CN104154998A - 一种基于压缩感知的计算多光谱成像图谱的重构方法 - Google Patents

一种基于压缩感知的计算多光谱成像图谱的重构方法 Download PDF

Info

Publication number
CN104154998A
CN104154998A CN201410401863.XA CN201410401863A CN104154998A CN 104154998 A CN104154998 A CN 104154998A CN 201410401863 A CN201410401863 A CN 201410401863A CN 104154998 A CN104154998 A CN 104154998A
Authority
CN
China
Prior art keywords
centerdot
formula
lambda
matrix
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410401863.XA
Other languages
English (en)
Other versions
CN104154998B (zh
Inventor
马彦鹏
舒嵘
亓洪兴
葛明锋
王义坤
王雨曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201410401863.XA priority Critical patent/CN104154998B/zh
Publication of CN104154998A publication Critical patent/CN104154998A/zh
Application granted granted Critical
Publication of CN104154998B publication Critical patent/CN104154998B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于压缩感知的计算多光谱成像图谱的重构方法。本发明的方法基于由望远镜成像模块,数字微反射镜DMD及控制模块,光学汇聚透镜,滤光片轮,光电倍增管PMT,数据采集模块和多光谱图像重构模块组成的系统实现。系统按照预先所设置调制模板的数学形式调制目标场景的空间信息,再经由后续数据计算方法反演得到目标场景的多光谱图像。本发明的优点是:无需任何扫描,目标场景图像重构所需的数据量少,探测灵敏度高,结构简单。

Description

一种基于压缩感知的计算多光谱成像图谱的重构方法
技术领域
本发明涉及计算光谱成像技术以及多光谱图像的重构算法,信号处理等领域。特别涉及一种基于压缩感知的计算多光谱成像图谱的重构方法。
背景技术
多光谱,高光谱成像技术(参见文献1)以物质的光谱分析理论为基础,涉及光学系统设计、成像技术、光电探测、信号处理与信息挖掘、光谱信息传输理论、地物波谱特性研究等领域,是当前重要的空间对地观测技术手段之一。由于高光谱成像技术能同时获取目标场景的二维空间信息和光谱信息,因此在食品安全检测、地物目标的检测识别、土壤中的金属污染的检测、矿物种类分析、洪涝灾害预测、刑事侦查、艺术品诊断、军事应用等领域都有广泛的应用。
传统的高光谱成像仪的成像按光栅分光方式主要有光机扫描式、推帚式两种。光机扫描式成像光谱仪以光机扫描方式工作,扫描镜从刈幅的一端扫至另一端,从而使不同位置的地物目标发出的光进入光学系统成像。推帚式成像光谱仪以固体自扫描方式,使用面阵探测器单元对二维地物目标进行扫描,其空间维像元数与地面给定刈幅的采样元相同,光谱维像元数与给定光谱通道数相符。光机扫描式成像光谱仪由于具有扫描的运动部件,从而容易导致系统的不稳定性。同时光机扫描过程中穿轨空间像元不同时获取将导致图谱后处理难度极大。另外,探测积分时间短将极大地限制空间分辨率和光谱分辨率。推帚式成像仪由于其光学系统结构的原因,成像视场很小,同时定标非常难,光学系统复杂,存在光谱弯曲的情况。而且,由于两种成像方式都是采用光栅分光,单一狭缝的使用将会不可避免的带来空间分辨率和光谱分辨率之间的矛盾。
多光谱成像系统相比较高光谱成像,牺牲了光谱分辨率,但系统结构非常简单,在一些不需要高光谱分辨的场合仍然具有广泛的应用。传统多光谱成像大多采用面阵或者线阵探测器,利用滤光片实现多光谱成像。如果采用线阵或者单元探测器,需要在空间上进行扫描才能得到目标场景的完整像。就目前半导体技术而言,可见谱段的面阵探测器已经非常成熟。但红外谱段,尤其是中远红外谱段的国产化探测器还无法大规模集成。而且目前国际上最先进的红外谱段的面阵探测器仍然存在非均匀性等问题。
计算光谱成像技术(参见文献2)是近几年国内外提出的一门新兴的成像技术,相比较于传统的光谱成像系统,计算光谱成像使用特殊的空间光调制器作为编码孔径对景物目标进行编码,按照预先所设置编码孔径的数学形式调制、捕捉景物空间信息和光谱信息成像。最后基于压缩感知理论(参见文献3、4、5),再经由后续数据计算方法反演得到最终多光谱图像。能够采用单像素探测器获取数据。将其应用在红外或者中远红外谱段具有重要的研究意义。
基于以上背景,本发明提出一种基于压缩感知的计算多光谱成像图谱的重构方法。
参考文献:
[1]王建宇,舒嵘,刘银年,马艳华.成像光谱技术导论.北京:科学出版社,2011.
[2]Gehm M E,John R,Brady J D,Willett M R,Schulz J T.2008 Opt.Express17 14013.
[3]Donoho D L.Compressed sensing[J].IEEE Transactions on InformationTheory,2006,52(4):1289-1306.
[4]Candès E,Romberg J,Tao T.Robust uncertainty principles:exact signalreconstruction from highly incomplete frequency information[J].IEEETransactions on Information Theory,2006,52(2):489-509.
[5]Candès E.Compressive sampling[C].International Congress ofMathematics,2006:1433-1452.
发明内容
本发明的目的是提供一种基于压缩感知的计算多光谱成像图谱的重构方法。在探测器方面,采用单元探测器,解决国产中远红外谱段探测器无法大规模集成以及探测器自身非均匀差等瓶颈问题。在数据获取方面,基于压缩感知理论,采用少量的数据即可重构得到目标的多光谱图像,在采样的过程中就已经压缩了数据,缓解传统多光谱成像中大数据量的采集、传输、存储压力。
本发明的方法使用数字微反射镜DMD作为编码孔径对景物目标进行编码,按照预先所设置调制模板的数学形式调制、捕捉景物空间信息和光谱信息成像。最后基于压缩感知理论,再经由后续数据计算方法反演得到最终目标场景的多光谱图像。
本发明提出的解决思路如下:
如图1所示,该发明的系统包括:望远镜成像模块1,数字微反射镜DMD及控制模块2,光学汇聚透镜3,滤光片轮4,单像素光电倍增管PMT 5,数据采集模块6,多光谱图像重构模块7。其特征在于:望远镜成像模块1采用的望远镜焦距为304.8mm,口径为101.6mm;数字微反射镜DMD及控制模块2采用的DMD其技术指标为:1024×768像素,像素大小为13.69微米;光学汇聚透镜3采用的焦距为40mm;滤光片轮4根据谱段需要组合不同的滤光片;单像素光电倍增管PMT 5工作谱段在300nm-900nm,像元大小8mm,输出最大暗电压20mv;数据采集模块6采用的采集卡其量化位数为16位,采样率250kS/s。
系统各模块之间的工作流程如下:
目标场景通过望远镜成像模块1成像于数字微反射镜DMD上。设定目标场景的空间信息被划分为m×n像素,光谱信息被划分为L个谱段,其图谱信息依次表示为φ(x,y,λ1),φ(x,y,λ2)…φ(x,y,λL),这些函数的取值等于目标场景上特定像素点的对应谱段的强度值;
数字微反射镜DMD及控制模块2每次加载一个调制模板,通过调制模板改变DMD上每个小微镜的翻转状态从而达到调制目标场景的目的;
DMD第一次调制,令调制模板为θ1(m,n),具体取值为一个事先设定好的m×n阶随机矩阵,矩阵元素的取值为0或者1,所有的元素服从高斯随机分布。保持调制模板不变,调制后的场景经过光学汇聚透镜3汇聚,控制滤光片轮4,使其允许通过的谱段依次为λ12…λL。对于每一个谱段的光信号被单像素光电倍增管PMT 5探测后,经数据采集模块6采集,得到的电压信号依次用f1(x,y,λ1),f1(x,y,λ2)…f1(x,y,λL)表示;
依次类推,DMD第k次调制,记调制模板为θk(m,n),同第一次调制的过程,经数据采集模块6采集,得到的电压信号依次用fk(x,y,λ1),fk(x,y,λ2)…fk(x,y,λL)表示;
基于压缩感知理论,本发明的方法提出:调制模板的个数即k,同时也就是观测矩阵的行数,取值由目标场景重构所需要的空间分辨率和目标场景的稀疏度决定,k远远小于N,取值范围为N为目标场景的总像素量,即N=m×n;由于k远远小于N,因此对于每一个谱段,相当于用数据采集模块6采集到的少量k个信号值去重构目标场景的N个像素分辨率的图像。言外之意也就是说在数据采集模块6采集的过程中已经不知不觉的压缩了N-k个数据,从而缓解了传统多光谱成像中大数据量的采集、传输、存储压力;
因此,本发明系统的多光谱图像重构模块7对数据采集模块6采集到的信号进行处理,最后得到目标场景的多光谱图像;处理步骤如下:
1)对目标场景的第一个谱段的图像重构,将数据采集模块6采集到的信号整理写成如下(1)式:
f 1 ( x , y , λ 1 ) = θ 1 ( m , n ) · φ ( x , y , λ 1 ) + e 11 f 2 ( x , y , λ 1 ) = θ 2 ( m , n ) · φ ( x , y , λ 1 ) + e 21 · · · f k ( x , y , λ 1 ) = θ k ( m , n ) · φ ( x , y , λ 1 ) + e k 1 - - - ( 1 )
上式中,e11,e21…ek1为单像素光电倍增管PMT 5的噪声;
将(1)式用矩阵方程表示为如下(2)式:
F=Θ·Φ+E  (2)
上式中,F是由信号f1(x,y,λ1),f2(x,y,λ1)…fk(x,y,λ1)组成的k×1矩阵;Θ为k×N矩阵,行数k即为调制次数,列数N=m×n为调制模板θk(m,n)的元数个数,Θ的每一行由对应的θk(m,n)重新排列而成;Φ为由:φ(x,y,λ1)组成的N×1矩阵;E为k×1噪声矩阵。显然,(2)式实际上是一个病态方程。直接求解很明显有无穷多个解。但压缩感知理论指出,只要Φ是稀疏的,或者在某种正交变换的表示下具有稀疏性,那么求解(2)式将会有特殊的优化求解方法。稀疏性的意思是指其中包含大量的趋于零的数据,只有少量的非零值;
对于自然场景,一般情况下,可以在一些正交变换的表示下具有稀疏性。例如:傅里叶变换,离散余弦变换等。对于Φ,在离散余弦变换下,将其稀疏表示为如下(3)式:
对于Φ,在离散余弦变换下,将其稀疏表示为如下(3)式:
Φ=Ψ·α  (3)
上式中,α为Φ的稀疏表示,它是一个N×1矩阵,稀疏度为:S,也就是说α中仅含有S个非0值;Ψ是N×N阶离散余弦变换矩阵;
于是,可以将(2)式重新表示为如下(4)式所示:
F=Θ·Φ+E=Θ·Ψ·α+E=T·α+E  (4)
上式中,T为k×N矩阵,在压缩感知理论中将其称为传感矩阵。(4)式中,只有α为未知数;
图像重构的方法就是求解(4)式中的稀疏系数α。很明显(4)式实际上是一个病态方程。直接求解有无穷多个解,因此将其转化为如下式(5)的优化问题:
α ^ = arg min | | α | | L 1 , st . F = T · α - - - ( 5 )
上式中,L1表示1范数,为α的最优近似解;
(5)式的优化求解算法步骤如下:
第一步:初始化一个空矩阵I=[],残差矩阵R=F;
第二歩:将残差R与T中的每一列分别做内积,并找到内积最大的那一列,将本列取出并添加到矩阵I中;
第三歩:更新残差,R=F-I·(IT·I)-1·IT·F,其中IT为I的转置矩阵(IT·I)-1为(IT·I)的逆矩阵;
第四步:不断顺序循环第二歩和第三步,如果残差R满足:则退出循环,然后转到第五步。其中为矩阵R中的所有元素做平方然后求和,r表示预先设定的误差门限,一般取r<0.5;
第五步:最终(5)式求得的解为如下(6)式:
&alpha; ^ = ( I T &CenterDot; I ) - 1 &CenterDot; I T &CenterDot; F - - - ( 6 )
最终求得的第一个谱段的图像信息表示为如下(7)式:
&Phi; = &Psi; &CenterDot; &alpha; ^ - - - ( 7 )
将(7)式中的N×1阶矩阵Φ重新排列成m×n阶矩阵即可得到该谱段目标场景的二维像;
2)对于第二个谱段的图像重构,将数据采集模块6采集到的信号重新整理,也就是将步骤1)中的(1)式写成如下(8)式:
f 1 ( x , y , &lambda; 2 ) = &theta; 1 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; 2 ) + e 12 f 2 ( x , y , &lambda; 2 ) = &theta; 2 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; 2 ) + e 22 &CenterDot; &CenterDot; &CenterDot; f k ( x , y , &lambda; 2 ) = &theta; k ( m , n ) &CenterDot; &phi; ( x , y , &lambda; 2 ) + e k 2 - - - ( 8 )
上式中,e12,e22…ek2为单像素光电倍增管PMT(5)的噪声;
同理,依次类推,对于第L个谱段的图像重构,将步骤1)中的(1)式写成如下(9)式:
f 1 ( x , y , &lambda; L ) = &theta; 1 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; L ) + e 1 L f 2 ( x , y , &lambda; L ) = &theta; 2 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; L ) + e 2 L &CenterDot; &CenterDot; &CenterDot; f k ( x , y , &lambda; L ) = &theta; k ( m , n ) &CenterDot; &phi; ( x , y , &lambda; L ) + e kL - - - ( 9 )
上式中,e1L,e2L…ekL为单像素光电倍增管PMT(5)的噪声;
所以,对第2到第L个谱段的图像重构,采用同步骤1)中后续的处理方法,最终即可得到目标场景的多光谱图像。
本发明的优点在于:
(1)本发明系统设计采用DMD调制目标场景的图谱信息,采用单像素光电倍增管PMT获取数据,探测灵敏度高,无需任何扫描,结构简单。
(2)本发明基于压缩感知理论,利用少量的采样数据即可复原完整的多光谱图像。从采样开始就大大压缩了采样数据,极大地改善了系统的数据采集、传输。存储压力。
附图说明
图1是一种基于压缩感知的计算多光谱成像系统及图谱重构方法。其中:1是望远镜成像模块;2是数字微反射镜DMD及控制模块;3是光学汇聚透镜;4是滤光片轮;5是单像素光电倍增管PMT;6是数据采集模块;7是多光谱图像重构模块;
图2是本发明具体实施系统示意图。
图3是基于图2的原理样机,利用本发明的谱图重构方法得到的多光谱图像。其中:A是目标场景;1是目标场景A重构后650nm谱段的图像;2是重构后540nm谱段的图像;3是重构后获得的470nm谱段的图像;4是用前面三个谱段合成的三谱段图像;5是目标场景的全景图。
具体实施方式
下面结合图1给出本发明的一个较好实例,主要作进一步详细说明,而非用来限定本发明的范围。
(1)首先确定系统各模块所用元器件的基本技术参数。具体如下:望远镜成像模块1采用爱蒙特光学(深圳)有限公司的望远镜,选定焦距为304.8mm,口径为101.6mm;数字微反射镜DMD及控制模块2采用美国TI公司生产的DMD,技术指标为1024×768像素,像素大小为13.69μm,控制板采用与之配合的TI-Discovery-4100;光学汇聚透镜3焦距为40mm;滤光片轮4根据需要组合三个谱段的滤光片,谱段分别为650nm,540nm,470nm;单像素光电倍增管PMT 5采用Hamamatsu Photonics K.K公司的H5784-01产品,工作谱段在300nm-900nm,像元大小8mm,输出最大暗电压20mv;数据采集模块6采用美国NI公司的NI-USB-6211采集卡,技术指标为:量化位数16位,采样率250kS/s。
如图2,基于图1的原理系统并利用上述所给的元器件搭建的系统。
(2)望远镜成像模块1将目标场景成像于DMD上。数字微反射镜DMD及控制模块2每次加载一个调制模板发送到DMD,调制模板是一个大小为256×192,并且服从高斯随机分布的0,1矩阵,这些调制模板事先生成好,本次实施生成6000个模板。然而由于步骤(1)所选取的DMD为1024×768像素,为了能让DMD正确识别,实际加载到DMD的模板选取大小为1024×768,超出256×192的元素全部用“0”补全。通过调制,使DMD的微镜处于一定的开关状态,其中“开”用“1”表示,“关”用“0”表示(具体使微镜翻转+12°(开)和-12°(关))。等微镜开关状态稳定以后,即可实现对目标场景的调制,翻转-12°反射的光线被丢弃,翻转+12°反射的光线接着进入后续的光学系统。
(3)DMD每加载一个调制模板,即相当于调制一次。每调制一次的同时DMD上处于“开”状态的微镜翻转+12°,使发射光线进入后续的光学系统通过滤光片轮4,然后组合不同谱段的滤光片实现对目标场景的多光谱成像。每一次调制的同时单像素光电倍增管PMT 5探测不同谱段的数据,并且数据采集模块6同步采集所有谱段的数据。
(4)上述实施步骤(1)(2)(3)重复6000次,即调制6000次。最终完成数据采集。最后多光谱图像重构模块7将采集到的所有数据,重新整理组合,并利用本发明提出的重构方法得到目标场景的多光谱图像。为了简要说明,目标场景被划分为256×192像素大小,谱段划分为650nm,540nm,470nm三个谱段。对每一个谱段重构,需要求解256×192个未知数,而采样数据只有6000个,相当于采样的过程中压缩了256×192-6000=43152个数据。
如图3,基于图2的原理样机,利用本发明的谱图重构方法所得的多光谱图像。

Claims (1)

1.一种基于压缩感知的计算多光谱成像图谱的重构方法,它基于包括望远镜成像模块(1),数字微反射镜DMD及控制模块(2),光学汇聚透镜(3),滤光片轮(4),单像素光电倍增管PMT(5),数据采集模块(6)和多光谱图像重构模块(7)的计算多光谱成像系统实现;其特征在于方法如下:
由控制模块(2)加载到数字微反射镜DMD上的调制模板依次为:
θ1(m,n),θ2(m,n)…θk(m,n)
其中:k为调制次数,θk(m,n)为高斯随机分布的m×n阶矩阵;
在每个调制模板调制过程中,由数据采集模块(6)采集,得到的k组数字信号依次为:
fk(x,y,λ1),fk(x,y,λ2)…fk(x,y,λL)
其中:x,y为目标场景的二维空间信息坐标;λL为滤光片轮(4)允许通过的波段;
对上述数据具体处理步骤如下:
1)对目标场景的第一个谱段的图像重构,将数据采集模块(6)采集到的信号整理写成如下(1)式:
f 1 ( x , y , &lambda; 1 ) = &theta; 1 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; 1 ) + e 11 f 2 ( x , y , &lambda; 1 ) = &theta; 2 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; 1 ) + e 21 &CenterDot; &CenterDot; &CenterDot; f k ( x , y , &lambda; 1 ) = &theta; k ( m , n ) &CenterDot; &phi; ( x , y , &lambda; 1 ) + e k 1 - - - ( 1 )
上式中,e11,e21…ek1为单像素光电倍增管PMT(5)的噪声;φ(x,y,λ1)为待重构的目标场景的第一个波段的图像,像素大小为:m×n;
将(1)式用矩阵方程表示为如下(2)式:
F=Θ·Φ+E  (2)
上式中,F是由信号f1(x,y,λ1),f2(x,y,λ1)…fk(x,y,λ1)组成的k×1矩阵;Θ为k×N矩阵,行数k即为调制次数,列数N=m×n为调制模板θk(m,n)的元数个数,Θ的每一行由对应的θk(m,n)重新排列而成;Φ是由φ(x,y,λ1)组成的N×1矩阵;E是由e11,e21…ek1组成的k×1阶噪声矩阵;
对于Φ,在离散余弦变换下,将其稀疏表示为如下(3)式:
Φ=Ψ·α  (3)
上式中,α为Φ的稀疏表示,它是一个N×1矩阵;Ψ是N×N阶离散余弦变换矩阵;
于是,可以将(2)式重新表示为如下(4)式所示:
F=Θ·Φ+E=Θ·Ψ·α+E=T·α+E  (4)
上式中,T为k×N矩阵,(4)式中,只有α为未知数;
图像重构的方法就是求解(4)式中的稀疏系数α。将其转化为如下式(5)的优化问题:
&alpha; ^ = arg min | | &alpha; | | L 1 , st . F = T &CenterDot; &alpha; - - - ( 5 )
上式中,L1表示1范数,为α的最优近似解;
(5)式的优化求解算法步骤如下:
第一步:初始化一个空矩阵I=[],残差矩阵R=F;
第二歩:将残差R与T中的每一列分别做内积,并找到内积最大的那一列,将本列取出并添加到矩阵I中;
第三歩:更新残差,R=F-I·(IT·I)-1·IT·F,其中IT为I的转置矩阵(IT·I)-1为(IT·I)的逆矩阵;
第四步:不断顺序循环第二歩和第三步,如果残差R满足:则退出循环,然后转到第五步。其中为矩阵R中的所有元素做平方然后求和,r为预先设定的误差门限,一般取r<0.5;
第五步:最终(5)式求得的解为如下(6)式:
&alpha; ^ = ( I T &CenterDot; I ) - 1 &CenterDot; I T &CenterDot; F - - - ( 6 )
最终求得的第一个谱段的图像信息表示为如下(7)式:
&Phi; = &Psi; &CenterDot; &alpha; ^ - - - ( 7 )
将(7)式中的N×1阶矩阵Φ重新排列成m×n阶矩阵即可得到该谱段目标场景的二维像;
2)对于第二个谱段的图像重构,将数据采集模块(6)采集到的信号重新整理,也就是将步骤1)中的(1)式写成如下(8)式:
f 1 ( x , y , &lambda; 2 ) = &theta; 1 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; 2 ) + e 12 f 2 ( x , y , &lambda; 2 ) = &theta; 2 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; 2 ) + e 22 &CenterDot; &CenterDot; &CenterDot; f k ( x , y , &lambda; 2 ) = &theta; k ( m , n ) &CenterDot; &phi; ( x , y , &lambda; 2 ) + e k 2 - - - ( 8 )
上式中,e12,e22…ek2为单像素光电倍增管PMT(5)的噪声;φ(x,y,λ2)为待重构的目标场景的第二个波段的图像,像素大小为:m×n;
同理,依次类推,对于第L个谱段的图像重构,将步骤1)中的(1)式写成如下(9)式:
f 1 ( x , y , &lambda; L ) = &theta; 1 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; L ) + e 1 L f 2 ( x , y , &lambda; L ) = &theta; 2 ( m , n ) &CenterDot; &phi; ( x , y , &lambda; L ) + e 2 L &CenterDot; &CenterDot; &CenterDot; f k ( x , y , &lambda; L ) = &theta; k ( m , n ) &CenterDot; &phi; ( x , y , &lambda; L ) + e kL - - - ( 9 )
上式中,e1L,e2L…ekL为单像素光电倍增管PMT(5)的噪声;φ(x,y,λL)为待重构的目标场景的第L个波段的图像,像素大小为:m×n;
对第2到第L个谱段的图像重构,采用上述步骤1)的处理方法,最终得到目标场景的多光谱图像。
CN201410401863.XA 2014-08-15 2014-08-15 一种基于压缩感知的计算多光谱成像图谱的重构方法 Active CN104154998B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410401863.XA CN104154998B (zh) 2014-08-15 2014-08-15 一种基于压缩感知的计算多光谱成像图谱的重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410401863.XA CN104154998B (zh) 2014-08-15 2014-08-15 一种基于压缩感知的计算多光谱成像图谱的重构方法

Publications (2)

Publication Number Publication Date
CN104154998A true CN104154998A (zh) 2014-11-19
CN104154998B CN104154998B (zh) 2016-03-30

Family

ID=51880561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410401863.XA Active CN104154998B (zh) 2014-08-15 2014-08-15 一种基于压缩感知的计算多光谱成像图谱的重构方法

Country Status (1)

Country Link
CN (1) CN104154998B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949755A (zh) * 2015-06-02 2015-09-30 中国科学院上海技术物理研究所 一种成像光谱系统中多通道孔径编码方法
CN105141811A (zh) * 2015-05-06 2015-12-09 中国人民解放军国防科学技术大学 基于投影编码的单像素成像方法
CN106441577A (zh) * 2016-09-27 2017-02-22 北京理工大学 基于随机投影的协同编码高光谱成像系统及图像重构方法
CN106993121A (zh) * 2017-04-07 2017-07-28 杭州电子科技大学 一种基于压缩感知的高光谱图像采集成像系统与控制方法
CN107449417A (zh) * 2017-07-17 2017-12-08 清华大学 主动成像式星敏感器及其控制方法
CN108267863A (zh) * 2018-01-04 2018-07-10 中国空空导弹研究院 一种紧凑型超分辨成像光学系统
CN108955882A (zh) * 2018-07-10 2018-12-07 北京理工大学 基于液晶高光谱计算成像系统的三维数据重构方法
CN109828285A (zh) * 2019-01-07 2019-05-31 北京理工大学 一种双波段时域压缩感知高速成像方法及装置
CN109886898A (zh) * 2019-03-05 2019-06-14 北京理工大学 基于优化启发的神经网络的光谱成像系统的成像方法
CN111999788A (zh) * 2020-09-28 2020-11-27 浙江大学 宽光谱编码全彩色滤光片阵列
CN112268519A (zh) * 2020-09-27 2021-01-26 西北工业大学宁波研究院 基于dmd的光谱成像目标检测方法及系统
CN112484857A (zh) * 2020-11-04 2021-03-12 西北工业大学宁波研究院 一种基于dmd的光谱成像系统及方法
WO2023284570A1 (zh) * 2021-07-16 2023-01-19 华为技术有限公司 光谱测量装置及其测量方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253557A1 (en) * 2001-04-24 2002-10-30 Siemens-Elema AB Apparatus for and method of generating an enhanced contrast information digital image
CN101349591A (zh) * 2008-08-29 2009-01-21 北京理工大学 可重构、分布式多光谱成像系统
CN101750615A (zh) * 2008-12-15 2010-06-23 中国科学院上海技术物理研究所 一种机载多传感器集成装置
WO2012034852A1 (de) * 2010-09-17 2012-03-22 Carl Zeiss Ag Optisches abbildungssystem zur multispektralen bildgebung
CN102661794A (zh) * 2012-03-20 2012-09-12 清华大学 多光谱计算重构方法及系统
CN102706450A (zh) * 2012-06-13 2012-10-03 西安电子科技大学 基于压缩感知的双通道多光谱视频成像仪及成像方法
US20120262167A1 (en) * 2011-04-18 2012-10-18 General Electric Company Accelerated multispectral data magnetic resonance imaging system and method
CN102846312A (zh) * 2012-09-27 2013-01-02 华东师范大学 一种多维度成像检测仪及其数据反演方法
CN102914367A (zh) * 2012-10-25 2013-02-06 浙江大学 基于压缩感知的多光谱成像装置和方法
US20130083312A1 (en) * 2011-09-30 2013-04-04 Inview Technology Corporation Adaptive Search for Atypical Regions in Incident Light Field and Spectral Classification of Light in the Atypical Regions
CN103247034A (zh) * 2013-05-08 2013-08-14 中国科学院光电研究院 一种基于稀疏光谱字典的压缩感知高光谱图像重构方法
WO2014018305A1 (en) * 2012-07-23 2014-01-30 Corning Incorporated Hyperspectral imaging system and method for imaging a remote object
CN103868591A (zh) * 2012-12-12 2014-06-18 西安西光创威光电有限公司 快速非扫描多光谱成像系统及其方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253557A1 (en) * 2001-04-24 2002-10-30 Siemens-Elema AB Apparatus for and method of generating an enhanced contrast information digital image
CN101349591A (zh) * 2008-08-29 2009-01-21 北京理工大学 可重构、分布式多光谱成像系统
CN101750615A (zh) * 2008-12-15 2010-06-23 中国科学院上海技术物理研究所 一种机载多传感器集成装置
WO2012034852A1 (de) * 2010-09-17 2012-03-22 Carl Zeiss Ag Optisches abbildungssystem zur multispektralen bildgebung
US20120262167A1 (en) * 2011-04-18 2012-10-18 General Electric Company Accelerated multispectral data magnetic resonance imaging system and method
US20130083312A1 (en) * 2011-09-30 2013-04-04 Inview Technology Corporation Adaptive Search for Atypical Regions in Incident Light Field and Spectral Classification of Light in the Atypical Regions
CN102661794A (zh) * 2012-03-20 2012-09-12 清华大学 多光谱计算重构方法及系统
CN102706450A (zh) * 2012-06-13 2012-10-03 西安电子科技大学 基于压缩感知的双通道多光谱视频成像仪及成像方法
WO2014018305A1 (en) * 2012-07-23 2014-01-30 Corning Incorporated Hyperspectral imaging system and method for imaging a remote object
CN102846312A (zh) * 2012-09-27 2013-01-02 华东师范大学 一种多维度成像检测仪及其数据反演方法
CN102914367A (zh) * 2012-10-25 2013-02-06 浙江大学 基于压缩感知的多光谱成像装置和方法
CN103868591A (zh) * 2012-12-12 2014-06-18 西安西光创威光电有限公司 快速非扫描多光谱成像系统及其方法
CN103247034A (zh) * 2013-05-08 2013-08-14 中国科学院光电研究院 一种基于稀疏光谱字典的压缩感知高光谱图像重构方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141811A (zh) * 2015-05-06 2015-12-09 中国人民解放军国防科学技术大学 基于投影编码的单像素成像方法
CN105141811B (zh) * 2015-05-06 2016-04-27 中国人民解放军国防科学技术大学 基于投影编码的单像素成像方法
CN104949755A (zh) * 2015-06-02 2015-09-30 中国科学院上海技术物理研究所 一种成像光谱系统中多通道孔径编码方法
CN106441577A (zh) * 2016-09-27 2017-02-22 北京理工大学 基于随机投影的协同编码高光谱成像系统及图像重构方法
CN106441577B (zh) * 2016-09-27 2018-01-09 北京理工大学 基于随机投影的协同编码高光谱成像系统及图像重构方法
CN106993121A (zh) * 2017-04-07 2017-07-28 杭州电子科技大学 一种基于压缩感知的高光谱图像采集成像系统与控制方法
CN107449417B (zh) * 2017-07-17 2020-01-21 清华大学 主动成像式星敏感器及其控制方法
CN107449417A (zh) * 2017-07-17 2017-12-08 清华大学 主动成像式星敏感器及其控制方法
CN108267863A (zh) * 2018-01-04 2018-07-10 中国空空导弹研究院 一种紧凑型超分辨成像光学系统
CN108955882A (zh) * 2018-07-10 2018-12-07 北京理工大学 基于液晶高光谱计算成像系统的三维数据重构方法
CN109828285A (zh) * 2019-01-07 2019-05-31 北京理工大学 一种双波段时域压缩感知高速成像方法及装置
CN109886898A (zh) * 2019-03-05 2019-06-14 北京理工大学 基于优化启发的神经网络的光谱成像系统的成像方法
CN109886898B (zh) * 2019-03-05 2020-10-02 北京理工大学 基于优化启发的神经网络的光谱成像系统的成像方法
CN112268519A (zh) * 2020-09-27 2021-01-26 西北工业大学宁波研究院 基于dmd的光谱成像目标检测方法及系统
CN112268519B (zh) * 2020-09-27 2022-04-19 西北工业大学宁波研究院 基于dmd的光谱成像目标检测方法及系统
CN111999788A (zh) * 2020-09-28 2020-11-27 浙江大学 宽光谱编码全彩色滤光片阵列
CN112484857A (zh) * 2020-11-04 2021-03-12 西北工业大学宁波研究院 一种基于dmd的光谱成像系统及方法
WO2023284570A1 (zh) * 2021-07-16 2023-01-19 华为技术有限公司 光谱测量装置及其测量方法

Also Published As

Publication number Publication date
CN104154998B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN104154998B (zh) 一种基于压缩感知的计算多光谱成像图谱的重构方法
CN204788661U (zh) 基于压缩感知的计算多光谱成像系统
CN110175971B (zh) 一种多光谱单像素成像的深度学习图像重构方法
US10274420B2 (en) Compact multifunctional system for imaging spectroscopy
Arce et al. Compressive coded aperture spectral imaging: An introduction
CN104121990B (zh) 基于随机光栅的压缩感知宽波段高光谱成像系统
Zhang et al. Joint segmentation and reconstruction of hyperspectral data with compressed measurements
Tao et al. Hyperspectral image recovery based on fusion of coded aperture snapshot spectral imaging and RGB images by guided filtering
AU2015309700A1 (en) Imaging method and apparatus
CN103913229B (zh) 编码模板多目标主动成像光谱系统及方法
JP2020506373A (ja) 仮現運動における物体の動的ハイパースペクトルイメージング
CN105897344A (zh) 一种采用光频域随机混频的单像素二维成像系统及方法
CN109829872B (zh) 一种用于内陆水体遥感的多时相多源遥感影像融合方法
KR20200032203A (ko) 코드화된 애퍼쳐 스펙트럼 이미징 디바이스
Degraux et al. Multispectral compressive imaging strategies using Fabry–Pérot filtered sensors
CN114638758A (zh) 一种基于压缩感知的光谱成像技术进行受损图像的恢复重构方法
Rueda Chacón et al. Spatial super-resolution in coded aperture-based optical compressive hyperspectral imaging systems
CN106441577A (zh) 基于随机投影的协同编码高光谱成像系统及图像重构方法
CN112489200B (zh) 一种火焰光谱的三维重建装置和方法
Mullah et al. Fast multi‐spectral image super‐resolution via sparse representation
CN110736539B (zh) 一种基于压缩感知的凝视型光谱成像系统
KR101986998B1 (ko) 하이퍼스펙트럼 이미지 장치
Tsagkatakis et al. Compressed hyperspectral sensing
CN104036463B (zh) 一种编码孔径光谱成像仪的编码方法
Hinojosa et al. Compressive spectral imaging using multiple snapshot colored-mosaic detector measurements

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant