CN104154935A - 基于边带滤波fbg解调系统灵敏度的提高方法 - Google Patents

基于边带滤波fbg解调系统灵敏度的提高方法 Download PDF

Info

Publication number
CN104154935A
CN104154935A CN201410400464.1A CN201410400464A CN104154935A CN 104154935 A CN104154935 A CN 104154935A CN 201410400464 A CN201410400464 A CN 201410400464A CN 104154935 A CN104154935 A CN 104154935A
Authority
CN
China
Prior art keywords
fbg
formula
lambda
sideband
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410400464.1A
Other languages
English (en)
Other versions
CN104154935B (zh
Inventor
熊燕玲
任乃奎
赵磊
杨文龙
沈涛
于雪莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201410400464.1A priority Critical patent/CN104154935B/zh
Publication of CN104154935A publication Critical patent/CN104154935A/zh
Application granted granted Critical
Publication of CN104154935B publication Critical patent/CN104154935B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

基于边带滤波FBG解调系统灵敏度的提高方法,涉及边带滤波解调FBG领域。本发明是为了解决现有的FBG解调系统灵敏度低,不能检测微弱信号或微弱信号变化不明显的问题。本发明所述的采用n个边带滤波器进行边带滤波,获得FBG反射光的总功率,FBG中心波长λ0随时间变化时,根据FBG中心波长λ0,能够获得FBG光谱的左右边界波长λ1和λ2,带入FBG反射光的总功率中,获得时间t值和相应的FBG反射光谱的总功率的拟合方程,根据拟合方程及FBG中心波长随时间变化的表达式获得灵敏度与波长和功率有关的表达式,当改变所用边带的斜率后,获得灵敏度与边带斜率的关系式,进而获得FBG解调系统灵敏度。它可用在FBG解调系统中。

Description

基于边带滤波FBG解调系统灵敏度的提高方法
技术领域
本发明涉及基于边带滤波FBG解调系统的灵敏度提高方法。属于边带滤波解调FBG领域。
背景技术
作为一种新型传感元件,光纤布拉格光栅(Fiber Bragg Grating,FBG)传感器具备独特的优点使其得以迅猛发展,如准分布式和波长编码。这些优点使得FBG传感器的应用领域非常广泛。在一些实际应用中,FBG传感器应用于微弱信号的检测,这种情况下,解调系统的灵敏度就是其重要的性能参数,提高FBG解调灵敏度可以实现FBG传感器对外界环境的微弱变化的实时监测,在一些安全监测领域或要求监测结果精确的领域具有很高的使用价值。
发明内容
本发明是为了解决现有的FBG解调系统灵敏度低,不能检测微弱信号或微弱信号变化不明显的问题。现提供基于边带滤波FBG解调系统的灵敏度提高方法。
基于边带滤波FBG解调系统的灵敏度提高方法,该方法是基于边带滤波FBG解调系统实现的,所述系统包括ASE光源、耦合器、FBG、掺铒光纤放大器、n个边带滤波器和光谱仪,n为正整数,
ASE光源发出的光经过耦合器进入FBG中,与FBG中心波长相匹配的光波被反射回来,再次通过耦合器进入掺铒光纤放大器对光功率进行放大处理,之后通过n个边带滤波器滤波后进入光谱仪中进行波形的提取;
步骤一、ASE光源发出的光经过耦合器进入FBG中,由于FBG的折射率是周期性变化的与FBG中心波长相匹配的光波被反射回来,形成FBG反射光谱,该反射谱波形近似高斯曲线,将FBG反射光谱拟合为高斯表达式:
P 10 = y 0 + A w π / 2 · e - 2 ( λ - λ 0 ) 2 w 2     (公式1)
式中,y0,A,w均为常量;λ表示波长;λ0表示FBG反射谱的中心波长;
设所用的第n个边带滤波器线性区域透射率的表达式为:
τn(λ)=knλ+bn     (公式2)
式中,kn为第n个边带线性区域对应的边带斜率,bn为第n个边带计算透射率时对应的常量,
采用n个边带滤波器对FBG反射光进行边带滤波,获得n次滤波后FBG反射光谱的功率为:
Pn1=P101(λ)+τ2(λ)+τ3(λ)+……+τn(λ)   (公式3)
式中,τn(λ)为第n个边带滤波器的对应波长的透射率,
将FBG反射光谱的功率单位变为毫瓦的公式:
P n 2 = e P n 1 / 10    (公式4)
根据公式:
P n 3 = ∫ λ 1 λ 2 P n 2 dλ    (公式5)
对单位为毫瓦的FBG反射光谱的功率进行积分处理获得FBG反射光谱总功率,
式中,λ1表示FBG反射谱左侧边界对应的波长,λ2表示FBG反射谱右侧边界对应的波长,
根据公式:
Pn=10·lg(Pn3/1mW)    (公式6)
将FBG反射光谱的总功率单位从毫瓦变为dBm,
将公式1至公式6依次代入,获得单位为dBm的FBG反射光谱的总功率的总表达式为:
P n = 10 · lg ( [ ∫ λ 1 λ 2 e [ y 0 + A w π / 2 · e - 2 ( λ - λ 0 ) 2 w 2 + ( k 1 λ + b 1 ) + ( k 2 λ + b 2 ) + . . . + ( k n λ + b n ) ] / 10 dλ ] 1 mW )    (公式7)
FBG中心波长λ0随时间变化时,设FBG中心波长随时间按正弦发生变化的表达式为:
λ0=λ00+asin(t)    (公式8)
式中,a为FBG反射谱的中心波长变化振幅,λ00为FBG起始中心波长,
根据FBG中心波长λ0,能够获得FBG光谱的左右边界波长λ1和λ2
将λ0、λ1和λ2代入公式7中,将时间t和相应的FBG反射光谱的总功率进行拟合,其拟合方程的表达式为:
Pn=P0n+cnsin(t)   (公式9)
式中,Pn代表n次滤波功率值,P0n表示n次滤波时当中心波长不发生漂移所对应的功率值,cn表示n次滤波后功率变化的振幅,
步骤二、根据步骤一中FBG中心波长随时间按正弦发生变化的表达式和时间t与FBG反射光谱的总功率拟合方程的表达式,获得灵敏度与波长和功率有关的表达式,当改变所用边带的斜率后,获得灵敏度与边带斜率的关系式,进而获得FBG解调系统灵敏度。
步骤二中根据FBG中心波长随时间按正弦发生变化的表达式和拟合方程的表达式,获得灵敏度与波长和功率有关的表达式,当改变所用边带的斜率后,获得灵敏度与边带斜率的关系式,进而获得FBG解调系统灵敏度的过程为:
由FBG中心波长随时间按正弦发生变化的表达式和拟合方程的表达式获得FBG解调系统的灵敏度计算公式为:
S = ΔP Δλ = ( P on + c n sin ( t 1 ) ) - ( P 0 n + c n sin ( t 2 ) ) ( λ 00 + a sin ( t 1 ) ) - ( λ 00 + a sin ( t 2 ) ) = c n ( sin ( t 1 ) - sin ( t 2 ) ) a ( sin ( t 1 ) - sin ( t 2 ) ) = c n a    (公式10)
式中,S为FBG解调系统的灵敏度,△P为FBG反射谱的功率变化量,△λ为FBG反射谱的中心波长变化量,t1和t2为不同的时刻,
FBG中心波长振幅a为1nm时,则灵敏度计算公式变为:
S=cn   (公式11)
采用一个边带滤波器对FBG反射光进行单次边带滤波,边带斜率k改变时,经过滤波后的FBG反射光功率的振幅c1会发生改变,将k和相应的c1值进行数据拟合得出c1和k的关系式为:
c1=0.99685·k    (公式12)
即灵敏度为:
S=0.99685·k   (公式13)
采用两个边带滤波器对FBG反射光进行两次边带滤波,所用边带斜率分别为k1和k2,当k1不变仅改变k2时,经过两次边带滤波的FBG反射光功率的振幅c2发生变化,将k1、k2之和与相应的c2值进行数据拟合,得出的c2与k1+k2之和的关系式为:
c2=0.99685·(k1+k2)   (公式14)
即灵敏度为:
S=0.99685·(k1+k2)   (公式15)
n次边带滤波后,FBG解调系统的灵敏度与边带斜率呈线性变化关系,根据数据拟合方程:
S=0.99685·(k1+k2+…+kn)   (公式16)
获得FBG解调系统灵敏度S,
式中,S为FBG解调系统的灵敏度,kn为所用的第n个边带线性区域的斜率。
本发明的有益效果为:本发明采用n个边带滤波器对FBG进行边带滤波解调,通过FBG的总功率变化来获取外界环境变化。当FBG的中心波长随时间变化时,将时间t和FBG反射光谱的总功率进行拟合,获得FBG反射光谱的总功率的拟合方程,根据FBG中心波长随时间按正弦发生变化的表达式和拟合方程的表达式,获得灵敏度与波长和功率有关的表达式,当改变所用边带的斜率后,获得灵敏度与边带斜率的关系式,进而获得FBG解调系统灵敏度,本发明中,随边带滤波器个数的增加及线性边带斜率的增加,进而实现FBG解调系统灵敏度的提高。灵敏度的提高能够使系统检测到微弱信号或微弱信号的明显变化。
附图说明
图1为具体实施方式一所述的基于边带滤波FBG解调系统的原理示意图,
图2为本发明所述的边带滤波原理图,附图标记11表示边带滤波器的透射光谱,附图标记12表示FBG反射谱,
图3为本发明所述的FBG的中心波长随时间变化的波形图,
图4为本发明所述的经过一次边带滤波后的FBG反射光的总功率随时间变化的波形图,
图5为本发明所述的经过二次边带滤波后的FBG反射光的总功率随时间变化的波形图,
图6为本发明所述的边带斜率与单次滤波的FBG解调灵敏度的关系曲线图,·表示对应于某一边带斜率对应的灵敏度大小。
图7为本发明所述的经过两次滤波的FBG解调灵敏度与边带斜率之和的关系曲线图,·表示在二次边带滤波条件下,某一双边带斜率之和所对应的灵敏度大小。
具体实施方式
具体实施方式一:参照图1和图2具体说明本实施方式,本实施方式所述的基于边带滤波FBG解调系统灵敏度的提高方法,该方法是基于边带滤波FBG解调系统实现的,所述系统包括ASE光源1、耦合器2、FBG3、掺铒光纤放大器4、n个边带滤波器5和光谱仪6,n为正整数,
ASE光源1发出的光经过耦合器2进入FBG3中,与FBG3中心波长相匹配的光波被反射回来,再次通过耦合器2进入掺铒光纤放大器4对光功率进行放大处理,之后通过n个边带滤波器5滤波后进入光谱仪6中进行波形的提取;
步骤一、ASE光源发出的光经过耦合器进入FBG中,由于FBG的折射率是周期性变化的与FBG中心波长相匹配的光波被反射回来,形成FBG反射光谱,该反射谱波形近似高斯曲线,将FBG反射光谱拟合为高斯表达式:
P 10 = y 0 + A w π / 2 · e - 2 ( λ - λ 0 ) 2 w 2     (公式1)
式中,y0,A,w均为常量;λ表示波长;λ0表示FBG反射谱的中心波长;
设所用的第n个边带滤波器线性区域透射率的表达式为:
τn(λ)=knλ+bn     (公式2)
式中,kn为第n个边带线性区域对应的边带斜率,bn为第n个边带计算透射率时对应的常量,
采用n个边带滤波器对FBG反射光进行边带滤波,获得n次滤波后FBG反射光谱的功率为:
Pn1=P101(λ)+τ2(λ)+τ3(λ)+……+τn(λ)    (公式3)
式中,τn(λ)为第n个边带滤波器的对应波长的透射率,
将FBG反射光谱的功率单位变为毫瓦的公式:
P n 2 = e P n 1 / 10    (公式4)
根据公式:
P n 3 = ∫ λ 1 λ 2 P n 2 dλ    (公式5)
对单位为毫瓦的FBG反射光谱的功率进行积分处理获得FBG反射光谱总功率,
式中,λ1表示FBG反射谱左侧边界对应的波长,λ2表示FBG反射谱右侧边界对应的波长,
根据公式:
Pn=10·lg(Pn3/1mW)    (公式6)
将FBG反射光谱的总功率单位从毫瓦变为dBm,
将公式1至公式6依次代入,获得单位为dBm的FBG反射光谱的总功率的总表达式为:
P n = 10 · lg ( [ ∫ λ 1 λ 2 e [ y 0 + A w π / 2 · e - 2 ( λ - λ 0 ) 2 w 2 + ( k 1 λ + b 1 ) + ( k 2 λ + b 2 ) + . . . + ( k n λ + b n ) ] / 10 dλ ] 1 mW )    (公式7)
FBG中心波长λ0随时间变化时,设FBG中心波长随时间按正弦发生变化的表达式为:
λ0=λ00+asin(t)   (公式8)
式中,a为FBG反射谱的中心波长变化振幅,λ00为FBG起始中心波长,
根据FBG中心波长λ0,能够获得FBG光谱的左右边界波长λ1和λ2
将λ0、λ1和λ2代入公式7中,将时间t和相应的FBG反射光谱的总功率进行拟合,其拟合方程的表达式为:
Pn=P0n+cnsin(t)   (公式9)
式中,Pn代表n次滤波功率值,P0n表示n次滤波时当中心波长不发生漂移所对应的功率值,cn表示n次滤波后功率变化的振幅,
步骤二、根据步骤一中FBG中心波长随时间按正弦发生变化的表达式和时间t与FBG反射光谱的总功率拟合方程的表达式,获得灵敏度与波长和功率有关的表达式,当改变所用边带的斜率后,获得灵敏度与边带斜率的关系式,进而获得FBG解调系统灵敏度。
本实施方式中,边带滤波器其透射率随波长变化最大的区域可近似视为线性区,出射光强和波长的关系近似为线性。
具体实施方式二:本实施方式与具体实施方式一所述的基于边带滤波FBG解调系统灵敏度的提高方法的不同点,步骤二中根据FBG中心波长随时间按正弦发生变化的表达式和拟合方程的表达式,获得灵敏度与波长和功率有关的表达式,当改变所用边带的斜率后,获得灵敏度与边带斜率的关系式,进而获得FBG解调系统灵敏度的过程为:
由FBG中心波长随时间按正弦发生变化的表达式和拟合方程的表达式获得FBG解调系统的灵敏度计算公式为:
S = ΔP Δλ = ( P on + c n sin ( t 1 ) ) - ( P 0 n + c n sin ( t 2 ) ) ( λ 00 + a sin ( t 1 ) ) - ( λ 00 + a sin ( t 2 ) ) = c n ( sin ( t 1 ) - sin ( t 2 ) ) a ( sin ( t 1 ) - sin ( t 2 ) ) = c n a    (公式10)
式中,S为FBG解调系统的灵敏度,△P为FBG反射谱的功率变化量,△λ为FBG反射谱的中心波长变化量,t1和t2为不同的时刻,
FBG中心波长振幅a为1nm时,则灵敏度计算公式变为:
S=cn   (公式11)
采用一个边带滤波器对FBG反射光进行单次边带滤波,边带斜率k改变时,经过滤波后的FBG反射光功率的振幅c1会发生改变,将k和相应的c1值进行数据拟合得出c1和k的关系式为:
c1=0.99685·k   (公式12)
即灵敏度为:
S=0.99685·k   (公式13)
采用两个边带滤波器对FBG反射光进行两次边带滤波,所用边带斜率分别为k1和k2,当k1不变仅改变k2时,经过两次边带滤波的FBG反射光功率的振幅c2发生变化,将k1、k2之和与相应的c2值进行数据拟合,得出的c2与k1+k2之和的关系式为:
c2=0.99685·(k1+k2)    (公式14)
即灵敏度为:
S=0.99685·(k1+k2)    (公式15)
n次边带滤波后,FBG解调系统的灵敏度与边带斜率呈线性变化关系,根据数据拟合方程:
S=0.99685·(k1+k2+…+kn)  (公式16)
获得FBG解调系统灵敏度S,
式中,S为FBG解调系统的灵敏度,kn为所用的第n个边带线性区域的斜率。
本实施方式中,FBG反射谱中心波长按正弦方程λ=1548.1+3sin(t),R2=1变化,R2为数据拟合时的拟合度,波形如图3所示。经过一次、二次边带滤波后的FBG反射光的功率值变化分别如图4、图5所述,图4中,经过一次滤波FBG反射光总功率随时间变化的拟合方程如下:
P1=-59.33592+23.3642sin(t)R2=0.99867;
图5中,经过二次滤波FBG反射光总功率随时间变化的拟合方程如下:
P2=-82.6122+46.05056sin(t)R2=0.99844。
由FBG反射谱中心波长漂移公式,以及一次、二次滤波的功率拟合方程可以看出功率随时间的变化规律与波长的相同。
边带斜率与单次滤波灵敏度的关系如图6所示。灵敏度与边带斜率关系表达式为S1=0.99685k-0.0000000302R2=1。随边带斜率的提高灵敏度会随之提高。
经过两次滤波的FBG解调灵敏度与边带斜率之和的关系如图7所示。拟合方程为:S2=0.99685*(k1+k2)-0.000000478525R2=1。
从图6和图7的拟合方程推出不同斜率的线性边带进行多次滤波解调FBG,当FBG谱全在线性边带区域时解调灵敏度计算公式为:
S=0.99685·(k1+k2+…+kn),kn为所用的第n个边带线性区域的斜率。

Claims (2)

1.基于边带滤波FBG解调系统灵敏度的提高方法,该方法是基于边带滤波FBG解调系统实现的,所述系统包括ASE光源(1)、耦合器(2)、FBG(3)、掺铒光纤放大器(4)、n个边带滤波器(5)和光谱仪(6),n为正整数,
ASE光源(1)发出的光经过耦合器(2)进入FBG(3)中,与FBG(3)中心波长相匹配的光波被反射回来,再次通过耦合器(2)进入掺铒光纤放大器(4)对光功率进行放大处理,之后通过n个边带滤波器(5)滤波后进入光谱仪(6)中进行波形的提取;
其特征在于,
步骤一、ASE光源发出的光经过耦合器进入FBG中,由于FBG的折射率是周期性变化的与FBG中心波长相匹配的光波被反射回来,形成FBG反射光谱,该反射谱波形近似高斯曲线,将FBG反射光谱拟合为高斯表达式:
P 10 = y 0 + A w π / 2 · e - 2 ( λ - λ 0 ) 2 w 2      (公式1)
式中,y0,A,w均为常量;λ表示波长;λ0表示FBG反射谱的中心波长;
设所用的第n个边带滤波器线性区域透射率的表达式为:
τn(λ)=knλ+bn   (公式2)
式中,kn为第n个边带线性区域对应的边带斜率,bn为第n个边带计算透射率时对应的常量,
采用n个边带滤波器对FBG反射光进行边带滤波,获得n次滤波后FBG反射光谱的功率为:
Pn1=P101(λ)+τ2(λ)+τ3(λ)+……+τn(λ)   (公式3)
式中,τn(λ)为第n个边带滤波器的对应波长的透射率,
将FBG反射光谱的功率单位变为毫瓦的公式:
P n 2 = e P n 1 / 10     (公式4)
根据公式:
P n 3 = ∫ λ 1 λ 2 P n 2 dλ      (公式5)
对单位为毫瓦的FBG反射光谱的功率进行积分处理获得FBG反射光谱总功率,
式中,λ1表示FBG反射谱左侧边界对应的波长,λ2表示FBG反射谱右侧边界对应的波长,
根据公式:
Pn=10·lg(Pn3/1mW)     (公式6)
将FBG反射光谱的总功率单位从毫瓦变为dBm,
将公式1至公式6依次代入,获得单位为dBm的FBG反射光谱的总功率的总表达式为:
P n = 10 · lg ( [ ∫ λ 1 λ 2 e [ y 0 + A w π / 2 · e - 2 ( λ - λ 0 ) 2 w 2 + ( k 1 λ + b 1 ) + ( k 2 λ + b 2 ) + . . . + ( k n λ + b n ) ] / 10 dλ ] 1 mW )    (公式7)
FBG中心波长λ0随时间变化时,设FBG中心波长随时间按正弦发生变化的表达式为:
λ0=λ00+asin(t)    (公式8)
式中,a为FBG反射谱的中心波长变化振幅,λ00为FBG起始中心波长,
根据FBG中心波长λ0,能够获得FBG光谱的左右边界波长λ1和λ2
将λ0、λ1和λ2代入公式7中,将时间t和相应的FBG反射光谱的总功率进行拟合,其拟合方程的表达式为:
Pn=P0n+cnsin(t)   (公式9)
式中,Pn代表n次滤波功率值,P0n表示n次滤波时当中心波长不发生漂移所对应的功率值,cn表示n次滤波后功率变化的振幅,
步骤二、根据步骤一中FBG中心波长随时间按正弦发生变化的表达式和时间t与FBG反射光谱的总功率拟合方程的表达式,获得灵敏度与波长和功率有关的表达式,当改变所用边带的斜率后,获得灵敏度与边带斜率的关系式,进而获得FBG解调系统灵敏度。
2.根据权利要求1所述的基于边带滤波FBG解调系统灵敏度的提高方法,其特征在于,步骤二中根据FBG中心波长随时间按正弦发生变化的表达式和拟合方程的表达式,获得灵敏度与波长和功率有关的表达式,当改变所用边带的斜率后,获得灵敏度与边带斜率的关系式,进而获得FBG解调系统灵敏度的过程为:
由FBG中心波长随时间按正弦发生变化的表达式和拟合方程的表达式获得FBG解调系统的灵敏度计算公式为:
S = ΔP Δλ = ( P on + c n sin ( t 1 ) ) - ( P 0 n + c n sin ( t 2 ) ) ( λ 00 + a sin ( t 1 ) ) - ( λ 00 + a sin ( t 2 ) ) = c n ( sin ( t 1 ) - sin ( t 2 ) ) a ( sin ( t 1 ) - sin ( t 2 ) ) = c n a    (公式10)
式中,S为FBG解调系统的灵敏度,△P为FBG反射谱的功率变化量,△λ为FBG反射谱的中心波长变化量,t1和t2为不同的时刻,
FBG中心波长振幅a为1nm时,则灵敏度计算公式变为:
S=cn   (公式11)
采用一个边带滤波器对FBG反射光进行单次边带滤波,边带斜率k改变时,经过滤波后的FBG反射光功率的振幅c1会发生改变,将k和相应的c1值进行数据拟合得出c1和k的关系式为:
c1=0.99685·k    (公式12)
即灵敏度为:
S=0.99685·k   (公式13)
采用两个边带滤波器对FBG反射光进行两次边带滤波,所用边带斜率分别为k1和k2,当k1不变仅改变k2时,经过两次边带滤波的FBG反射光功率的振幅c2发生变化,将k1、k2之和与相应的c2值进行数据拟合,得出的c2与k1+k2之和的关系式为:
c2=0.99685·(k1+k2)     (公式14)
即灵敏度为:
S=0.99685·(k1+k2)   (公式15)
n次边带滤波后,FBG解调系统的灵敏度与边带斜率呈线性变化关系,根据数据拟合方程:
S=0.99685·(k1+k2+…+kn)   (公式16)
获得FBG解调系统灵敏度S,
式中,S为FBG解调系统的灵敏度,kn为所用的第n个边带线性区域的斜率。
CN201410400464.1A 2014-08-14 2014-08-14 基于边带滤波fbg解调系统灵敏度的提高方法 Expired - Fee Related CN104154935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410400464.1A CN104154935B (zh) 2014-08-14 2014-08-14 基于边带滤波fbg解调系统灵敏度的提高方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410400464.1A CN104154935B (zh) 2014-08-14 2014-08-14 基于边带滤波fbg解调系统灵敏度的提高方法

Publications (2)

Publication Number Publication Date
CN104154935A true CN104154935A (zh) 2014-11-19
CN104154935B CN104154935B (zh) 2016-08-24

Family

ID=51880500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410400464.1A Expired - Fee Related CN104154935B (zh) 2014-08-14 2014-08-14 基于边带滤波fbg解调系统灵敏度的提高方法

Country Status (1)

Country Link
CN (1) CN104154935B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628065A (zh) * 2015-12-22 2016-06-01 南京工程学院 一种光纤光栅信号解调装置及解调方法
CN105783953A (zh) * 2016-03-25 2016-07-20 武汉理工大学 应用于光纤布拉格光栅波长解调的快速高斯拟合方法
CN109444504A (zh) * 2018-12-13 2019-03-08 云南电网有限责任公司电力科学研究院 一种提高光纤电流测量灵敏度的系统及方法
CN114414089A (zh) * 2022-03-29 2022-04-29 武汉奇测科技有限公司 一种同时提高光纤光栅解调速度和量程的装置与方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932871A (en) * 1972-09-11 1976-01-13 Sperry Rand Corporation FM/CW surveillance radar system with range gating
CN2605705Y (zh) * 2003-04-03 2004-03-03 南开大学 高速光纤光栅传感复用解调装置
CN101458100A (zh) * 2009-01-13 2009-06-17 冉曾令 Fbg传感器的解调系统及其解调方法
CN103399191A (zh) * 2013-07-25 2013-11-20 哈尔滨理工大学 基于边带解调的fbg-gmm电流传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932871A (en) * 1972-09-11 1976-01-13 Sperry Rand Corporation FM/CW surveillance radar system with range gating
CN2605705Y (zh) * 2003-04-03 2004-03-03 南开大学 高速光纤光栅传感复用解调装置
CN101458100A (zh) * 2009-01-13 2009-06-17 冉曾令 Fbg传感器的解调系统及其解调方法
CN103399191A (zh) * 2013-07-25 2013-11-20 哈尔滨理工大学 基于边带解调的fbg-gmm电流传感器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
乔学光 等: "基于光源滤波的高精度光纤光栅地震检波解调系统", 《光学学报》 *
徐宁 等: "利用波分复用器实现FBG动态传感解调", 《哈尔滨理工大学学报》 *
熊燕玲 等: "一种新型的光纤光栅应变传感器解调方法", 《哈尔滨理工大学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628065A (zh) * 2015-12-22 2016-06-01 南京工程学院 一种光纤光栅信号解调装置及解调方法
CN105783953A (zh) * 2016-03-25 2016-07-20 武汉理工大学 应用于光纤布拉格光栅波长解调的快速高斯拟合方法
CN105783953B (zh) * 2016-03-25 2018-03-27 武汉烽理光电技术有限公司 应用于光纤布拉格光栅波长解调的快速高斯拟合方法
CN109444504A (zh) * 2018-12-13 2019-03-08 云南电网有限责任公司电力科学研究院 一种提高光纤电流测量灵敏度的系统及方法
CN114414089A (zh) * 2022-03-29 2022-04-29 武汉奇测科技有限公司 一种同时提高光纤光栅解调速度和量程的装置与方法
CN114414089B (zh) * 2022-03-29 2022-06-17 武汉奇测科技有限公司 一种同时提高光纤光栅解调速度和量程的方法

Also Published As

Publication number Publication date
CN104154935B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN105044026A (zh) 基于双光谱吸收线和波形匹配的激光甲烷浓度测量方法
CN102384799B (zh) 基于布里渊分布式光纤传感系统相干检测方案的扫频及数据处理方法
CN113447110B (zh) 一种分布式光纤振动传感系统及其相位载波解调方法
CN104535530A (zh) 一种高精度气体浓度检测方法及检测装置
CN103162724B (zh) 基于动态扫描的光纤光栅传感解调仪及方法
CN104154935A (zh) 基于边带滤波fbg解调系统灵敏度的提高方法
CN204027726U (zh) 一种基于布里渊散射的分布式光纤传感系统
CN105203136A (zh) 一种基于差分放大技术的分布式传感系统
CN103278185B (zh) 基于校准光纤光栅的腔衰荡光纤光栅传感解调装置
CN104655185B (zh) 一种基于强度调制探测光的相干布里渊光时域分析传感系统
CN103712960B (zh) 一种采用级联锁相检测的光热检测装置及其检测方法
CN104697558A (zh) 光纤分布式多参量传感测量系统
CN203519025U (zh) 一种高速光纤光栅解调系统
CN106225816B (zh) 一种基于布里渊滤波器的光栅传感装置与方法
CN103528991B (zh) 土壤有机质含量的测量系统及测量方法
CN105136909A (zh) 一种基于阵列波导光栅的多通道声发射传感解调系统
CN107436201A (zh) 基于布里渊散射的分布式光纤温度应变传感系统及方法
CN103414513A (zh) 一种具有高动态范围的脉冲光动态消光比测量装置及方法
CN103727969B (zh) 基于延时脉冲拉曼放大分布式传感系统
CN108204827A (zh) 一种相移光纤光栅解调系统
CN103884683B (zh) 基于f-p半导体激光器和薄膜f-p滤光片级联的光学传感器
CN103196472B (zh) 基于随机非等间隔采样的光纤光栅动态应变解调仪及方法
CN109781156B (zh) 基于布里渊增益谱调制的botda系统及其传感方法
CN103398808B (zh) 基于双边带滤波器解调的双光纤光栅拉力传感器的传感方法
CN103759924A (zh) 光纤干涉仪多参数的综合测量系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20180814