CN104132248B - 流体管道泄漏检测定位方法 - Google Patents

流体管道泄漏检测定位方法 Download PDF

Info

Publication number
CN104132248B
CN104132248B CN201410373753.7A CN201410373753A CN104132248B CN 104132248 B CN104132248 B CN 104132248B CN 201410373753 A CN201410373753 A CN 201410373753A CN 104132248 B CN104132248 B CN 104132248B
Authority
CN
China
Prior art keywords
point
pipeline
collection
tau
designated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410373753.7A
Other languages
English (en)
Other versions
CN104132248A (zh
Inventor
李平
文玉梅
李帅永
文静
邱景
杨进
朱永
王宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201410373753.7A priority Critical patent/CN104132248B/zh
Publication of CN104132248A publication Critical patent/CN104132248A/zh
Priority to US14/558,726 priority patent/US20160033354A1/en
Application granted granted Critical
Publication of CN104132248B publication Critical patent/CN104132248B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means

Abstract

本发明公开了一种流体管道泄漏检测定位方法,包括被测管道,其创新在于:所述被测管道上至少设置有两个传感装置,两个传感装置之间间隔一定距离,传感装置所在位置形成采集点,所述传感装置能够同时对两个方向上的管道声振动进行感应,这两个方向分别为管道轴向和管道径向;当两个采集点之间的被测管道上存在泄漏点时,根据如下公式对泄漏点进行定位: τ L 12 V L + l 1 - l 2 = 0 τ T 12 V T + l 1 - l 2 = 0 τ 2 l 1 - τ 1 l 2 = 0 l 1 + l 2 = L 本发明的有益技术效果是:定位准确性好,不需要知道管道的声振动波速,处理复杂度低,而且可以实际测定管道的纵波和横波声速。

