1不同的是在制备过程的步骤(5)中重复次数为15次,步骤(10)中重复次数为7。得到的In2S3厚度为5nm,CuInS2厚度为15nm,以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.6%。The difference from Example 1 is that the number of repetitions in step (5) of the preparation process is 15 times, and the number of repetitions in step (10) is 7. The thickness of the obtained In 2 S 3 is 5 nm, and the thickness of CuInS 2 is 15 nm. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.6%.
实施例19Example 19
与实施例1不同的是在制备过程的步骤(5)中重复次数为3次,步骤(10)中重复次数为2。得到的In2S3厚度为1nm,CuInS2厚度为2nm,以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.1%。The difference from Example 1 is that the number of repetitions in step (5) of the preparation process is 3 times, and the number of repetitions in step (10) is 2. The thickness of the obtained In 2 S 3 is 1 nm, and the thickness of CuInS 2 is 2 nm. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.1%.
实施例20Example 20
与实施例1不同的是在制备过程的步骤(1)、(3)、(6)、(8)中浸渍时间都为30秒。得到的In2S3厚度为1nm,CuInS2厚度为2nm,以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.1%。The difference from Example 1 is that the dipping time in steps (1), (3), (6), and (8) of the preparation process is all 30 seconds. The thickness of the obtained In 2 S 3 is 1 nm, and the thickness of CuInS 2 is 2 nm. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.1%.
实施例21Example 21
与实施例1不同的是在制备过程的步骤(1)、(3)中浸渍时间都为360秒,步骤(6)、(8)中浸渍时间都为240秒。得到的In2S3厚度为4.5nm,CuInS2厚度为15nm,以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.2%。Different from Example 1, the dipping time in steps (1) and (3) of the preparation process is 360 seconds, and the dipping time in steps (6) and (8) is 240 seconds. The obtained In 2 S 3 thickness is 4.5nm, and the CuInS 2 thickness is 15nm. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.2%.
实施例22Example 22
与实施例1不同的是在制备过程的步骤(11)中热处理温度为550℃,时间为10分钟。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.9%。The difference from Example 1 is that in the step (11) of the preparation process, the heat treatment temperature is 550° C. and the time is 10 minutes. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.9%.
实施例23Example 23
与实施例1不同的是在制备过程的步骤(11)中热处理温度为450℃,时间为60分钟。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.7%。The difference from Example 1 is that in the step (11) of the preparation process, the heat treatment temperature is 450° C. and the time is 60 minutes. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.7%.
实施例24Example 24
与实施例1不同的是在制备过程的步骤(11)中热处理过程中真空度控制在100Pa。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.6%。The difference from Example 1 is that the degree of vacuum is controlled at 100 Pa during the heat treatment in step (11) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.6%.
实施例25Example 25
与实施例1不同的是在制备过程的步骤(11)中热处理过程中真空度控制在1×10-4Pa。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为3.8%。The difference from Example 1 is that the degree of vacuum is controlled at 1×10 −4 Pa during the heat treatment in step (11) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 3.8%.
实施例26Example 26
与实施例1不同的是,在制备过程的步骤(11)中热处理在真空条件下进行快速热退火,真空度控制在1×10-4Pa,热处理温度在550℃,热处理时间在2分钟。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为3.3%。The difference from Example 1 is that in the step (11) of the preparation process, rapid thermal annealing is carried out under vacuum conditions, the vacuum degree is controlled at 1×10 -4 Pa, the heat treatment temperature is 550°C, and the heat treatment time is 2 minutes. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 3.3%.
实施例27Example 27
与实施例1不同的是,在制备过程的步骤(11)中热处理在真空条件下进行快速热退火,真空度控制在1×10-2Pa,热处理温度在450℃,热处理时间为10分钟。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.8%。The difference from Example 1 is that in the step (11) of the preparation process, rapid thermal annealing is carried out under vacuum conditions, the vacuum degree is controlled at 1×10 -2 Pa, the heat treatment temperature is 450°C, and the heat treatment time is 10 minutes. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.8%.
实施例28Example 28
与实施例1不同的是在制备过程的步骤(11)中热处理过程在硫化氢气氛中进行。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.5%。The difference from Example 1 is that the heat treatment process is carried out in a hydrogen sulfide atmosphere in the step (11) of the preparation process. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.5%.
实施例29Example 29
与实施例1不同的是采用多孔纳米SnO2光阳极(纳米SnO2平均粒径为15nm,空隙率为60%)。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.9%。The difference from Example 1 is that the porous nano-SnO 2 photoanode is used (the average particle size of nano-SnO 2 is 15nm, and the porosity is 60%). The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.9%.
实施例30Example 30
与实施例1不同的是采用致密的纳米TiO2光阳极。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.2%。The difference from Example 1 is that a dense nano-TiO 2 photoanode is used. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.2%.
实施例31Example 31
与实施例1不同的是采用致密的纳米ZnO光阳极。以本发明的光阳极组装的In2S3/CuInS2薄层敏化纳米晶太阳电池的光电转换效率约为0.1%。The difference from Example 1 is that a dense nano ZnO photoanode is used. The photoelectric conversion efficiency of the In 2 S 3 /CuInS 2 thin-layer sensitized nanocrystalline solar cell assembled with the photoanode of the present invention is about 0.1%.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410302030.8A CN104167294A (en) | 2014-06-26 | 2014-06-26 | A broadband semiconductor photoanode sensitized by thin layer of In2S3/CuInS2 and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410302030.8A CN104167294A (en) | 2014-06-26 | 2014-06-26 | A broadband semiconductor photoanode sensitized by thin layer of In2S3/CuInS2 and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104167294A true CN104167294A (en) | 2014-11-26 |
Family
ID=51911072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410302030.8A Pending CN104167294A (en) | 2014-06-26 | 2014-06-26 | A broadband semiconductor photoanode sensitized by thin layer of In2S3/CuInS2 and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104167294A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104638064A (en) * | 2015-01-26 | 2015-05-20 | 西南交通大学 | A preparation method of ZnO-CuInS2 heterogeneous core-shell structure nanorod array |
CN111689512A (en) * | 2019-03-13 | 2020-09-22 | 中国科学院上海高等研究院 | In-doped Cu-S-based thermoelectric material and preparation method thereof |
CN113436895A (en) * | 2021-06-17 | 2021-09-24 | 北方民族大学 | Method for preparing compact PbS quantum dot film by taking fatty acid lead as lead source |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101861654A (en) * | 2007-07-09 | 2010-10-13 | 塔林科技大学 | Photovoltaic cells based on zinc oxide nanorods and methods of manufacturing the same |
-
2014
- 2014-06-26 CN CN201410302030.8A patent/CN104167294A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101861654A (en) * | 2007-07-09 | 2010-10-13 | 塔林科技大学 | Photovoltaic cells based on zinc oxide nanorods and methods of manufacturing the same |
Non-Patent Citations (1)
Title |
---|
XUEQING XU等: "Fabrication of CuInS2-Sensitized Solar Cells via an Improved SILAR Process and Its Interface Electron Recombination", 《ACS APPL. MATER. INTERFACES》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104638064A (en) * | 2015-01-26 | 2015-05-20 | 西南交通大学 | A preparation method of ZnO-CuInS2 heterogeneous core-shell structure nanorod array |
CN111689512A (en) * | 2019-03-13 | 2020-09-22 | 中国科学院上海高等研究院 | In-doped Cu-S-based thermoelectric material and preparation method thereof |
CN113436895A (en) * | 2021-06-17 | 2021-09-24 | 北方民族大学 | Method for preparing compact PbS quantum dot film by taking fatty acid lead as lead source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ye et al. | Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes | |
Yang et al. | Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement | |
Huang et al. | Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells | |
CN103700769B (en) | A kind of hybrid perovskite solar cell and preparation method thereof | |
Yang et al. | Highly efficient quantum dot-sensitized TiO 2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe) | |
Fan et al. | Delayed annealing treatment for high-quality CuSCN: Exploring its impact on bifacial semitransparent nip planar perovskite solar cells | |
CN103474575B (en) | A kind of be electron transfer layer hybrid solar cell and the preparation thereof of sulphur zinc oxide | |
Liu et al. | Composite photoanodes of Zn2SnO4 nanoparticles modified SnO2 hierarchical microspheres for dye-sensitized solar cells | |
CN109888108B (en) | A kind of biomacromolecule modified perovskite solar cell and preparation method thereof | |
CN104962962A (en) | Method for electrochemical codeposition of CZTS (Se) films in deep eutectic solution | |
CN103060861A (en) | Method for preparing copper-zinc-tin-sulfur film through co-electrodeposition | |
CN104167293B (en) | Dye-sensitized solar cell photoanode and producing method thereof | |
CN104362186B (en) | One is applied to efficient film photronic double-decker Window layer | |
CN103956406A (en) | Non-vacuum manufacturing method of copper-zinc-tin-sulfur solar battery of superstrate structure | |
Yang et al. | High efficient and long-time stable planar heterojunction perovskite solar cells with doctor-bladed carbon electrode | |
Che et al. | F-doped TiO2 compact film for high-efficient perovskite solar cells | |
CN103219159A (en) | A preparation method of CuxS (x=1–2) counter electrode for quantum dot-sensitized solar cells | |
CN104167294A (en) | A broadband semiconductor photoanode sensitized by thin layer of In2S3/CuInS2 and its preparation method | |
CN106784036A (en) | One kind doping cadmium telluride thin-film battery and preparation method thereof | |
CN107845729B (en) | Perovskite solar cell and preparation method thereof | |
CN105448524B (en) | Ag doping organic metal perovskite material, solar cell and preparation method thereof | |
CN114843407A (en) | Ferroelectric material modified composite perovskite solar cell and preparation method thereof | |
CN105576053B (en) | Copper-zinc-tin-sulfur film solar cell and preparation method thereof | |
CN104409218A (en) | A CuXS counter electrode for quantum dot sensitized solar cells and its preparation and application | |
CN104947165B (en) | A kind of preparation method of the n-type cuprous oxide semiconductive thin film of Fluorin doped |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141126 |
|
WD01 | Invention patent application deemed withdrawn after publication |