CN104099891B - 基于动态调节性能的水库群补偿调度方法及系统 - Google Patents

基于动态调节性能的水库群补偿调度方法及系统 Download PDF

Info

Publication number
CN104099891B
CN104099891B CN201410346468.6A CN201410346468A CN104099891B CN 104099891 B CN104099891 B CN 104099891B CN 201410346468 A CN201410346468 A CN 201410346468A CN 104099891 B CN104099891 B CN 104099891B
Authority
CN
China
Prior art keywords
reservoir
water
constraint
water yield
flood control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410346468.6A
Other languages
English (en)
Other versions
CN104099891A (zh
Inventor
钟平安
万新宇
朱非林
贾本有
陈娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201410346468.6A priority Critical patent/CN104099891B/zh
Publication of CN104099891A publication Critical patent/CN104099891A/zh
Application granted granted Critical
Publication of CN104099891B publication Critical patent/CN104099891B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种基于动态调节性能的水库群补偿调度方法及系统,水库群补偿调度方法包括如下步骤:建立防洪点超额水量分配模型;根据各水库动态调节系数的大小确定水库群轮库补偿调度次序;确定水库群补偿调度的目标函数和约束条件;采用分级控制分段试算法计算得到水库调度方案。本发明综合考虑了水库的空间位置、空闲库容、入库洪水过程和后续降雨四个因素,比现有的补偿调度通用模型考虑因素更加全面,并利用动态调节系数来衡量水库的动态调节能力,依此确定水库群轮库补偿调度次序,更能满足实时防洪调度的实际要求。本发明计算得出的水库群补偿调度方案的可操作性较好,和现有的补偿调度通用模型相比计算速度更快,并且易于实现、通用性强。

Description

基于动态调节性能的水库群补偿调度方法及系统
技术领域
本发明属于水利工程领域中的水库调度技术,尤其涉及一种基于动态调节性能的水库群补偿调度方法及系统。
背景技术
水库调度技术是指利用水库的调蓄作用对入库流量过程进行调节,改变天然径流的时空分配,达到消除洪涝灾害、提高水资源和水能资源利用率的目的,是流域水库群运行管理的重要手段之一。
水库补偿调度属于防洪调度的范畴,其主要目标是在保证水库最高水位和调度期末水位约束的前提下,通过水库群的联合调度,使得各个水库的出库流量和不可控的区间来水过程在防洪点相互叠加所形成的流量过程的峰值最小,从而实现整个防洪系统防洪效益的最大化。
目前,现有的水库群补偿调度方法主要存在以下不足:(1)计算效率低。以逐次优化算法(POA)、动态规划(DP)为代表的数学规划方法在水库群补偿调度中应该较为广泛,这类方法的计算时间较长,次洪计算所需的时间以分钟为量级,并且最优解不唯一,难以满足水库实时防洪调度的实际应用要求。(2)考虑因素不够全面。现阶段的补偿调度通用模型仅考虑了预泄和拦蓄这两个因素,该模型虽然容易实现,但是考虑的因素不够全面,难以求得水库群最优的泄洪策略。
发明内容
发明目的:一个目的是提供一种基于动态调节性能的水库群补偿调度方法,以解决现有技术计算效率低,无法实现水库实时防洪调度的要求,以及考虑因素不全面的问题。
另一个目的是构建一种基于动态调节性能的水库群补偿调度系统,以实现上述方法。
技术方案:一种基于动态调节性能的水库群补偿调度方法,包括如下步骤:
建立防洪点超额水量分配模型;根据各水库动态调节系数的大小确定水库群轮库补偿调度次序;确定水库群补偿调度的目标函数和约束条件;采用分级控制分段试算法计算得到水库调度方案。
上述方案进一步为:
步骤1、建立防洪点超额水量分配模型:
步骤11、计算防洪点超过安全泄量的水量W超额
其中,Q(t)为防洪点天然洪水过程;qA为防洪点的安全泄量;t0、t1分别为超额水量的起、止时序;Δt为时段长;T为次洪总时段数;
步骤12、计算第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量Wi
W i = Σ t = t 0 t 1 Q i ′ ( t ) · Δt
其中,Qi’(t)为第i个水库泄流在防洪点的响应过程,Δt为时段长;
Wi考虑了洪水的演进,在一定程度上反映了水库的空间位置差异。若表明各个水库利用自身可用的调蓄库容可以将超额水量拦蓄在水库中;若则表明不可控的区间洪水对超额水量有一定的贡献,n为防洪点上游水库的总数。
步骤13、本实施例将W超额在n个水库间进行合理的分配,分配的原则综合考虑了水库的空间位置、空闲库容、入库洪水过程和后续降雨四个因素。对第i个水库而言,水库在当前水位下剩余的调蓄库容为Vi,后续降雨量为hi,水库控制面积为Si,则后续降雨导致的入库水量为hi·Si,需要预留的库容ΔVi可采用以下公式计算,
ΔVi=hi·Si-ΔWi
其中,ΔWi为第i个水库在计算期内的下泄水量,Vi为水库在当前水位下剩余的调蓄库容;
步骤14、计算第i个水库分担的拦蓄水量Wi,拦蓄,n个水库的极限拦蓄水量W拦蓄,第i个水库实际拦蓄水量的分担系数,以及第i个水库实际拦蓄水量;
第i个水库分担的拦蓄水量,Wi,拦蓄=min{Vi-ΔVi,Wi}
n个水库的极限拦蓄水量,
第i个水库实际拦蓄水量的分担系数,
第i个水库实际拦蓄水量,ΔWi'=λi·W拦蓄
步骤2、根据各水库动态调节系数的大小确定水库群轮库补偿调度次序:
本实施例采用轮库补偿的方法进行水库群联合调度,为了确定各个水库的补偿调度次序,提出了反映水库动态调节能力的动态调节系数,第i个水库的动态调节系数αi可采用以下公式计算: α i = 1 - min ( W i , V i - Δ V i ) V i - Δ V i
水库群轮库补偿调度次序按照动态调节系数由小到大的顺序确定,即调节能力低的水库优先进行补偿调度;当动态调节系数相同时,传播时间较短者优先。
步骤3、确定水库群补偿调度的目标函数和约束条件:
以防洪点的洪峰流量最小为目标,其目标函数为:
第1个水库的目标函数表达式为:
其中,T为调度期时段数;q1(t)为第1个水库的出库流量在防洪点的响应过程;Q(t)为区间流量过程;qA为防洪点安全泄量;
第i个水库的目标函数表达式为:
其中,qi(t)为第i个水库的出库流量在防洪点的响应过程;为第1库至第i-1库的出库流量在防洪点的响应过程之和;其它变量同前所述;
约束条件包括水量平衡约束、水库最高水位约束、调度期末水位约束、水库泄流能力约束和出库允许变幅约束:
水量平衡约束: V i ( t ) = V i ( t - 1 ) + [ Q i ( t ) + Q i ( t - 1 ) 2 - q i ( t ) + q i ( t - 1 ) 2 ] · Δt ,
其中,Qi(t-1),Qi(t)为第i水库第t时段始末入库流量;qi(t-1),qi(t)为第i水库第t时段始末出库流量;Vi(t-1),Vi(t)为第i水库第t时段始末水库的蓄水量;Δt为时段长;
水库最高水位约束:Zi(t)≤Zmax,i,Zmax,i=Z(V(Zi 0)+ΔWi'),
其中,Zi(t)为第i水库第t时刻的水位;Zmax,i为第i水库的最高控制水位;Zi 0为第i水库的起调水位;ΔWi'为第i水库的实际拦蓄水量;
调度期末水位约束:Zi,end≥Zi,e
其中,Zi,end为第i水库调度期末水位;Zi,e为第i水库调度期末控制水位;当满足其他约束时,可以取“=”。
水库泄流能力约束:qi(t)≤qi(Zi(t))
其中,qi(t)为第i水库第t时刻的出库流量;qi(Zi(t))为第i水库第t时刻在水位Zi(t)时的泄流能力。
出库允许变幅约束:|qi(t)-qi(t-1)|≤▽qi,m
其中,|qi(t)-qi(t-1)|为第i水库相邻时段出库流量的变幅;▽qi,m为第i水库的允许出库流量变幅。
步骤4、采用分级控制分段试算法计算得到水库调度方案。
所述步骤4进一步包括:
步骤41、给出水库仅考虑防洪库容单一约束条件下的初始理想最优解;
步骤42、根据水量平衡方程进行调节计算,并逐时段检验泄流能力约束和出库允许变幅约束,如果满足约束条件,直接转下一步,否则修正出库流量后重新进行调节计算;
步骤43、检验最高水位约束,如果满足约束条件,直接转下一步,否则修正出库流量后转步骤42重新进行调节计算;
步骤44、检验期末水位约束,如果满足约束条件,整理计算结果,结束计算,否则修正出库流量后转步骤42重新进行调节计算。
一种基于动态调节性能的水库群补偿调度系统,包括如下模块:
建模模块,用于建立防洪点超额水量分配模型;
目标函数和约束条件确立模块,用于确定水库群补偿调度的目标函数和约束条件;
分级控制分段试算法模块,用于计算得到水库调度方案。
在其他技术方案中,进一步为:
用于建立防洪点超额水量分配模型的建模模块包括:
第一子模块、用于计算防洪点超过安全泄量的水量W超额
其中,Q(t)为防洪点天然洪水过程;qA为防洪点的安全泄量;t0、t1分别为超额水量的起、止时序;Δt为时段长;T为次洪总时段数;
第二子模块,用于计算第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量Wi
W i = Σ t = t 0 t 1 Q i ′ ( t ) · Δt
其中,Qi’(t)为第i个水库泄流在防洪点的响应过程,Δt为时段长;
第三子模块,用于计算需要预留的库容ΔVi
ΔVi=hi·Si-ΔWi
其中,ΔWi为第i个水库在计算期内的下泄水量,Vi为水库在当前水位下剩余的调蓄库容,hi为后续降雨量,Si为水库控制面积;
第四子模块,用于计算第i个水库分担的拦蓄水量Wi,拦蓄,n个水库的极限拦蓄水量W拦蓄,第i个水库实际拦蓄水量的分担系数,以及第i个水库实际拦蓄水量;
第i个水库分担的拦蓄水量,Wi,拦蓄=min{Vi-ΔVi,Wi}
n个水库的极限拦蓄水量,
第i个水库实际拦蓄水量的分担系数,
第i个水库实际拦蓄水量,ΔWi'=λi·W拦蓄
所述用于根据各水库动态调节系数的大小确定水库群轮库补偿调度次序的调度模块包括;
用于计算第i个水库动态调节系数αi的调节系数计算模块,
α i = 1 - min ( W i , V i - Δ V i ) V i - Δ V i
其中,Vi为水库在当前水位下剩余的调蓄库容,ΔVi为需要预留的库容,Wi为第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量;
用于确定水库群补偿调度的目标函数和约束条件的目标函数和约束条件确立模块包括若干个目标函数确立子模块和约束条件确立子模块:
以防洪点的洪峰流量最小为目标,其目标函数为:
第1个水库的目标函数表达式为:
其中,T为调度期时段数;q1(t)为第1个水库的出库流量在防洪点的响应过程;Q(t)为区间流量过程;qA为防洪点安全泄量;
第i个水库的目标函数表达式为:
其中,qi(t)为第i个水库的出库流量在防洪点的响应过程;为第1库至第i-1库的出库流量在防洪点的响应过程之和;其它变量同前所述;
约束条件建立子模块包括水量平衡约束建立子模块、水库最高水位约束建立子模块、调度期末水位约束建立子模块、水库泄流能力约束建立子模块和出库允许变幅约束建立子模块:
水量平衡约束建立子模块建立如下水量平衡约束:
V i ( t ) = V i ( t - 1 ) + [ Q i ( t ) + Q i ( t - 1 ) 2 - q i ( t ) + q i ( t - 1 ) 2 ] · Δt ,
其中,Qi(t-1),Qi(t)为第i水库第t时段始末入库流量;qi(t-1),qi(t)为第i水库第t时段始末出库流量;Vi(t-1),Vi(t)为第i水库第t时段始末水库的蓄水量;Δt为时段长;
水库最高水位约束建立子模块建立如下水库最高水位约束:
Zi(t)≤Zmax,i,Zmax,i=Z(V(Zi 0)+ΔWi'),
其中,Zi(t)为第i水库第t时刻的水位;Zmax,i为第i水库的最高控制水位;Zi 0为第i水库的起调水位;ΔWi'为第i水库的实际拦蓄水量;
调度期末水位约束建立子模块建立如下调度期末水位约束:
Zi,end≥Zi,e
其中,Zi,end为第i水库调度期末水位;Zi,e为第i水库调度期末控制水位;当满足其他约束时,可以取“=”。
水库泄流能力约束建立子模块建立如下水库泄流能力约束:
qi(t)≤qi(Zi(t))
其中,qi(t)为第i水库第t时刻的出库流量;qi(Zi(t))为第i水库第t时刻在水位Zi(t)时的泄流能力。
出库允许变幅约束建立子模块建立如下出库允许变幅约束:
|qi(t)-qi(t-1)|≤▽qi,m
其中,|qi(t)-qi(t-1)|为第i水库相邻时段出库流量的变幅;▽qi,m为第i水库的允许出库流量变幅;
分级控制分段试算法模块,用于计算得到水库调度方案。
所述分级控制分段试算法模块用于执行如下计算过程:
步骤41、给出水库仅考虑防洪库容单一约束条件下的初始理想最优解;
步骤42、根据水量平衡方程进行调节计算,并逐时段检验泄流能力约束和出库允许变幅约束,如果满足约束条件,直接转下一步,否则修正出库流量后重新进行调节计算;
步骤43、检验最高水位约束,如果满足约束条件,直接转下一步,否则修正出库流量后转步骤42重新进行调节计算;
步骤44、检验期末水位约束,如果满足约束条件,整理计算结果,结束计算,否则修正出库流量后转步骤42重新进行调节计算。
有益效果:1、本发明综合考虑了水库的空间位置、空闲库容、入库洪水过程和后续降雨四个因素,比现有的补偿调度通用模型考虑因素更加全面,并利用动态调节系数来衡量水库的动态调节能力,依此确定水库群轮库补偿调度次序,更能满足实时防洪调度的实际要求。2、本发明计算得出的水库群补偿调度方案的可操作性较好,和现有的补偿调度通用模型相比计算速度更快,效率更高,并且易于实现、通用性强。
附图说明
图1为本发明方法的流程图。
图2为防洪点超额水量示意图,其中:Q(t)为防洪点天然洪水过程;qA为防洪点的安全泄量;W超额为防洪点的超额水量;Qi’(t)为水库泄流在防洪点的响应过程;t0、t1分别为超额水量的起、止时序;Wi为Qi’(t)位于[t0,t1]时段的水量。
图3为分级控制分段试算法求解流程图。
具体实施方式
如图1至图3所示,本发明基于动态调节性能的水库群补偿调度方法,包括以下步骤:
步骤1,建立防洪点超额水量分配模型:
图2为防洪点超额水量示意图,定义W超额为防洪点超过安全泄量的水量,可采用以下公式计算:
其中,Q(t)为防洪点天然洪水过程;qA为防洪点的安全泄量;t0、t1分别为超额水量的起、止时序;Δt为时段长;T为次洪总时段数。
定义Wi为第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量,可采用以下公式计算:
W i = Σ t = t 0 t 1 Q i ′ ( t ) · Δt
其中,Qi’(t)为第i个水库泄流在防洪点的响应过程;其它变量同前。
Wi考虑了洪水的演进,在一定程度上反映了水库的空间位置差异。若表明各个水库利用自身可用的调蓄库容可以将超额水量拦蓄在水库中;若则表明不可控的区间洪水对超额水量有一定的贡献,n为防洪点上游水库的总数。
本实施例将W超额在n个水库间进行合理的分配,分配的原则综合考虑了水库的空间位置、空闲库容、入库洪水过程和后续降雨四个因素。对第i个水库而言,水库在当前水位下剩余的调蓄库容为Vi,后续降雨量为hi,水库控制面积为Si,则后续降雨导致的入库水量为hi·Si,水库考虑后续降雨需要预留的库容ΔVi可采用以下公式计算:
ΔVi=hi·Si-ΔWi
其中,ΔWi为第i个水库在计算期内的下泄水量。
本实施例综合考虑以上四个因素,第i个水库分担的拦蓄水量Wi,拦蓄可采用以下公式计算:
Wi,拦蓄=min{Vi-ΔVi,Wi}
n个水库的极限拦蓄水量W拦蓄可采用以下公式计算:
第i个水库实际拦蓄水量的分担系数可采用以下公式计算:
第i个水库实际拦蓄水量可采用以下公式计算:
ΔWi'=λi·W拦蓄
步骤2,根据各水库动态调节系数的大小确定水库群轮库补偿调度次序:
本实施例采用轮库补偿的方法进行水库群联合调度,为了确定各个水库的补偿调度次序,提出了反映水库动态调节能力的动态调节系数,第i个水库动态调节系数αi可采用以下公式计算:
α i = 1 - min ( W i , V i - Δ V i ) V i - Δ V i
水库群轮库补偿调度次序按照动态调节系数由小到大的顺序确定,即调节能力低的水库优先进行补偿调度;当动态调节系数相同时,传播时间较短者优先。
步骤3,确定水库群补偿调度的目标函数和约束条件:
在本实施例中,以防洪点的洪峰流量最小为目标,其目标函数可采用以下公式表示:
第1个水库的目标函数表达式为:
其中,T为调度期时段数;q1(t)为第1个水库的出库流量在防洪点的响应过程;Q(t)为区间流量过程;qA为防洪点安全泄量。
第i个水库的目标函数表达式为:
其中,qi(t)为第i个水库的出库流量在防洪点的响应过程;为第1库至第i-1库的出库流量在防洪点的响应过程之和;其它变量同前。
本实施例考虑的约束条件如下:
(1)水量平衡约束,可用以下公式表示:
V i ( t ) = V i ( t - 1 ) + [ Q i ( t ) + Q i ( t - 1 ) 2 - q i ( t ) + q i ( t - 1 ) 2 ] · Δt
其中,Qi(t-1),Qi(t)为第i水库第t时段始末入库流量;qi(t-1),qi(t)为第i水库第t时段始末出库流量;Vi(t-1),Vi(t)为第i水库第t时段始末水库的蓄水量;Δt为时段长。
(2)水库最高水位约束,可用以下公式表示:
Zi(t)≤Zmax,i
Zmax,i=Z(V(Zi 0)+ΔWi')
其中,Zi(t)为第i水库第t时刻的水位;Zmax,i为第i水库的最高控制水位;Zi 0为第i水库的起调水位;ΔWi'为第i水库的实际拦蓄水量。
(3)调度期末水位约束,可用以下公式表示:
Zi,end≥Zi,e
其中,Zi,end为第i水库调度期末水位;Zi,e为第i水库调度期末控制水位;当满足其他约束时,可以取“=”。
(4)水库泄流能力约束,可用以下公式表示:
qi(t)≤qi(Zi(t))
其中,qi(t)为第i水库第t时刻的出库流量;qi(Zi(t))为第i水库第t时刻在水位Zi(t)时的泄流能力。
(5)出库允许变幅约束,可用以下公式表示:
|qi(t)-qi(t-1)|≤▽qi,m
其中,|qi(t)-qi(t-1)|为第i水库相邻时段出库流量的变幅;▽qi,m为第i水库的允许出库流量变幅。
步骤4,采用分级控制分段试算法计算得到水库调度方案:
分级控制分段试算法是基于“理想最优解”的过程迭代算法,该算法通过重要性逐步引入约束条件,经过反复迭代计算逼近最优解。算法的流程如附图3所示,主要包括以下求解步骤:
(1)给出水库仅考虑防洪库容单一约束条件下的初始理想最优解;
(2)根据水量平衡方程进行调节计算,并逐时段检验泄流能力约束和出库允许变幅约束,如果满足约束条件,直接转下一步,否则修正出库流量后重新进行调节计算;
(3)检验最高水位约束,如果满足约束条件,直接转下一步,否则修正出库流量后转(2)重新进行调节计算;
(4)检验期末水位约束,如果满足约束条件,整理计算结果,结束计算,否则修正出库流量后转(2)重新进行调节计算。
本发明还提供了一种实现上述方法的系统,一种基于动态调节性能的水库群补偿调度系统,包括如下模块:
建模模块,用于建立防洪点超额水量分配模型;
目标函数和约束条件确立模块,用于确定水库群补偿调度的目标函数和约束条件;
分级控制分段试算法模块,用于计算得到水库调度方案。
在其他技术方案中,进一步为:
用于建立防洪点超额水量分配模型的建模模块包括:
第一子模块,用于计算防洪点超过安全泄量的水量W超额
其中,Q(t)为防洪点天然洪水过程;qA为防洪点的安全泄量;t0、t1分别为超额水量的起、止时序;Δt为时段长;T为次洪总时段数;
第二子模块,用于计算第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量Wi
W i = Σ t = t 0 t 1 Q i ′ ( t ) · Δt
其中,Qi’(t)为第i个水库泄流在防洪点的响应过程,Δt为时段长;
第三子模块,用于计算需要预留的库容ΔVi
ΔVi=hi·Si-ΔWi
其中,ΔWi为第i个水库在计算期内的下泄水量,Vi为水库在当前水位下剩余的调蓄库容,hi为后续降雨量,Si为水库控制面积;
第四子模块,用于计算第i个水库分担的拦蓄水量Wi,拦蓄,n个水库的极限拦蓄水量W拦蓄,第i个水库实际拦蓄水量的分担系数,以及第i个水库实际拦蓄水量;
第i个水库分担的拦蓄水量,Wi,拦蓄=min{Vi-ΔVi,Wi}
n个水库的极限拦蓄水量,
第i个水库实际拦蓄水量的分担系数,
第i个水库实际拦蓄水量,ΔWi'=λi·W拦蓄
所述用于根据各水库动态调节系数的大小确定水库群轮库补偿调度次序的调度模块包括;
用于计算第i个水库动态调节系数αi的调节系数计算模块,
α i = 1 - min ( W i , V i - Δ V i ) V i - Δ V i
其中,Vi为水库在当前水位下剩余的调蓄库容,ΔVi为需要预留的库容,Wi为第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量;
用于确定水库群补偿调度的目标函数和约束条件的函数确立模块包括若干个个函数确定子模块和约束条件建立子模块:
以防洪点的洪峰流量最小为目标,其目标函数为:
第1个水库的目标函数表达式为:
其中,T为调度期时段数;q1(t)为第1个水库的出库流量在防洪点的响应过程;Q(t)为区间流量过程;qA为防洪点安全泄量;
第i个水库的目标函数表达式为:
其中,qi(t)为第i个水库的出库流量在防洪点的响应过程;为第1库至第i-1库的出库流量在防洪点的响应过程之和;其它变量同前所述;
约束条件建立子模块包括水量平衡约束建立子模块、水库最高水位约束建立子模块、调度期末水位约束建立子模块、水库泄流能力约束建立子模块和出库允许变幅约束建立子模块:
水量平衡约束建立子模块建立如下水量平衡约束:
V i ( t ) = V i ( t - 1 ) + [ Q i ( t ) + Q i ( t - 1 ) 2 - q i ( t ) + q i ( t - 1 ) 2 ] · Δt ,
其中,Qi(t-1),Qi(t)为第i水库第t时段始末入库流量;qi(t-1),qi(t)为第i水库第t时段始末出库流量;Vi(t-1),Vi(t)为第i水库第t时段始末水库的蓄水量;Δt为时段长;
水库最高水位约束建立子模块建立如下水库最高水位约束:
Zi(t)≤Zmax,i,Zmax,i=Z(V(Zi 0)+ΔWi'),
其中,Zi(t)为第i水库第t时刻的水位;Zmax,i为第i水库的最高控制水位;Zi 0为第i水库的起调水位;ΔWi'为第i水库的实际拦蓄水量;
调度期末水位约束建立子模块建立如下调度期末水位约束,Zi,end≥Zi,e
其中,Zi,end为第i水库调度期末水位;Zi,e为第i水库调度期末控制水位;当满足其他约束时,可以取“=”。
水库泄流能力约束建立子模块建立如下水库泄流能力约束,可用以下公式表示:qi(t)≤qi(Zi(t))
其中,qi(t)为第i水库第t时刻的出库流量;qi(Zi(t))为第i水库第t时刻在水位Zi(t)时的泄流能力。
出库允许变幅约束建立子模块建立如下出库允许变幅约束,|qi(t)-qi(t-1)|≤▽qi,m
其中,|qi(t)-qi(t-1)|为第i水库相邻时段出库流量的变幅;▽qi,m为第i水库的允许出库流量变幅;
用于求解水库调度方案的分级控制分段试算法模型具体执行以下计算过程:
步骤41、给出水库仅考虑防洪库容单一约束条件下的初始理想最优解;
步骤42、根据水量平衡方程进行调节计算,并逐时段检验泄流能力约束和出库允许变幅约束,如果满足约束条件,直接转下一步,否则修正出库流量后重新进行调节计算;
步骤43、检验最高水位约束,如果满足约束条件,直接转下一步,否则修正出库流量后转步骤42重新进行调节计算;
步骤44、检验期末水位约束,如果满足约束条件,整理计算结果,结束计算,否则修正出库流量后转步骤42重新进行调节计算。以上详细描述了本发明的具体实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (4)

1.一种基于动态调节性能的水库群补偿调度方法,其特征在于,包括如下步骤:
步骤1、建立防洪点超额水量分配模型:
步骤11、计算防洪点超过安全泄量的水量W超额
其中,Q(t)为防洪点天然洪水过程;qA为防洪点的安全泄量;t0、t1分别为超额水量的起、止时序;Δt为时段长;T为次洪总时段数;
步骤12、计算第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量Wi
W i = Σ t = t 0 t 1 Q i ′ ( t ) · Δ t
其中,Qi’(t)为第i个水库泄流在防洪点的响应过程,Δt为时段长;
步骤13、计算需要预留的库容ΔVi
ΔVi=hi·Si-ΔWi
其中,ΔWi为第i个水库在计算期内的下泄水量,Vi为水库在当前水位下剩余的调蓄库容,hi为后续降雨量,Si为水库控制面积;
步骤14、计算第i个水库分担的拦蓄水量Wi,拦蓄,n个水库的极限拦蓄水量W拦蓄,第i个水库实际拦蓄水量的分担系数,以及第i个水库实际拦蓄水量;
第i个水库分担的拦蓄水量,Wi,拦蓄=min{Vi-ΔVi,Wi}
n个水库的极限拦蓄水量,
第i个水库实际拦蓄水量的分担系数,
第i个水库实际拦蓄水量,ΔWi'=li·W拦蓄
步骤2、根据各水库动态调节系数的大小确定水库群轮库补偿调度次序:
计算第i个水库动态调节系数ai
α i = 1 - m i n ( W i , V i - ΔV i ) V i - ΔV i
其中,Vi为水库在当前水位下剩余的调蓄库容,ΔVi为需要预留的库容,Wi为第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量;
步骤3、确定水库群补偿调度的目标函数和约束条件:
以防洪点的洪峰流量最小为目标,其目标函数为:
第1个水库的目标函数表达式为:
其中,T为调度期时段数;q1(t)为第1个水库的出库流量在防洪点的响应过程;Q(t)为区间流量过程;qA为防洪点安全泄量;
第i个水库的目标函数表达式为:
其中,qi(t)为第i个水库的出库流量在防洪点的响应过程;为第1库至第i-1库的出库流量在防洪点的响应过程之和;其它变量同前所述;
约束条件包括水量平衡约束、水库最高水位约束、调度期末水位约束、水库泄流能力约束和出库允许变幅约束:
其中,水量平衡约束: V i ( t ) = V i ( t - 1 ) + [ Q i ( t ) + Q i ( t - 1 ) 2 - q i ( t ) + q i ( t - 1 ) 2 ] · Δ t ,
其中,Qi(t-1),Qi(t)为第i水库第t时段始末入库流量;qi(t-1),qi(t)为第i水库第t时段始末出库流量;Vi(t-1),Vi(t)为第i水库第t时段始末水库的蓄水量;Δt为时段长;
水库最高水位约束Zi(t)≤Zmax,i,Zmax,i=Z(V(Zi 0)+ΔWi'),
其中,Zi(t)为第i水库第t时刻的水位;Zmax,i为第i水库的最高控制水位;Zi 0为第i水库的起调水位;ΔWi'为第i水库的实际拦蓄水量;
调度期末水位约束,Zi,end≥Zi,e
其中,Zi,end为第i水库调度期末水位;Zi,e为第i水库调度期末控制水位;当满足其他约束时,取“=”;
水库泄流能力约束,可用以下公式表示:qi(t)≤qi(Zi(t))
其中,qi(t)为第i水库第t时刻的出库流量;qi(Zi(t))为第i水库第t时刻在水位Zi(t)时的泄流能力;
出库允许变幅约束, | q i ( t ) - q i ( t - 1 ) | ≤ ▿ q i , m
其中,|qi(t)-qi(t-1)|为第i水库相邻时段出库流量的变幅;为第i水库的允许出库流量变幅;
步骤4、采用分级控制分段试算法计算得到水库调度方案。
2.如权利要求1所述的基于动态调节性能的水库群补偿调度方法,其特征在于,所述步骤4进一步包括:
步骤41、给出水库仅考虑防洪库容单一约束条件下的初始理想最优解;
步骤42、根据水量平衡方程进行调节计算,并逐时段检验泄流能力约束和出库允许变幅约束,如果满足约束条件,直接转下一步,否则修正出库流量后重新进行调节计算;
步骤43、检验最高水位约束,如果满足约束条件,直接转下一步,否则修正出库流量后转步骤42重新进行调节计算;
步骤44、检验期末水位约束,如果满足约束条件,整理计算结果,结束计算,否则修正出库流量后转步骤42重新进行调节计算。
3.一种基于动态调节性能的水库群补偿调度系统,其特征在于,包括如下模块:
建模模块,用于建立防洪点超额水量分配模型;
调度模块,用于根据各水库动态调节系数的大小确定水库群轮库补偿调度次序;
函数确立模块,用于确定水库群补偿调度的目标函数和约束条件;
分级控制分段试算法模块,用于计算得到水库调度方案;
其中,
用于建立防洪点超额水量分配模型的建模模块包括:
第一子模块、用于计算防洪点超过安全泄量的水量W超额
其中,Q(t)为防洪点天然洪水过程;qA为防洪点的安全泄量;t0、t1分别为超额水量的起、止时序;Δt为时段长;T为次洪总时段数;
第二子模块,用于计算第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量Wi
W i = Σ t = t 0 t 1 Q i ′ ( t ) · Δ t
其中,Qi’(t)为第i个水库泄流在防洪点的响应过程,Δt为时段长;
第三子模块,用于计算需要预留的库容ΔVi
ΔVi=hi·Si-ΔWi
其中,ΔWi为第i个水库在计算期内的下泄水量,Vi为水库在当前水位下剩余的调蓄库容,hi为后续降雨量,Si为水库控制面积;
第四子模块,用于计算第i个水库分担的拦蓄水量Wi,拦蓄,n个水库的极限拦蓄水量W拦蓄,第i个水库实际拦蓄水量的分担系数,以及第i个水库实际拦蓄水量;
第i个水库分担的拦蓄水量,
n个水库的极限拦蓄水量,
第i个水库实际拦蓄水量的分担系数,
第i个水库实际拦蓄水量,ΔWi'=λi·W拦蓄
所述用于根据各水库动态调节系数的大小确定水库群轮库补偿调度次序的调度模块包括;
用于计算第i个水库动态调节系数ai的调节系数计算模块,
α i = 1 - m i n ( W i , V i - ΔV i ) V i - ΔV i
其中,Vi为水库在当前水位下剩余的调蓄库容,ΔVi为需要预留的库容,Wi为第i个水库泄流在防洪点的响应过程位于[t0,t1]时段的水量;
用于确定水库群补偿调度的目标函数和约束条件的函数确立模块包括若干个函数确定子模块和约束条件建立子模块:
以防洪点的洪峰流量最小为目标,其目标函数为:
第1个水库的目标函数表达式为:
其中,T为调度期时段数;q1(t)为第1个水库的出库流量在防洪点的响应过程;Q(t)为区间流量过程;qA为防洪点安全泄量;
第i个水库的目标函数表达式为:
其中,qi(t)为第i个水库的出库流量在防洪点的响应过程;为第1库至第i-1库的出库流量在防洪点的响应过程之和;其它变量同前所述;
约束条件建立子模块包括水量平衡约束建立子模块、水库最高水位约束建立子模块、调度期末水位约束建立子模块、水库泄流能力约束建立子模块和出库允许变幅约束建立子模块:
其中,水量平衡约束建立子模块建立如下水量平衡约束:
V i ( t ) = V i ( t - 1 ) + [ Q i ( t ) + Q i ( t - 1 ) 2 - q i ( t ) + q i ( t - 1 ) 2 ] · Δ t ,
其中,Qi(t-1),Qi(t)为第i水库第t时段始末入库流量;qi(t-1),qi(t)为第i水库第t时段始末出库流量;Vi(t-1),Vi(t)为第i水库第t时段始末水库的蓄水量;Δt为时段长;
水库最高水位约束建立子模块建立如下水库最高水位约束:
Zi(t)≤Zmax,i,Zmax,i=Z(V(Zi 0)+ΔWi'),
其中,Zi(t)为第i水库第t时刻的水位;Zmax,i为第i水库的最高控制水位;Zi 0为第i水库的起调水位;ΔWi'为第i水库的实际拦蓄水量;
调度期末水位约束建立子模块建立如下调度期末水位约束,Zi,end≥Zi,e
其中,Zi,end为第i水库调度期末水位;Zi,e为第i水库调度期末控制水位;当满足其他约束时,取“=”;
水库泄流能力约束建立子模块建立如下水库泄流能力约束,可用以下公式表示:qi(t)≤qi(Zi(t))
其中,qi(t)为第i水库第t时刻的出库流量;qi(Zi(t))为第i水库第t时刻在水位Zi(t)时的泄流能力;
出库允许变幅约束建立子模块建立如下出库允许变幅约束,
其中,|qi(t)-qi(t-1)|为第i水库相邻时段出库流量的变幅;为第i水库的允许出库流量变幅;
步骤4、分级控制分段试算法模块,用于计算得到水库调度方案。
4.如权利要求3所述的基于动态调节性能的水库群补偿调度系统,其特征在于,
所述分级控制分段试算法模块用于执行如下计算过程:
步骤41、给出水库仅考虑防洪库容单一约束条件下的初始理想最优解;
步骤42、根据水量平衡方程进行调节计算,并逐时段检验泄流能力约束和出库允许变幅约束,如果满足约束条件,直接转下一步,否则修正出库流量后重新进行调节计算;
步骤43、检验最高水位约束,如果满足约束条件,直接转下一步,否则修正出库流量后转步骤42重新进行调节计算;
步骤44、检验期末水位约束,如果满足约束条件,整理计算结果,结束计算,否则修正出库流量后转步骤42重新进行调节计算。
CN201410346468.6A 2014-07-18 2014-07-18 基于动态调节性能的水库群补偿调度方法及系统 Expired - Fee Related CN104099891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410346468.6A CN104099891B (zh) 2014-07-18 2014-07-18 基于动态调节性能的水库群补偿调度方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410346468.6A CN104099891B (zh) 2014-07-18 2014-07-18 基于动态调节性能的水库群补偿调度方法及系统

Publications (2)

Publication Number Publication Date
CN104099891A CN104099891A (zh) 2014-10-15
CN104099891B true CN104099891B (zh) 2016-01-06

Family

ID=51668407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410346468.6A Expired - Fee Related CN104099891B (zh) 2014-07-18 2014-07-18 基于动态调节性能的水库群补偿调度方法及系统

Country Status (1)

Country Link
CN (1) CN104099891B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706880A (zh) * 2019-01-07 2019-05-03 中国科学院、水利部成都山地灾害与环境研究所 一种梯级水库群联合应急调度方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598676B (zh) * 2015-01-07 2017-06-16 河海大学 一种保持典型洪水形态的设计洪水过程解析推求方法及系统
CN105825437B (zh) * 2016-03-24 2019-04-19 大连理工大学 一种复杂水库群共同供水任务分配方法
CN108985577B (zh) * 2018-06-26 2021-09-07 河海大学 一种基于推理机的水库群实时防洪调度显效水库智能识别方法
CN110647179B (zh) * 2019-09-29 2022-11-01 长江勘测规划设计研究有限责任公司 一种水库实时防洪补偿调度的减压控制水位确定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714193A (zh) * 2009-12-29 2010-05-26 北京师范大学 面向河流生态系统保护的发电型水库调度函数优化方法
JP2011020904A (ja) * 2009-07-17 2011-02-03 Jfe Steel Corp 海域利用製鋼スラグ及びその調製方法
CN102182159A (zh) * 2011-03-21 2011-09-14 武汉大学 一种梯级水库汛限水位联合运用调度方法
CN102651115A (zh) * 2012-03-29 2012-08-29 清华大学 并行异步混合算法处理系统和水库(群)优化调度方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020904A (ja) * 2009-07-17 2011-02-03 Jfe Steel Corp 海域利用製鋼スラグ及びその調製方法
CN101714193A (zh) * 2009-12-29 2010-05-26 北京师范大学 面向河流生态系统保护的发电型水库调度函数优化方法
CN102182159A (zh) * 2011-03-21 2011-09-14 武汉大学 一种梯级水库汛限水位联合运用调度方法
CN102651115A (zh) * 2012-03-29 2012-08-29 清华大学 并行异步混合算法处理系统和水库(群)优化调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水库多目标生态调度;董哲仁等;《水利水电技术》;20070131;第38卷(第1期);第28-36页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706880A (zh) * 2019-01-07 2019-05-03 中国科学院、水利部成都山地灾害与环境研究所 一种梯级水库群联合应急调度方法

Also Published As

Publication number Publication date
CN104099891A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
CN104099891B (zh) 基于动态调节性能的水库群补偿调度方法及系统
CN102182159B (zh) 一种梯级水库汛限水位联合运用调度方法
US10482549B2 (en) Daily electricity generation plan making method of cascade hydraulic power plant group
CN104091240B (zh) 一种结合中长期预报的水电站分级调度方法及系统
CN104063808B (zh) 一种跨省送电梯级水电站群调峰调度两阶段搜索方法
CN107038151B (zh) 基于蓄能控制的梯级优化调度图绘制方法及调度方法
CN104701888A (zh) 一种电网水、火电工况自匹配模式调整实时负荷的方法
CN107180318B (zh) 基于变权重剩余防洪库容最大的水库群防洪库容分配方法
CN107180313A (zh) 基于风险对冲规则的大型水库汛末蓄水方案的编制方法
CN103205950A (zh) 一种保障下游通江湖泊供水安全的水库调控方法
CN104636831B (zh) 一种面向多电网的水电站短期调峰特征值搜索方法
CN108321823A (zh) 一种基于储能电池的二次调频控制方法及系统
CN104538993B (zh) 一种梯级水电站群自动发电控制方法
CN106445070A (zh) 一种硬实时系统资源受限偶发任务能耗优化调度方法
CN101908181A (zh) 一种基于生态调度图的水库生态调度方法
CN104037805A (zh) 一种计及电网安全约束的光伏电站可发电裕度分配方法
CN107392383B (zh) 基于系统非线性安全度最大的水库群防洪库容分配方法
CN103088783B (zh) 一种面向生态的水库调度方案生成方法
CN107059761B (zh) 水库群防洪库容时空分配设计方法
CN105809281A (zh) 一种考虑多业主新增效益分配的水库群调度方法
CN104035475B (zh) 兼顾电网安全和弃光最小的光伏电站有功自动控制方法
CN106251074B (zh) 一种协同的电网超前调度模型的建立方法及其计算方法
CN103427445B (zh) 一种基于负荷重构策略的火电切负荷调峰方法
CN109653302B (zh) 梯级泵站系统中稳压塔高程确定及系统运行方式确定方法
CN104537576A (zh) 跨流域水电站群均衡弃水概率预控调度模型及调度方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160106

Termination date: 20180718

CF01 Termination of patent right due to non-payment of annual fee