Description

流体管道泄漏检测定位方法
技术领域
本发明涉及一种管道泄漏定位技术,尤其涉及一种流体管道泄漏检测定位方法。
背景技术
在流体管道泄漏检测定位中,相关峰值定位法是最常采用的方法,相关峰值定位法的具体操作是:在被测管道上设置若干个采集点,每个采集点处都设置有声传感器或振动传感器,检测过程中,对相邻两个传感器的输出信号进行互相关处理,如果两个传感器的输出信号存在明显的相关峰值,表明这两个传感器所在采集点之间的管道上存在泄漏点,相关峰值所在位置就是泄漏点处声振动信号传播到两采集点位置处的时间延迟,然后结合两采集点之间的距离和泄漏点处的声振动在管道中的传播速度来确定泄漏点的位置。
相关定位法是一种基于延时估计的管道泄漏定位方法,从其处理过程中不难看出,该方法的实施是以声振动信号在管道中的传播速度已知为先决条件的,但是在工程实际中,由于受管道材质、尺寸、埋设条件、环境变化等因素的影响,导致不同管道中的声振动信号传播速度各不相同,甚至是同一管道上的不同区段,声振动信号的传播速度也存在差别,这无疑增加了问题的复杂性,现有技术为了简化这一问题,通常采用声速理论值或者估计值来代替实际声速,这就与实际声速相差较多,存在较大的原理误差,并且由误差所带来的定位准确性会随着管道长度的增加而大幅下降,导致相关定位法难以应用于大长度管道的监测。
针对前述问题,本领域技术人员也进行了研究,并提出了一些替代方案,如杨进等人提出的通过盲系统辨识方法来估计泄漏声信号在管道中传输的绝对时间,该方法可以在泄漏信号声速未知的情况下对流体管道进行泄漏定位,并且可以计算出管道的实际声速值,但是该方法算法复杂,运算量大,且要求采集的信号应具有较高的信噪比才能进行分析,其适用的检测距离相对较短(J.Yang,Y.Wen and P.Li,Leaklocation using blind system identification in water distribution pipelines,Journal of Sound and Vibration 310(2008)134-148.J.Yang,Y.Wen and P.Li,The genetic-algorithm-enhanced blind system identification for waterdistribution pipeline leak detection,Measurement Science and Technology 18(2007)2178-2184.)。
发明内容
针对背景技术中的问题,本发明提出了1、一种流体管道泄漏检测定位方法,包括被测管道,其创新在于:所述被测管道上至少设置有两个传感装置,两个传感装置之间间隔一定距离,传感装置所在位置形成采集点,所述传感装置能够同时对两个方向上的管道声振动进行感应,这两个方向分别为管道轴向和管道径向;当两个采集点之间的被测管道上存在泄漏点时,根据如下方法对泄漏点进行定位:
设两个采集点分别为采集点1和采集点2,两个采集点之间的管道长度记为L,采集点1与泄漏点之间的管道长度记为l1,采集点2与泄漏点之间的管道长度记为l2,纵波信号在被测管道上的传播速度记为VL,横波信号在被测管道上的传播速度记为VT;所述传感装置的输出量中包含了径向声振动信号和轴向声振动信号,对应采集点1的径向声振动信号和轴向声振动信号的互相关函数在时延零点以外的峰值最大值的时延值记为τ1,对应采集点2的径向声振动信号和轴向声振动信号的互相关函数在时延零点以外的峰值最大值的时延值记为τ2,两个采集点的轴向声振动信号的互相关函数的峰值最大值的时延值记为τL12,两个采集点的径向声振动信号的互相关函数的峰值最大值的时延值记为τT12;L为已知;
当τL12≠0、τT12≠0和τ12≠0同时成立时,根据如下方法求解泄漏点位置:
用如下方程组对VL、VT、l1和l2进行求解:
τ L 12 V L + l 1 - l 2 = 0 τ T 12 V T + l 1 - l 2 = 0 τ 2 l 1 - τ 1 l 2 = 0 l 1 + l 2 = L
求解出VL、VT、l1和l2后,根据l1和l2即可获知泄漏点位置;
当τL12=0、τT12=0和τ12=0中的任意一个成立时,则根据如下方法求解泄漏点位置:
若τL12=0,τT12=0,而τ12≠0,则泄漏点位于两个采集点之间的中点位置处;若τ12=0,说明两个传感装置之间的间隔为零,则泄漏点、采集点1和采集点2三者位于同一位置处。
前述方法的原理是:
在压力流体管道中,由于管道流体运动以及其他原因造成的管道振动有三种模式,即纵振模式、扭转模式和弯曲模式,这三种模式分别记为L(r,t)、T(r,t)和F(r,t),其中,L(r,t)也叫纵波信号,T(r,t)和F(r,t)也叫横波信号,r是位置坐标,t是时间;管壁上任意位置处的振动信号均由纵波信号和横波信号构成。
其中,沿管道长度方向(即管道轴向)传播的振动信号可由下式表达:
x(t)=L(t)+δLT(t)+ξLF(t) ①
沿管道径向传播的振动信号可由下式表达:
z(t)=T(t)+δTL(t)+ξrF(t) ②
在①②两式中,δL和δT均是由管道材料的泊松比决定的参数,表示由材料正向应变引起的横向应变的程度,δL对应管道轴向,δT对应管道径向,显然δL和δT均小于1;ξL和ξr分别表示管道弯曲应变在轴向和径向上的投影尺度参数,所以ξL和ξr也都是小于1的参数;
根据相关函数理论,轴向振动信号x(t)和径向振动信号z(t)的相关函数可用下式表示:
由于几种振动的自相关部分(即R(T(t),T(t+τ)),R(L(t),L(t+τ))和R(F(t),F(t+τ)))的相关函数的极大值都发生在时延零点,因此可以将几种振动的自相关部分从③式的相关函数中去除,则上式可简化为:
对④式中的各个因子进行分析后我们可以发现,由于δL、δT、ξL和ξr均小于1,因此Rr(x(t),z(t+τ))的最大峰值由R(L(t),T(t+τ))项产生;
根据相关峰值理论可知,峰值所在位置τ即为因横波信号和纵波信号的传播速度之差所导致的时间差,不妨将纵波L(t)的传播速度记为VL,横波F(t)和T(t)的传播速度记为VT,由于纵波波速大于横波波速,则有下式成立:
其中,l为声源传输到信号拾取点的距离;
对应到泄漏点两侧的采集点,将两个采集点分别记为采集点1和采集点2,则可用下式来表达相关函数Rr(xi(t),zi(t))的峰值处时延τi和波速、距离的关系:
其中,i=1,2,i等于1或2时分别对应采集点1和采集点2,li即为采集点i与泄漏点之间的距离。
根据相关函数理论,不同采集点处的轴向振动相关函数R(xi(t),xj(t+τ))(i≠j)可由下式表达:
对⑦式中各个因子的系数进行分析后可以看出,不同采集点处的轴向振动信号的互相关函数R(xi(t),xj(t+τ))的主要项是R(Li(t),Lj(t+τ)),也即最大峰值由R(Li(t),Lj(t+τ))确定。峰值处时延τLij即为因纵波L(t)传播到两个采集点的距离差而导致的时延,其和波速以及采集点位置的关系为:
Lij|=|li-lj|/VL
根据相关函数理论,不同采集点处的径向振动信号相关函数R(zi(t),zj(t+τ))(i≠j)可由下式表达:
对⑨式中各个因子的系数进行分析后可以看出,不同采集点处的径向振动信号的互相关函数R(zi(t),zj(t+τ))的主要项是R(Ti(t),Tj(t+τ)),也即最大峰值由R(Ti(t),Tj(t+τ))确定。峰值处时延τTij即为因横波信号T(t)传播到两个采集点的距离差而导致的时延,时延与波速以及采集点位置的关系为:
Tij|=|li-lj|/VT
将⑥式分别对应到采集点1和采集点2后,与⑧式和⑩式联立可得如下方程组:
τ 1 = l 1 · ( 1 V T - 1 V L ) τ 2 = l 2 · ( 1 V T - 1 V L ) | τ L 12 | = | ( l 1 - l 2 ) | / V L | τ T 12 | = | ( l 1 - l 2 ) | / V T - - - ( 11 )
由实际情况可知,当l1>l2时,τL12<0、τT12<0,反之,当l1<l2时,τL12>0、τT12>0,则方程组(11)可整理为:
τ 1 = l 1 · ( 1 V T - 1 V L ) τ 2 = l 2 · ( 1 V T - 1 V L ) τ L 12 V L + l 1 - l 2 = 0 τ T 12 V T + l 1 - l 2 = 0 - - - ( 12 )
从方程组(12)中可以看出,τL12、τT12、τ1、τ2能根据传感装置的输出量计算获得,VL、VT、l1和l2为未知量,方程组中的四个方程可以求解出这四个未知量,其中,l1和l2即可用于对泄漏点位置进行准确定位;
方程组虽然设计好了,但发明人在对其进行验证时发现,由于方程组(12)中的第1,2式线性相关,方程组(12)能够产生的确定解只能是零,这和实际情况显然不相符合,否则,根据方程组(12)会得到无穷多组解。这说明,仅仅利用上述的时延值,并不能完全求解出未知的监测距离。于是发明人又对方程组(12)进行了改良:基于实际情况可知,l1和l2满足如下关系:
l1+l2=L (13)
其中,L为泄漏点两侧的两个采集点之间的距离;
将方程组(12)与方程(13)结合后可以化为:
τ L 12 V L + l 1 - l 2 = 0 τ T 12 V T + l 1 - l 2 = 0 τ 2 l 1 - τ 1 l 2 = 0 l 1 + l 2 = L - - - ( 14 )
为了对方程组(14)进行验证,可先将其化为如下的矩阵形式:
τ L 12 0 1 - 1 0 τ T 12 1 - 1 0 0 τ 2 - τ 1 0 0 1 1 V L V T l 1 l 2 = 0 0 0 L - - - ( 15 )
设矩阵(15)的行列式为D,则有:
D = τ L 12 0 1 - 1 0 τ T 12 1 - 1 0 0 τ 2 - τ 1 0 0 1 1 = τ L 12 τ T 12 ( τ 1 + τ 2 ) - - - ( 16 )
从行列式(16)中可以看出,当D≠0时,线性方程组(14)有唯一解,当D=0时,线性方程组(14)可能无解或者有多个解。
结合实际情况以及对数据进行分析后,发明人发现,D≠0和D=0恰恰反映了泄漏点的两种位置状态,即:D≠0时,泄漏点位于采集点1和采集点2之间既非中点也非端点的位置处,D=0时,要么泄漏点和采集点1以及采集点2处于相同位置,要么位于采集点1和采集点2的中点位置处,于是有如下结论:
要使D≠0,只要τL12≠0、τT12≠0、τ12≠0同时成立即可,此时方程组(14)有如下解:
V L = ( τ 2 - τ 1 ) L ( τ 1 + τ 2 ) τ L 12 V T = ( τ 2 - τ 1 ) L ( τ 1 + τ 2 ) τ T 12 l 1 = τ 1 L τ 1 + τ 2 l 2 = τ 2 L τ 1 + τ 2 - - - ( 17 )
通过l1和l2即可获知泄漏点的具体位置;
当τL12=0、τT12=0、τ12=0任意一个成立时,D=0,则此时线性方程组(14)可能无解或者有多个解,但是仍然可以根据波速和时延的物理意义,用如下方法求解出泄漏点的位置:
若τL12=0,τT12=0,而τ12≠0,则泄漏点位于两个采集点之间的中点位置处,即泄漏点距任一采集点的距离为L/2;若τ12=0,此种情况只可能出现在两个采集点位置重合的情况下,此时泄漏点和采集点1以及采集点2处于相同位置(实际操作中,有可能出现在同一位置处布设两个采集点的情况,此种情况,可视为两个传感装置的间隔距离为零)。
采用本发明方案后,只需根据传感装置输出的检测数据进行简单计算就能获知泄漏点的位置,算法的处理复杂度较低,系统响应速度快,泄漏检测装置定位的准确性较高,而且不仅不需要知道声振动信号在管道中的传播速度,反而可以求解出声振动信号的传播速度,避免了不同管道导致的声传播速度不同而引起的定位误差,特别适用于对大长度管道的漏点检测。
本发明的有益技术效果是:定位准确性好,不需要知道管道的声振动波速,处理复杂度低,而且可以实际测定管道的纵波和横波声速。
附图说明
图1、本发明的传感装置设置位置示意图。
具体实施方式
一种流体管道泄漏检测定位方法,包括被测管道,其创新在于:所述被测管道上至少设置有两个传感装置,两个传感装置之间间隔一定距离,传感装置所在位置形成采集点,所述传感装置能够同时对两个方向上的管道声振动进行感应,这两个方向分别为管道轴向和管道径向;当两个采集点之间的被测管道上存在泄漏点时,根据如下方法对泄漏点进行定位:
设两个采集点分别为采集点1和采集点2,两个采集点之间的管道长度记为L,采集点1与泄漏点之间的管道长度记为l1,采集点2与泄漏点之间的管道长度记为l2,纵波信号在被测管道上的传播速度记为VL,横波信号在被测管道上的传播速度记为VT;所述传感装置的输出量中包含了径向声振动信号和轴向声振动信号,对应采集点1的径向声振动信号和轴向声振动信号的互相关函数在时延零点以外的峰值最大值的时延值记为τ1,对应采集点2的径向声振动信号和轴向声振动信号的互相关函数在时延零点以外的峰值最大值的时延值记为τ2,两个采集点的轴向声振动信号的互相关函数的峰值最大值的时延值记为τL12,两个采集点的径向声振动信号的互相关函数的峰值最大值的时延值记为τT12;L为已知;
当τL12≠0、τT12≠0和τ12≠0同时成立时,根据如下方法求解泄漏点位置:
用如下方程组对VL、VT、l1和l2进行求解:
τ L 12 V L + l 1 - l 2 = 0 τ T 12 V T + l 1 - l 2 = 0 τ 2 l 1 - τ 1 l 2 = 0 l 1 + l 2 = L
求解出VL、VT、l1和l2后,根据l1和l2即可获知泄漏点位置;
当τL12=0、τT12=0和τ12=0中的任意一个成立时,则根据如下方法求解泄漏点位置:
若τL12=0,τT12=0,而τ12≠0,则泄漏点位于两个采集点之间的中点位置处;若τ12=0,则说明两个传感装置之间的间隔为零,此时泄漏点、采集点1和采集点2三者位于同一位置处。
本发明中的传感装置可采用两个声/振动传感器实现也可采用一个双轴声/振动传感器实现;采用一个双轴的声/振动传感器实现时,使传感器的一个敏感轴(即图1中的x向)与管道的轴向平行,另一个敏感轴(即图1中的z向)与管道的径向平行,两轴的传感输出即分别为轴向声振动信号和径向声振动信号。采用两个声/振动传感器实现时,使其中一个传感器的传感方向(即图1中x向)与管道轴向平行,同时,使另一个传感器的传感方向(即图1中z向)与管道径向平行,两个传感器的传感输出即分别为轴向声振动信号和径向声振动信号。获取到轴向声振动信号和径向声振动信号后,通过两个传感装置就能获取两对轴向声振动信号和径向声振动信号,从而形成四组互相关函数,对四组互相关函数进行分析计算后,我们就能获得τL12、τT12、τ1和τ2这四个时延值。

Claims (1)

1.一种流体管道泄漏检测定位方法,包括被测管道,其特征在于:所述被测管道上至少设置有两个传感装置,两个传感装置之间间隔一定距离,传感装置所在位置形成采集点,所述传感装置能够同时对两个方向上的管道声振动进行感应,这两个方向分别为管道轴向和管道径向;当两个采集点之间的被测管道上存在泄漏点时,根据如下方法对泄漏点进行定位:
设两个采集点分别为采集点1和采集点2,两个采集点之间的管道长度记为L,采集点1与泄漏点之间的管道长度记为l1,采集点2与泄漏点之间的管道长度记为l2,纵波信号在被测管道上的传播速度记为VL,横波信号在被测管道上的传播速度记为VT;所述传感装置的输出量中包含了径向声振动信号和轴向声振动信号,对应采集点1的径向声振动信号和轴向声振动信号的互相关函数在时延零点以外的峰值最大值的时延值记为τ1,对应采集点2的径向声振动信号和轴向声振动信号的互相关函数在时延零点以外的峰值最大值的时延值记为τ2,两个采集点的轴向声振动信号的互相关函数的峰值最大值的时延值记为τL12,两个采集点的径向声振动信号的互相关函数的峰值最大值的时延值记为τT12;L为已知;
当τL12≠0、τT12≠0和τ12≠0同时成立时,根据如下方法求解泄漏点位置:
用如下方程组对VL、VT、l1和l2进行求解:
τ L 12 V L + l 1 - l 2 = 0 τ T 12 V T + l 1 - l 2 = 0 τ 2 l 1 - τ 1 l 2 = 0 l 1 + l 2 = L
求解出VL、VT、l1和l2后,根据l1和l2即可获知泄漏点位置;
当τL12=0、τT12=0和τ12=0中的任意一个成立时,则根据如下方法求解泄漏点位置:
若τL12=0,τT12=0,而τ12≠0,则泄漏点位于两个采集点之间的中点位置处;若τ12=0,则说明两个传感装置之间的间隔为零,此时泄漏点、采集点1和采集点2三者位于同一位置处。
CN201410373753.7A 2014-07-31 2014-07-31 流体管道泄漏检测定位方法 Active CN104132248B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410373753.7A CN104132248B (zh) 2014-07-31 2014-07-31 流体管道泄漏检测定位方法
US14/558,726 US20160033354A1 (en) 2014-07-31 2014-12-03 Method and device for leak detection and location for fluid pipelines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410373753.7A CN104132248B (zh) 2014-07-31 2014-07-31 流体管道泄漏检测定位方法

Publications (2)

Publication Number Publication Date
CN104132248A CN104132248A (zh) 2014-11-05
CN104132248B true CN104132248B (zh) 2016-10-19

Family

ID=51805037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410373753.7A Active CN104132248B (zh) 2014-07-31 2014-07-31 流体管道泄漏检测定位方法

Country Status (2)

Country Link
US (1) US20160033354A1 (zh)
CN (1) CN104132248B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104747912B (zh) * 2015-04-23 2017-04-12 重庆邮电大学 流体输送管道泄漏声发射时频定位方法
US10366269B2 (en) * 2016-05-06 2019-07-30 Qualcomm Incorporated Biometric system with photoacoustic imaging
US10235551B2 (en) * 2016-05-06 2019-03-19 Qualcomm Incorporated Biometric system with photoacoustic imaging
CN105782729A (zh) * 2016-05-10 2016-07-20 肖香福 一种燃气管道自动检漏装置
CN106594529B (zh) * 2017-01-20 2018-08-24 合肥工业大学 基于短时能量和线性拟合的泄漏信号传播速度测量方法
CN106949382B (zh) * 2017-04-21 2023-09-12 上海山南勘测设计有限公司 一种用于检测管道液体泄漏的装置及其使用方法
CN107940245A (zh) * 2017-11-13 2018-04-20 中国石油大学(华东) 基于单点双传感器的气液分层流管道泄漏定位方法及系统
CN108731886B (zh) * 2018-05-30 2019-10-08 北京工业大学 一种基于迭代递推的供水管道多泄漏点声定位方法
CN110987318B (zh) * 2019-12-11 2021-11-05 北京华展汇元信息技术有限公司 一种高压管道气体泄露自动检测装置和检测方法
CN111365625A (zh) * 2020-04-13 2020-07-03 安徽理工大学 一种基于延迟求和的管道泄漏声波定位方法
CN113007607B (zh) * 2021-03-02 2022-04-26 东北大学 一种深井充填管路运营工况超声诊断系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123894A (zh) * 1994-08-19 1996-06-05 美商卡登有限公司 用于确定流体从管道中漏逸出来的位置的系统和方法
US6530263B1 (en) * 2000-09-29 2003-03-11 Radcom Technologies Ltd Method and system for localizing and correlating leaks in fluid conveying conduits
CN101487567A (zh) * 2008-01-18 2009-07-22 北京世纪华扬能源科技有限公司 音波泄漏检测定位装置
CN101684894A (zh) * 2008-09-27 2010-03-31 中国石油天然气股份有限公司 一种管道泄漏监测方法及装置
WO2013145492A1 (ja) * 2012-03-30 2013-10-03 日本電気株式会社 漏洩検知方法、漏水検知方法、漏洩検知装置および漏水検知装置
CN103836348A (zh) * 2014-03-24 2014-06-04 南开大学 基于光纤光栅的油气管线泄漏检测方法及装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083229B2 (en) * 1976-09-28 1984-09-11 Method and apparatus for detecting and locating fluid leaks
US4289019A (en) * 1979-10-30 1981-09-15 The United States Of America As Represented By The United States Department Of Energy Method and means of passive detection of leaks in buried pipes
US5205173A (en) * 1991-06-21 1993-04-27 Palmer Environmental Services Method and apparatus for detecting leaks in pipelines using cross-correlation techniques
GB9619789D0 (en) * 1996-09-20 1996-11-06 Palmer Environmental Ltd Leak noise correlator
GB2364126B (en) * 2000-06-26 2004-06-02 Palmer Environmental Ltd A leak detection apparatus and method
US6442999B1 (en) * 2001-03-22 2002-09-03 Joseph Baumoel Leak locator for pipe systems
JP2006003311A (ja) * 2004-06-21 2006-01-05 Mitsubishi Electric Corp 異常箇所検出装置
GB2423562B (en) * 2005-05-27 2007-01-17 Brinker Technology Ltd Determining leak location and size in pipes
US7810378B2 (en) * 2007-06-21 2010-10-12 National Research Council Of Canada Monitoring of leakage in wastewater force mains and other pipes carrying fluid under pressure
US8850871B2 (en) * 2010-09-30 2014-10-07 Siemens Aktiengesellschaft Pipeline leak location using ultrasonic flowmeters
CN102853261A (zh) * 2011-06-27 2013-01-02 国际商业机器公司 确定输送管道中的流体泄漏量的方法和装置
US9766151B2 (en) * 2012-09-18 2017-09-19 Nec Corporation Leakage analysis system and leakage detection method using at least two measurement terminals
CN105051513A (zh) * 2013-01-28 2015-11-11 阿夸里乌斯光谱有限公司 用于检测管线网络中的泄漏的方法及设备
DE102014003554A1 (de) * 2013-10-09 2015-04-09 Seba-Dynatronic Mess- Und Ortungstechnik Gmbh Verfahren zur Synchronisation der Datenaufzeichnung in Rohrleitungsnetzen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123894A (zh) * 1994-08-19 1996-06-05 美商卡登有限公司 用于确定流体从管道中漏逸出来的位置的系统和方法
US6530263B1 (en) * 2000-09-29 2003-03-11 Radcom Technologies Ltd Method and system for localizing and correlating leaks in fluid conveying conduits
CN101487567A (zh) * 2008-01-18 2009-07-22 北京世纪华扬能源科技有限公司 音波泄漏检测定位装置
CN101684894A (zh) * 2008-09-27 2010-03-31 中国石油天然气股份有限公司 一种管道泄漏监测方法及装置
WO2013145492A1 (ja) * 2012-03-30 2013-10-03 日本電気株式会社 漏洩検知方法、漏水検知方法、漏洩検知装置および漏水検知装置
CN103836348A (zh) * 2014-03-24 2014-06-04 南开大学 基于光纤光栅的油气管线泄漏检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
泄漏声振动传播信道辨识及其在泄漏点定位中的应用;杨进;《振动工程学报》;20070630;第20卷(第3期);第260-267页 *

Also Published As

Publication number Publication date
CN104132248A (zh) 2014-11-05
US20160033354A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
CN104132248B (zh) 流体管道泄漏检测定位方法
CN104747912B (zh) 流体输送管道泄漏声发射时频定位方法
CN105022031B (zh) 一种区域岩体微震震源的分层速度定位方法
Lu et al. A two-step approach for crack identification in beam
CA2716145C (en) Monitoring system for well casing
CN102129063A (zh) 一种微震源或声发射源的定位方法
CN102507742B (zh) 一种机械复合管结合强度的评价方法
FR2798197B1 (fr) Methode pour former un modele d'une formation geologique, contraint par des donnees dynamiques et statiques
NO319068B1 (no) Fremgangsmate for a bestemme lokal borehullsgeometri ut fra ultrasoniske puls-ekko-malinger
US10364665B2 (en) Method and apparatus for stress mapping of pipelines and other tubulars
CN107817516B (zh) 基于初至波信息的近地表建模方法及系统
CN107607158A (zh) 声学法测量管内轴向流速分布及流量的系统
CN104656123A (zh) 一种测定区域岩体等效波速的方法
CN108717201A (zh) 一种隧道围岩微震源定位方法
CN106289121A (zh) 一种变径管等效管长的计算方法
CN105004662A (zh) 一种测试岩体结构面接触刚度的方法及装置
CN104235619A (zh) 流体管道泄漏状态辨识方法
CN105953080A (zh) 基于同侧传感器布置的声波泄漏定位方法
Lah et al. Localization techniques for water pipeline leakages: A review
Li et al. Leakage simulation and acoustic characteristics based on acoustic logging by ultrasonic detection
US20120150445A1 (en) Reservoir grid conversion for scaling strain
Reyes et al. Modeling and simulation of ultrasonic flow meters: State of art
CN114993322A (zh) 地下管道三维测量路径筛选方法及计算机可读存储介质
Li et al. Helical-contact deformation measuring method in oil-gas pipelines
Chatzigeorgiou et al. Detection & estimation algorithms for in-pipe leak detection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant