CN104141352A - 塔器防振用摆动式阻尼器 - Google Patents

塔器防振用摆动式阻尼器 Download PDF

Info

Publication number
CN104141352A
CN104141352A CN201410347429.8A CN201410347429A CN104141352A CN 104141352 A CN104141352 A CN 104141352A CN 201410347429 A CN201410347429 A CN 201410347429A CN 104141352 A CN104141352 A CN 104141352A
Authority
CN
China
Prior art keywords
tower
damper
mass
tower body
connecting rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410347429.8A
Other languages
English (en)
Other versions
CN104141352B (zh
Inventor
谭蔚
徐乐
田雅婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201410347429.8A priority Critical patent/CN104141352B/zh
Publication of CN104141352A publication Critical patent/CN104141352A/zh
Application granted granted Critical
Publication of CN104141352B publication Critical patent/CN104141352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种塔器防振用摆动阻尼器,是由连杆、球铰、摆杆、质量块和弹簧组成;连杆一端与塔体焊接,另一端与球铰采用螺纹连接;摆杆与连杆垂直,一端与球铰焊接,另一端焊接质量块;弹簧与连杆平行,一端与质量块焊接,另一端与塔体焊接;阻尼器呈对称排列。本发明解决了塔器发生共振时的防振措施,通过增加塔体的阻尼,使塔体振幅迅速衰减,减少塔顶共振时的振幅,从而降低共振对塔器造成的破坏。

Description

塔器防振用摆动式阻尼器
技术领域
本发明涉及一种塔器防振用阻尼器,尤其是风诱导振动下的塔器防振用摆动阻尼器的开发设计。
背景技术
塔器是化工生产中最重要的设备之一,作为特种设备一旦发生事故危害极大。因此,保证塔器安全运行是非常必要的。
塔器的长径比比较大。因此,在运行期间,塔体不仅承受重力和操作压力等载荷,还会受到风载荷的很大影响。安装在室外的塔器,在风载荷作用下将产生两个方向的振动。一种是顺风向的振动,即塔的振动方向与风向平行;另一种是横风向振动,即振动方向垂直于风向,又称横风向振动或诱导振动。随着塔高的不断增加,塔器受风载荷的影响也会越来越大。较大的风载荷将诱导塔器振动。当振动频率与塔器的自振频率相当时会发生共振,导致设备破坏,造成严重后果。故塔器的防振技术有很大研究价值。
塔器防振的措施主要有三种,增大自振周期、采用扰流装置和增大阻尼比。对塔器来说,增大自振周期可能会破坏原有工艺条件,增加制造成本;由于平台、梯子等附件的存在,安装轴向翅片或螺旋型翅片等扰流装置并不适用于所有塔设备;通过增设减振器来增大阻尼比则是一个较为简便实用的方法,在烟囱或高耸建筑物中已得到广泛的应用。
目前,国内外常用的塔器防振方法主要为增设翅片和挡板等扰流构件,对于防风振减振器的研究仍很少。
发明内容
本发明所解决的问题的是塔器发生共振时的防振措施,通过增加塔体的阻尼,使塔体振幅迅速衰减,减少塔顶共振时的振幅,从而降低共振对塔器造成的破坏。
本发明的技术方案如下:
一种塔器防振用摆动式阻尼器,由连杆5、球铰2、摆杆6、质量块7和弹簧3组成;连杆5一端与塔体1焊接,另一端与球铰2采用螺纹连接;摆杆6与连杆5垂直,一端与球铰2焊接,另一端焊接质量块7;弹簧3与连杆5平行,一端与质量块7焊接,另一端与塔体1焊接;阻尼器呈对称排列。
优选4个阻尼器呈90°排列,安装在塔顶外侧。
优选连杆长度与塔体半径相等。
优选弹簧长度与连杆长度相等。
优选阻尼器质量块总质量与塔体自身质量(不含阻尼器)之比范围在0.65%~4%。
优选摆杆长度与塔高之比范围在5%~9%。
优选阻尼器安装高度大于2/3塔高。
本发明是一种摆动式阻尼器。其工作原理是:调节质量块的自振频率,使其与塔的一阶固有频率相等;在振动时,质量块与塔形成π/2的相位差,质量块的作用反力与塔运动方向相反,从而增加了塔体阻尼比。在JB4710-2005中有塔顶一阶振幅yT1计算公式如下:其中yT1为塔顶振幅,CL为升力系数,D为塔器外径,为一阶临界风速,H为塔高,ρ为空气密度,λ1为计算系数,ζ为塔体阻尼比,E为弹性模量,I为截面惯性矩。由上式可以看出,塔体阻尼比ζ与塔顶振幅yT1呈反比例关系。也就是说,塔体阻尼比越大,塔顶振幅yT1就越小。
由于弹簧劲度系数较小,需保证质量块有足够的运动空间,所以设置连杆长度与塔体半径相等。为保证弹簧初始位移为零,并确保质量块在平面内运动,设置弹簧长度与连杆长度相等。通过调节质量块的质量和摆杆长度两个参数可以改变阻尼器的阻尼比。其减振效果通过有限元软件ANSYS模拟以及小试实验得到了验证。
本装置设置了4个阻尼器,由于质量块平动距离相对摆杆长度很小,故可以看作是沿水平面的运动。平面内的弹簧和质量块,会产生4个水平控制力,其大小为:
(j=1,2,3,4)
塔体在阻尼器控制下的动力方程为:
[ M ] { x . . } + [ C ] { x . } + [ K ] { x } = { f } + { F TMD }
式中:FTMDj—第j个阻尼器提供的水平回复力;
kTMDj—第j个阻尼器弹簧的劲度系数;
cTMDj—第j个阻尼器的固有阻尼;
xTMDj—第j个阻尼器质量块相对于地面的位移;
xj—第j个阻尼器所在塔体段相对于地面的位移;
—第j个阻尼器质量块相对于地面的速度;
—第j个阻尼器所在塔体段相对于地面的速度;
[M]—塔体的质量矩阵;
[C]—塔体的阻尼矩阵;
[K]—塔体的刚度矩阵;
—塔体的加速度向量;
—塔体的速度向量;
{x}—塔体的位移向量;
{f}—风载荷向量;
{FTMD}—阻尼器作用力向量;
利用ANSYS有限元软件建立塔器和阻尼器模型,将风载荷加载在塔模型上,模拟塔器在风中的振动,并根据上述公式计算获得塔顶振幅yT1。通过比较塔体安装阻尼器后塔顶振幅yT1与原始塔顶振幅yT1得到减振效果。其中,塔体采用SOLID185单元,摆杆与连杆采用BEAM188单元,弹簧采用COMBIN14单元,质量块采用MASS21单元,耦合摆杆与连杆重合端的X、Y、Z三个方向自由度来模拟球铰。采用瞬态动力学分析,将风载荷以面压力的形式加载在塔器表面,使塔体发生振动,计算软件根据上述公式计算得到阻尼器作用力向量{FTMD},并将此作用力通过弹簧传递给塔体,在风载荷和阻尼器作用力共同作用下,计算得到塔顶振幅yT1。模拟完成后,制作塔器和阻尼器的模型进行实验。施加力使塔发生振动,通过压电式加速度传感器得到塔顶振幅yT1,利用动态测试分析仪收集实验数据。得到如下结果:
将质量块总质量与塔体自身质量(不含阻尼器)之比记为质量比μ。摆杆长度与塔高之比记为长度比。
在工程实际中,阻尼器的质量不能过大,通常设定阻尼器质量与安装结构质量之比在4%以内,且阻尼器质量与安装结构质量之比不能低于0.5%,否则减振效果不明显。优选设定质量比μ范围在0.65%~4%。随着质量比μ的增加,塔体阻尼比逐渐增大,阻尼器减振效果越来越明显。在长度比为9%的条件下,质量比μ为0.65%时,塔体阻尼比变为原来的2.9倍,此时塔顶振幅yT1可减少约60%;质量比μ为4%时,塔体阻尼比变为原来的6.5倍,此时塔顶振幅yT1可减少约84%。当质量比μ小于0.65%时,减振效果不佳;当质量比μ大于4%时,阻尼器将给塔体带来过大的附加载荷。
通过实验与计算模拟发现,摆杆长度不能过长,否则阻尼器摆杆所受扭矩过大,且所需安装空间过大。摆杆长度过短会使阻尼器质量块的运动形式由平动变为摆动,减振效果变差,优选长度比范围在5%~9%。在质量比μ为2%的情况下,长度比为5%时,塔体阻尼比变为原来的3.3倍,此时塔顶振幅yT1可减少约70%;长度比为9%时,塔体阻尼比变为原来的5倍,此时塔顶振幅yT1可减少约80%。
阻尼器减振效果随质量比μ及摆杆长度的提高而提高。在实际运用时,可根据具体的安装空间选择摆杆长度。如果安装空间较小,可以选择长度比为5%的短摆杆;当安装空间较富裕时,可选择长度比为9%的长摆杆以达到更优减振效果。在质量比μ为2%的条件下,长度比为5%时,塔顶振幅yT1可减少70%;长度比为9%时,塔顶振幅yT1可减少80%。若在长度比9%条件下继续增加质量块的质量,当质量比μ增加到4%时,塔顶振幅yT1可减少84%。
附图说明
图1摆动式阻尼器安装位置简图;
图2摆动式阻尼器装置简图;
图3连杆、球铰、摆杆局部图;
图4质量块、弹簧局部图;
其中:1-塔体,2-球铰,3-弹簧,4-垫板,5-连杆,6-摆杆,7-质量块。
具体实施方式
根据附图对本发明做进一步的详细说明:
本发明的塔器防振用摆动式阻尼器,由连杆5、球铰2、摆杆6、质量块7和弹簧3组成,四个阻尼器为一组,呈90°排列,安装在塔顶外侧。如图1、2所示。连杆5一端与塔体1焊接,另一端与球铰2采用螺纹连接,如图3所示。摆杆6与连杆5垂直,一端与球铰2焊接,另一端焊接质量块7。弹簧3与连杆5平行,一端与质量块7焊接,另一端与塔体1焊接,如图4所示。
设置连杆长度与塔体半径相等。根据实际工况设定长度比与质量比μ,要求设定的长度比范围在5%~9%,质量比μ范围在0.65%~4%。
质量块为钢制圆球,在已知塔体自身质量m,球体个数n,质量比μ后,圆球半径被唯一确定:
r 3 = 3 mμ 31400 πn
质量块通过弹簧将作用力传递给塔体,为保证质量块与塔体位移呈现π/2的相位差,需要根据塔体一阶固有频率f来设定弹簧劲度系数k,使质量块运动频率与塔体一阶固有频率f一致。弹簧劲度系数k由塔体一阶固有频率f与圆球质量m确定:
k=4π2f2m
实例1
将图2所示阻尼器,安装在塔器顶部。连杆5一端与塔体1焊接,另一端与球铰2采用螺纹连接;摆杆6与连杆5垂直,摆杆6一端与球铰2焊接,另一端焊接质量块7;弹簧3与连杆5平行,一端与质量块7焊接,另一端与塔体1焊接;阻尼器共四个,呈对称排列。设置连杆长度与塔体半径相等,设置质量比μ为2%。在上述条件下,分别设置摆杆的长度比分别为5%、6.6%、7.3%、8%和9%。通过设置弹簧的劲度系k使质量块的振动频率与塔体一阶固有频率f一致。由实验证明,塔顶振幅yT1随摆杆长度的增加而减小,在对应长度比条件下,塔顶振幅yT1分别可减少70%、76%、77%、79%和80%。根据实验模型尺寸,利用ANSYS建立有限元模型。塔体选用SOLID185单元,杆件选用BEAM188单元,弹簧选用COMBIN14单元。设定单元材料属性中的弹簧劲度系数k使质量块振动频率与塔体一阶固有频率f一致,质量块选用MASS21单元,设定单元材料属性中质量m来满足所选用的质量比μ。模拟计算的结果与实验一致。
实例2
将图2所示阻尼器,安装在塔器顶部。连杆5一端与塔体1焊接,另一端与球铰2采用螺纹连接;摆杆6与连杆5垂直,摆杆6一端与球铰2焊接,另一端焊接质量块7;弹簧3与连杆5平行,一端与质量块7焊接,另一端与塔体1焊接;阻尼器共四个,呈对称排列。设置连杆长度与塔体半径相等,设置摆杆长度比为9%。在上述条件下,分别设置质量比μ为0.65%、1.3%、2%、3.3%和4%。通过设置弹簧的劲度系k使质量块的振动频率与塔体一阶固有频率f一致。由实验证明,塔顶振幅yT1随质量比μ的增加而减小,在对应质量比条件下,塔顶振幅yT1分别可减少66%、74%、77%、82%和84%。根据实验模型尺寸,利用ANSYS建立有限元模型。塔体选用SOLID185单元,杆件选用BEAM188单元,弹簧选用COMBIN14单元。设定单元材料属性中的弹簧劲度系数k使质量块振动频率与塔体一阶固有频率f一致,质量块选用MASS21单元,设定单元材料属性中质量m来满足所选用的质量比μ。模拟计算的结果与实验一致。

Claims (8)

1.一种塔器防振用摆动式阻尼器,其特征是由连杆、球铰、摆杆、质量块和弹簧组成;连杆一端与塔体焊接,另一端与球铰采用螺纹连接;摆杆与连杆垂直,一端与球铰焊接,另一端焊接质量块;弹簧与连杆平行,一端与质量块焊接,另一端与塔体焊接;阻尼器呈对称排列。
2.如权利要求1所述的阻尼器,其特征是四个阻尼器个数为4个。
3.如权利要求2所述的阻尼器,其特征是四个阻尼器呈90°排列,安装在塔顶外侧。
4.如权利要求1所述的阻尼器,其特征是连杆长度与塔体半径相等。
5.如权利要求1所述的阻尼器,其特征是弹簧长度与连杆长度相等。
6.如权利要求1所述的阻尼器,其特征是阻尼器质量块总质量与塔体自身质量之比范围在0.65%~4%。
7.如权利要求1所述的阻尼器,其特征是摆杆长度与塔高之比范围在5%~9%。
8.如权利要求1所述的阻尼器,其特征是阻尼器安装高度大于2/3塔高。
CN201410347429.8A 2014-07-21 2014-07-21 塔器防振用摆动式阻尼器 Active CN104141352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410347429.8A CN104141352B (zh) 2014-07-21 2014-07-21 塔器防振用摆动式阻尼器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410347429.8A CN104141352B (zh) 2014-07-21 2014-07-21 塔器防振用摆动式阻尼器

Publications (2)

Publication Number Publication Date
CN104141352A true CN104141352A (zh) 2014-11-12
CN104141352B CN104141352B (zh) 2017-08-08

Family

ID=51850670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410347429.8A Active CN104141352B (zh) 2014-07-21 2014-07-21 塔器防振用摆动式阻尼器

Country Status (1)

Country Link
CN (1) CN104141352B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107965195A (zh) * 2017-12-16 2018-04-27 广西电网有限责任公司电力科学研究院 一种输电线路铁塔防风减振装置
CN108301678A (zh) * 2018-03-21 2018-07-20 宁夏凤城装备制造有限公司 氧化再生塔防风振装置
CN110192044A (zh) * 2016-11-29 2019-08-30 布克哈德·达尔 紧凑的空间的椭圆体质量摆
CN110414025A (zh) * 2018-04-28 2019-11-05 中国石油天然气集团有限公司 一种框架塔及其设计方法
CN112943844A (zh) * 2021-02-25 2021-06-11 中国华能集团清洁能源技术研究院有限公司 一种高柔塔风力发电机组塔筒结构减振装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997342A (ja) * 1982-11-26 1984-06-05 Nippon Kokan Kk <Nkk> 振り子式動吸振器
CN202787556U (zh) * 2012-09-29 2013-03-13 浙江工业大学 用于高耸塔减振的调谐质量阻尼器
CN203080721U (zh) * 2012-12-29 2013-07-24 浙江工业大学 含新型钢丝绳阻尼器的高耸结构减振控制装置
CN203334463U (zh) * 2013-05-17 2013-12-11 山东科技大学 一种建筑物减震装置
CN203977614U (zh) * 2014-07-21 2014-12-03 天津大学 塔器防振用摆动式阻尼器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997342A (ja) * 1982-11-26 1984-06-05 Nippon Kokan Kk <Nkk> 振り子式動吸振器
CN202787556U (zh) * 2012-09-29 2013-03-13 浙江工业大学 用于高耸塔减振的调谐质量阻尼器
CN203080721U (zh) * 2012-12-29 2013-07-24 浙江工业大学 含新型钢丝绳阻尼器的高耸结构减振控制装置
CN203334463U (zh) * 2013-05-17 2013-12-11 山东科技大学 一种建筑物减震装置
CN203977614U (zh) * 2014-07-21 2014-12-03 天津大学 塔器防振用摆动式阻尼器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110192044A (zh) * 2016-11-29 2019-08-30 布克哈德·达尔 紧凑的空间的椭圆体质量摆
US11255395B2 (en) 2016-11-29 2022-02-22 Burkhard Dahl Compact spatial ellipsoidal mass pendulum
CN110192044B (zh) * 2016-11-29 2024-03-15 布克哈德·达尔 紧凑的空间的椭圆体质量摆
CN107965195A (zh) * 2017-12-16 2018-04-27 广西电网有限责任公司电力科学研究院 一种输电线路铁塔防风减振装置
CN108301678A (zh) * 2018-03-21 2018-07-20 宁夏凤城装备制造有限公司 氧化再生塔防风振装置
CN110414025A (zh) * 2018-04-28 2019-11-05 中国石油天然气集团有限公司 一种框架塔及其设计方法
CN110414025B (zh) * 2018-04-28 2023-10-31 中国石油天然气集团有限公司 一种框架塔及其设计方法
CN112943844A (zh) * 2021-02-25 2021-06-11 中国华能集团清洁能源技术研究院有限公司 一种高柔塔风力发电机组塔筒结构减振装置
CN112943844B (zh) * 2021-02-25 2022-05-03 中国华能集团清洁能源技术研究院有限公司 一种高柔塔风力发电机组塔筒结构减振装置

Also Published As

Publication number Publication date
CN104141352B (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
Ma et al. Inerter-based structural vibration control: A state-of-the-art review
Ou et al. Vibration control of steel jacket offshore platform structures with damping isolation systems
Lu et al. Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation
Elias et al. Research developments in vibration control of structures using passive tuned mass dampers
Lu et al. An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers
CN104141352A (zh) 塔器防振用摆动式阻尼器
Wang et al. Real‐time hybrid simulation of multi‐story structures installed with tuned liquid damper
Zhang Numerical and experimental investigations of the sloshing modal properties of sloped-bottom tuned liquid dampers for structural vibration control
Bhattacharyya et al. Nonlinear modeling and validation of air spring effects in a sealed tuned liquid column damper for structural control
Sun et al. Tuned mass dampers for wind-induced vibration control of Chongqi Bridge
Chen et al. Application of spherical tuned liquid damper in vibration control of wind turbine due to earthquake excitations
CN103233527B (zh) 一种工程结构基于位移的抗震设计方法
Li et al. Theoretical and experimental studies on reduction for multi-modal seismic responses of high-rise structures by tuned liquid dampers
Tan et al. Experimental study on the outrigger damping system for high-rise building
CN203977614U (zh) 塔器防振用摆动式阻尼器
Sanati et al. Performance evaluation of a novel rotational damper for structural reinforcement steel frames subjected to lateral excitations
Zhang et al. Seismic performance and ice-induced vibration control of offshore platform structures based on the ISO-PFD-SMA brace system
Ding et al. A toroidal tuned liquid column damper for multidirectional ground motion‐induced vibration control
CN204025495U (zh) 塔器防振用圆柱形液体阻尼器
Huang et al. Equivalent model of a multiparticle damper considering the mass coupling coefficient
Chen et al. Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture
CN104154159A (zh) 塔器防振用圆柱形液体阻尼器
Colwell et al. Experimental and theoretical investigations of equivalent viscous damping of structures with TLCD for different fluids
Gradinscak et al. A sloshing absorber with a flexible container
Ong et al. Dynamic simulation of unrestrained interlocking Tuned Liquid Damper blocks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 300350 District, Jinnan District, Tianjin Haihe Education Park, 135 beautiful road, Beiyang campus of Tianjin University

Patentee after: Tianjin University

Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92

Patentee before: Tianjin University