CN104099418A - Protein interaction detection method based on nucleotide sequence - Google Patents
Protein interaction detection method based on nucleotide sequence Download PDFInfo
- Publication number
- CN104099418A CN104099418A CN201410338899.8A CN201410338899A CN104099418A CN 104099418 A CN104099418 A CN 104099418A CN 201410338899 A CN201410338899 A CN 201410338899A CN 104099418 A CN104099418 A CN 104099418A
- Authority
- CN
- China
- Prior art keywords
- dna
- protein
- binding domain
- sequence
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006916 protein interaction Effects 0.000 title claims abstract description 38
- 238000001514 detection method Methods 0.000 title claims description 78
- 239000002773 nucleotide Substances 0.000 title 1
- 125000003729 nucleotide group Chemical group 0.000 title 1
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 88
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 80
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 79
- 230000004568 DNA-binding Effects 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 55
- 230000003993 interaction Effects 0.000 claims abstract description 28
- 238000009739 binding Methods 0.000 claims abstract description 25
- 230000027455 binding Effects 0.000 claims abstract description 24
- 108020004414 DNA Proteins 0.000 claims description 51
- 239000000243 solution Substances 0.000 claims description 32
- 239000012634 fragment Substances 0.000 claims description 30
- 239000000178 monomer Substances 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 239000003431 cross linking reagent Substances 0.000 claims description 16
- 210000004027 cell Anatomy 0.000 claims description 14
- 102000007260 Deoxyribonuclease I Human genes 0.000 claims description 13
- 108010008532 Deoxyribonuclease I Proteins 0.000 claims description 13
- 239000013636 protein dimer Substances 0.000 claims description 12
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 11
- 238000004132 cross linking Methods 0.000 claims description 11
- 241000588724 Escherichia coli Species 0.000 claims description 9
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 108010067770 Endopeptidase K Proteins 0.000 claims description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 6
- 150000007523 nucleic acids Chemical group 0.000 claims description 6
- 239000011535 reaction buffer Substances 0.000 claims description 6
- 238000003753 real-time PCR Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000000018 DNA microarray Methods 0.000 claims description 5
- 238000000246 agarose gel electrophoresis Methods 0.000 claims description 5
- 238000012165 high-throughput sequencing Methods 0.000 claims description 5
- 108700010833 lambda phage proteins Proteins 0.000 claims description 5
- 239000004471 Glycine Substances 0.000 claims description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 3
- 239000013604 expression vector Substances 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 210000004962 mammalian cell Anatomy 0.000 claims description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical group O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 3
- 230000004962 physiological condition Effects 0.000 claims description 3
- 238000009210 therapy by ultrasound Methods 0.000 claims description 2
- 108700010839 phage proteins Proteins 0.000 claims 1
- 238000006471 dimerization reaction Methods 0.000 abstract description 34
- 239000013598 vector Substances 0.000 description 34
- 238000010367 cloning Methods 0.000 description 10
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 10
- 238000003752 polymerase chain reaction Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 230000029087 digestion Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000001086 yeast two-hybrid system Methods 0.000 description 8
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 229960000723 ampicillin Drugs 0.000 description 7
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- 229930027917 kanamycin Natural products 0.000 description 7
- 229960000318 kanamycin Drugs 0.000 description 7
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 7
- 229930182823 kanamycin A Natural products 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000010452 phosphate Substances 0.000 description 7
- 239000008188 pellet Substances 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 101710173438 Late L2 mu core protein Proteins 0.000 description 5
- 101710188315 Protein X Proteins 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000539 dimer Substances 0.000 description 5
- 239000012154 double-distilled water Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000004850 protein–protein interaction Effects 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 108010077544 Chromatin Proteins 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 210000003483 chromatin Anatomy 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 102100026503 Sperm mitochondrial-associated cysteine-rich protein Human genes 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000000710 homodimer Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 238000002005 protein protein interaction detection Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 101100281246 Bacillus subtilis (strain 168) fliZ gene Proteins 0.000 description 2
- XYWDPYKBIRQXQS-UHFFFAOYSA-N Diisopropyl sulfide Chemical compound CC(C)SC(C)C XYWDPYKBIRQXQS-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241001646716 Escherichia coli K-12 Species 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 101710188306 Protein Y Proteins 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 235000005550 amino acid supplement Nutrition 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 101150044326 cheA gene Proteins 0.000 description 2
- 230000035605 chemotaxis Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 208000018459 dissociative disease Diseases 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 239000011536 extraction buffer Substances 0.000 description 2
- 239000008098 formaldehyde solution Substances 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000000833 heterodimer Substances 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 239000012224 working solution Substances 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 101100167120 Bacillus subtilis (strain 168) cheY gene Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010042653 IgA receptor Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- BVHLGVCQOALMSV-JEDNCBNOSA-N L-lysine hydrochloride Chemical compound Cl.NCCCC[C@H](N)C(O)=O BVHLGVCQOALMSV-JEDNCBNOSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 229940122907 Phosphatase inhibitor Drugs 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102100034014 Prolyl 3-hydroxylase 3 Human genes 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102100036789 Protein TBATA Human genes 0.000 description 1
- 101710118245 Protein TBATA Proteins 0.000 description 1
- 101100113322 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) cheB1 gene Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- -1 Substituent galactoside Chemical class 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000012984 antibiotic solution Substances 0.000 description 1
- 229960003589 arginine hydrochloride Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 101150101242 cheB gene Proteins 0.000 description 1
- 101150090177 cheY gene Proteins 0.000 description 1
- 101150035100 cheZ gene Proteins 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960005337 lysine hydrochloride Drugs 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000409 membrane extraction Methods 0.000 description 1
- 229940096504 methionine 200 mg Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229940102705 phenylalanine 500 mg Drugs 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 229960000344 thiamine hydrochloride Drugs 0.000 description 1
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 1
- 239000011747 thiamine hydrochloride Substances 0.000 description 1
- 229960002898 threonine Drugs 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及基于DNA序列检测蛋白质间相互作用的方法(称为蛋白质二聚化足迹法,Protein Dimerization footprinting,简称PDf),试剂盒及其用途。基本原理是基于目的蛋白质间相互作用强度对其融合的DNA结合结构域与相应特异性DNA序列间结合动力学的影响,实现将目的蛋白质间相互作用由相应特异性DNA序列表示,而目的蛋白质间相互作用强度则由该特异性DNA序列的拷贝数给出。The present invention relates to a method for detecting the interaction between proteins based on DNA sequence (called protein dimerization footprint method, Protein Dimerization footprinting, referred to as PDf), a kit and its application. The basic principle is based on the influence of the interaction strength between the target proteins on the binding kinetics between the fused DNA binding domain and the corresponding specific DNA sequence, so that the interaction between the target proteins is represented by the corresponding specific DNA sequence, while the interaction between the target proteins The strength of the interaction is then given by the copy number of the specific DNA sequence.
Description
技术领域technical field
本发明属于蛋白质研究技术领域,具体涉及蛋白质相互作用的检测,尤其涉及利用DNA编码蛋白质相互作用信息进行蛋白质相互作用的在体检测方法,试剂盒及其用途。The invention belongs to the technical field of protein research, and specifically relates to the detection of protein interaction, in particular to an in vivo detection method for protein interaction using DNA-encoded protein interaction information, a kit and application thereof.
背景技术Background technique
传统在体蛋白质间相互作用检测技术尽管已被广泛应用于生物学研究,但存在诸多不足。例如,酵母双杂交技术(Y2H)虽然实现简单,但是其动态检测和定量检测能力明显不足,而荧光共振能量转移技术(FRET)虽然有较好的时空分辨率以及定量能力,但其受限于荧光蛋白的荧光强度以及蛋白质的空间结构等性质。并且,这些传统检测技术仅能针对单一蛋白质相互作用对进行检测,不能在同一个细胞内对包含有多对相互作用的蛋白质相互作用网络进行同时检测。Although traditional in vivo protein-protein interaction detection techniques have been widely used in biological research, there are many shortcomings. For example, although the yeast two-hybrid technology (Y2H) is simple to implement, its dynamic detection and quantitative detection capabilities are obviously insufficient. Although the fluorescence resonance energy transfer technology (FRET) has good spatiotemporal resolution and quantitative capabilities, it is limited. Fluorescence intensity of fluorescent protein and properties such as protein spatial structure. Moreover, these traditional detection techniques can only detect a single protein interaction pair, and cannot simultaneously detect a protein interaction network containing multiple pairs of interactions in the same cell.
为此,我们通过发明蛋白质二聚化足迹法(Protein Dimerizationfootprinting,简称PDf)检测技术,将基于核酸序列的检测技术与蛋白质间相互作用检测相结合,从而实现在体地、定性和/或定量地、动态地检测蛋白质相互作用,并使直接对蛋白质相互作用网络进行检测成为可能。To this end, by inventing protein dimerization footprinting (Protein Dimerization footprinting, referred to as PDf) detection technology, we combine nucleic acid sequence-based detection technology with protein-protein interaction detection, so as to achieve in vivo, qualitative and/or quantitative detection. , dynamically detect protein interactions, and make it possible to directly detect protein interaction networks.
发明内容Contents of the invention
本方法利用目的蛋白质间相互作用强度对与其融合的DNA结合结构域与相应特异性DNA结合位点间结合动力学的改变,来实现将目的蛋白质间相互作用由相应特异性DNA序列表示,而目的蛋白质间相互作用强度则由该序列的拷贝数给出。This method uses the change of the interaction strength between the target proteins on the binding kinetics between the fused DNA binding domain and the corresponding specific DNA binding site to realize the interaction between the target proteins expressed by the corresponding specific DNA sequence, while the target The protein-protein interaction strength is then given by the copy number of the sequence.
具体的,本发明涉及以下各项:Specifically, the present invention relates to the following items:
1.获取蛋白质间相互作用信息的方法,其包括如下步骤:1. A method for obtaining information on interactions between proteins, comprising the steps of:
(1)在宿主细胞中表达融合有DNA结合结构域的目的蛋白质,所述DNA结合结构域二聚化时对相应特异性DNA序列的亲和力显著高于单体时;(1) expressing a target protein fused with a DNA-binding domain in a host cell, the affinity of the DNA-binding domain to the corresponding specific DNA sequence is significantly higher than that of a monomer when dimerized;
(2)在生理状态下用交联剂处理,将宿主细胞中的目的蛋白质二聚体和DNA交联形成复合体;(2) Treating with a cross-linking agent under physiological conditions to cross-link the target protein dimer and DNA in the host cell to form a complex;
(3)将DNA打碎成小片段;(3) breaking the DNA into small fragments;
(4)分离提取所述小片段,并用DNase I消化;(4) separate and extract described small fragment, and digest with DNase I;
(5)使用去交联剂处理,将步骤(4)的产物去交联,并纯化得到DNA片段;(5) using a decrosslinking agent to decrosslink the product of step (4), and purify to obtain a DNA fragment;
(6)检测步骤(5)得到的DNA片段。(6) Detecting the DNA fragments obtained in step (5).
2.根据1所述的方法,所述宿主细胞包括大肠杆菌、酵母、哺乳动物细胞。2. according to the method described in 1, described host cell comprises escherichia coli, yeast, mammalian cell.
3.根据1所述的方法,所述DNA结合结构域包括λ噬菌体蛋白质CI的DNA结合结构域及其符合权利要求1步骤(1)中所述DNA结合结构域性质的突变体,λ噬菌体蛋白质CRO的DNA结合结构域及其符合权利要求1步骤(1)中所述DNA结合结构域性质的突变体;所述相应特异性DNA序列包括CI结合序列及它们的突变序列,CRO结合序列及它们的突变序列。3. according to the described method of 1, described DNA binding domain comprises the DNA binding domain of lambda phage protein CI and the mutant that meets the DNA binding domain property described in claim 1 step (1), lambda phage protein The DNA binding domain of CRO and its mutants meeting the properties of the DNA binding domain described in claim 1 step (1); the corresponding specific DNA sequences include CI binding sequences and their mutant sequences, CRO binding sequences and their the mutant sequence.
4.根据1所述的方法,所述步骤(2)中使用的交联剂为甲醛。4. according to the method described in 1, the linking agent used in the described step (2) is formaldehyde.
5.根据1所述的方法,所述步骤(3)中使用MNase或者超声处理打碎DNA为小片段。5. The method according to 1, in the step (3), use MNase or ultrasonic treatment to break up the DNA into small fragments.
6.根据1所述的方法,所述步骤(5)中使用的去交联剂为蛋白酶K。6. The method according to 1, the decrosslinking agent used in the step (5) is proteinase K.
7.根据1所述的方法,所述步骤(6)中的检测包括基于核酸序列的定性和/或定量检测,所述定量检测包括定量PCR、高通量测序和/或DNA微阵列,所述定性检测包括PCR和/或琼脂糖凝胶电泳。7. according to the method described in 1, the detection in the described step (6) comprises qualitative and/or quantitative detection based on nucleic acid sequence, and described quantitative detection comprises quantitative PCR, high-throughput sequencing and/or DNA microarray, so Such qualitative tests include PCR and/or agarose gel electrophoresis.
8.一种用于获取蛋白质相互作用信息的试剂盒,包括:8. A kit for obtaining protein interaction information, comprising:
(1)带有DNA结合结构域和相应特异性DNA序列的表达载体,所述DNA结合结构域二聚化时对相应特异性DNA序列的亲和力显著高于单体时;(1) an expression vector with a DNA binding domain and a corresponding specific DNA sequence, the DNA binding domain has a significantly higher affinity for the corresponding specific DNA sequence when dimerized than when it is monomeric;
(2)宿主细胞;(2) host cells;
(3)交联剂及其反应终止液;(3) Cross-linking agent and its reaction termination solution;
(4)打碎DNA的装置或试剂及其反应缓冲液;(4) Devices or reagents for fragmenting DNA and their reaction buffers;
(5)DNase I及其反应缓冲液;(5) DNase I and its reaction buffer;
(6)去交联剂;(6) Removing cross-linking agent;
(7)DNA检测装置。(7) DNA detection device.
9.根据8所述的试剂盒,所述交联剂为甲醛,所述交联反应终止液为甘氨酸溶液,所述去交联剂为蛋白酶K,所述打碎DNA的试剂为MNase。9. The kit according to 8, wherein the cross-linking agent is formaldehyde, the cross-linking reaction termination solution is glycine solution, the de-cross-linking agent is proteinase K, and the reagent for breaking DNA is MNase.
10.根据8所述的试剂盒,所述DNA检测装置包括定性和/或定量检测装置,所述定量检测装置包括定量PCR装置、高通量测序装置或DNA微阵列检测装置,所述定性检测装置包括PCR装置或琼脂糖凝胶电泳装置。10. The test kit according to 8, the DNA detection device comprises a qualitative and/or quantitative detection device, the quantitative detection device comprises a quantitative PCR device, a high-throughput sequencing device or a DNA microarray detection device, and the qualitative detection device Devices include PCR devices or agarose gel electrophoresis devices.
将本发明的方法与荧光共振能量转移(FRET)技术以及酵母双杂交(Y2H)技术的结果相比较,本发明的方法能够很好地对不同强度的蛋白质间相互作用进行在体地、定量地、动态地检测。更进一步,本方法将基于核酸序列的检测技术与蛋白质相互作用检测相结合,能够大大提高检测的通量,而通过使用不同且互不交叉的DNA结合结构域-特异性DNA序列对,使得该方法能够在系统层次上直接定量地、动态地同时检测多条蛋白质相互作用构成的蛋白质相互作用网络。Comparing the method of the present invention with the results of fluorescence resonance energy transfer (FRET) technology and yeast two-hybrid (Y2H) technology, the method of the present invention can well perform in vivo and quantitative analysis of protein-protein interactions of different strengths. , Dynamic detection. Furthermore, this method combines nucleic acid sequence-based detection technology with protein interaction detection, which can greatly increase the throughput of detection, and by using different and non-intersecting DNA binding domain-specific DNA sequence pairs, the The method can directly, quantitatively and dynamically detect the protein interaction network composed of multiple protein interactions at the system level.
本发明的方法能够帮助生物学家从系统层面上直接定量研究蛋白质相互作用组,而非简单利用单一蛋白质相互作用的数据通过构建相应的网络模型来分析蛋白质相互作用网络。The method of the present invention can help biologists directly and quantitatively study the protein interaction group at the system level, instead of simply using single protein interaction data to analyze the protein interaction network by constructing a corresponding network model.
发明详述Detailed description of the invention
以下对本发明的技术方案做进一步详细阐述。应当指出,本发明的各实施方案可以根据需要以任何方式组合。The technical solution of the present invention will be described in further detail below. It should be noted that the various embodiments of the present invention can be combined in any way as desired.
本发明的第一个方面提供一种获取蛋白质间相互作用信息的蛋白质二聚化足迹法(PDf),其原理为基于目的蛋白质间相互作用强度对其融合的DNA结合结构域与相应特异性DNA序列间结合动力学的影响,实现将目的蛋白质间相互作用由相应特异性DNA序列表示,而目的蛋白质间相互作用强度则由该特异性DNA序列的拷贝数给出。The first aspect of the present invention provides a protein dimerization footprint method (PDf) for obtaining information on protein-protein interactions. The influence of the binding kinetics between the sequences realizes that the interaction between the target proteins is expressed by the corresponding specific DNA sequence, and the interaction strength between the target proteins is given by the copy number of the specific DNA sequence.
在一个实施方案中,所述方法包括以下步骤:In one embodiment, the method comprises the steps of:
(1)在宿主细胞中表达融合有DNA结合结构域的目的蛋白质,所述DNA结合结构域二聚化时对相应特异性DNA的亲和力远高于单体时;(1) Expressing a target protein fused with a DNA-binding domain in a host cell, the affinity of the DNA-binding domain to the corresponding specific DNA is much higher than that of a monomer when dimerized;
(2)在生理状态下用交联剂处理,将宿主细胞中的目的蛋白质二聚体和DNA交联形成复合体;(2) Treating with a cross-linking agent under physiological conditions to cross-link the target protein dimer and DNA in the host cell to form a complex;
(3)将DNA打碎成小片段;(3) breaking the DNA into small fragments;
(4)分离提取所述小片段,并用DNase I消化;(4) separate and extract described small fragment, and digest with DNase I;
(5)使用去交联剂处理,将步骤(4)的产物去交联,并纯化得到DNA片段;(5) using a decrosslinking agent to decrosslink the product of step (4), and purify to obtain a DNA fragment;
(6)定量检测步骤(5)得到的DNA片段。(6) Quantitative detection of the DNA fragments obtained in step (5).
在一个优选的实施方案中,只要二聚化时对相应特异性DNA的亲和力远高于单体时的DNA结合结构域都可以用于本发明,此种DNA结合结构域和相应特异性DNA序列包括但不限于λ噬菌体蛋白质CI的DNA结合结构域和CI结合序列,λ噬菌体蛋白质CRO的DNA结合结构域和CRO结合序列。在此种情况下,当目的蛋白之间发生相互作用时,DNA结合结构域形成二聚体,该二聚体与相应特异性DNA结合,从而在交联过程中由于距离足够近而形成DNA-蛋白质二聚体复合物;相反,当目的蛋白之间不发生相互作用时,DNA结合结构域以单体形式存在,由于单体形式的DNA结合结构域与特异性DNA不结合或结合很弱,从而不能有效交联,在后续过程中将与二聚体区分开。In a preferred embodiment, as long as the affinity for the corresponding specific DNA during dimerization is much higher than that of the monomer, the DNA binding domain can be used in the present invention, such DNA binding domain and corresponding specific DNA sequence Including but not limited to the DNA binding domain and CI binding sequence of lambda phage protein CI, the DNA binding domain and CRO binding sequence of lambda phage protein CRO. In this case, when the interaction between the target proteins occurs, the DNA-binding domain forms a dimer, which binds to the corresponding specific DNA, thereby forming a DNA- Protein dimer complex; on the contrary, when there is no interaction between the target proteins, the DNA-binding domain exists in the form of a monomer, because the DNA-binding domain in the monomer form does not bind to specific DNA or binds very weakly, As a result, cross-linking is not effective and will be distinguished from dimers in the subsequent process.
在一个优选的实施方案中,本文所述的交联是指将距离足够近的分子固定在一起以利于后续分析。在一个更优选的实施方案中,所述交联剂包括但不限于甲醛,戊二醛等。In a preferred embodiment, cross-linking as described herein refers to immobilizing molecules that are close enough together for subsequent analysis. In a more preferred embodiment, the cross-linking agent includes but not limited to formaldehyde, glutaraldehyde and the like.
在一个优选的实施方案中,打碎DNA为小片段的方法是本领域技术人员已知的,包括超声和酶处理等,优选用MNase处理。In a preferred embodiment, methods for fragmenting DNA into small fragments are known to those skilled in the art, including sonication and enzyme treatment, etc., preferably MNase treatment.
在一个优选的实施方案中,检测去交联后分离的DNA片段的方法包括但不限于PCR、琼脂糖凝胶电泳、定量PCR、高通量测序以及DNA微阵列等基于核酸序列的定性和\或定量检测技术。In a preferred embodiment, methods for detecting DNA fragments separated after decrosslinking include but are not limited to qualitative and \ or quantitative detection techniques.
本发明的第二个方面提供一种用于获取蛋白质相互作用信息的试剂盒,包括:A second aspect of the present invention provides a kit for obtaining protein interaction information, comprising:
(1)带有DNA结合结构域和相应特异性DNA序列的表达载体,所述DNA结合结构域二聚化时对相应特异性DNA的亲和力远高于单体时;(1) an expression vector with a DNA binding domain and a corresponding specific DNA sequence, the DNA binding domain has a much higher affinity for the corresponding specific DNA when dimerized than when it is monomeric;
(2)宿主细胞;(2) host cells;
(3)交联剂及其反应终止液;(3) Cross-linking agent and its reaction termination solution;
(4)打碎DNA的装置和试剂及其反应缓冲液;(4) Devices and reagents for fragmenting DNA and their reaction buffers;
(5)DNase I及其反应缓冲液;(5) DNase I and its reaction buffer;
(6)去交联剂;(6) Removing cross-linking agent;
(7)DNA检测装置。(7) DNA detection device.
在一个优选的实施方案中,所述宿主细胞包括但不限于细菌,酵母,哺乳动物细胞等,所述交联剂、去交联剂、打碎DNA的装置和试剂、定量检测装置等都如前所述。In a preferred embodiment, the host cells include but are not limited to bacteria, yeast, mammalian cells, etc., and the cross-linking agent, de-cross-linking agent, DNA fragmentation device and reagent, quantitative detection device, etc. are all such as As mentioned earlier.
附图说明Description of drawings
图1.载体pPIDA1和pPIDK1结构示意图,其中(A)为pPIDA1,(B)为pPIDK1,Plac为启动子,CI(N)为蛋白质CI的DNA结合结构域,MCS为多克隆位点,Ter为转录终止序列,BR为特异性DNA结合序列,AmpR为氨苄亲霉素抗性基因,KanR为卡那霉素抗性基因,Ori为载体的复制起点。Figure 1. Schematic diagram of the structure of vectors pPIDA1 and pPIDK1, wherein (A) is pPIDA1, (B) is pPIDK1, Plac is the promoter, CI(N) is the DNA binding domain of protein CI, MCS is the multiple cloning site, and Ter is Transcription termination sequence, BR is the specific DNA binding sequence, AmpR is the ampicillin resistance gene, KanR is the kanamycin resistance gene, Ori is the replication origin of the vector.
图2.蛋白质二聚化足迹法(PDf)工作原理图。Figure 2. Schematic diagram of protein dimerization footprinting (PDf).
图3.以蛋白质CI的二聚化结构域CI(C)为目的蛋白质验证PDf检测方法。(a)为构建的载体的示意图,其中BR-pSP73为空白对照,仅含有CI蛋白质的DNA结合结构域CI(N)相应的特异性DNA序列BR;pPIDA1为阴性对照,含有CI蛋白质的DNA结合结构域CI(N)(不能二聚化)和相应的特异性DNA序列BR;CI(C)-pPIDA1为阳性对照,含有可以二聚化的CI蛋白质二聚化结构域CI(C)和CI蛋白质的DNA结合结构域CI(N)的融合蛋白质及相应的特异性DNA序列BR。(b)通过12小时DNase I充分消化,PDf方法能够很好地区分空白组、阴性组和阳性组,从而验证了PDf检测方法的正确性。(c)PDf方法中双载体体系的特异性DNA序列(BR)数量随诱导时间的变化情况。Figure 3. Validation of the PDf detection method for proteins targeting the dimerization domain CI(C) of protein CI. (a) is a schematic diagram of the constructed vector, wherein BR-pSP73 is a blank control, which only contains the specific DNA sequence BR corresponding to the DNA binding domain CI(N) of the CI protein; pPIDA1 is a negative control, which contains the DNA binding domain of the CI protein Domain CI(N) (cannot dimerize) and corresponding specific DNA sequence BR; CI(C)-pPIDA1 is a positive control, containing CI protein dimerization domains CI(C) and CI that can dimerize A fusion protein of the protein's DNA binding domain CI(N) and the corresponding specific DNA sequence BR. (b) After fully digested with DNase I for 12 hours, the PDf method can well distinguish the blank group, negative group and positive group, thus verifying the correctness of the PDf detection method. (c) The change of the number of specific DNA sequences (BR) in the dual-vector system with induction time in the PDf method.
图4.PDf检测方法的反应动力学模型的实验验证与分析。(a)PDf实验测定值与基于动力学模型计算值的高度一致性,证明了模型的可靠性;(b)通过动力学模型计算,当目的蛋白质单体浓度Cs在0.01-100倍间变化时,PDf信号的变化情况;(c)对比阳性和阴性实验组,即蛋白质二聚化时DNA结合结构域与特异性DNA序列结合和蛋白质单体状态时DNA结合结构域与特异性DNA序列结合的PDf信号。Figure 4. Experimental validation and analysis of the reaction kinetic model of the PDf detection method. (a) The high consistency between the measured value of PDf and the calculated value based on the kinetic model proves the reliability of the model; (b) calculated by the kinetic model, when the target protein monomer concentration Cs changes between 0.01-100 times , the change of PDf signal; (c) compare the positive and negative experimental groups, that is, the DNA binding domain binds to the specific DNA sequence when the protein dimerizes and the DNA binding domain binds to the specific DNA sequence when the protein monomer state PDf signal.
图5.基于PDf方法的静态和动态蛋白质相互作用检测与现有蛋白质间相互作用检测技术的比较。(a)分别使用酵母双杂交(Y2H)、荧光共振能量转移(FRET)和PDf方法,对大肠杆菌趋化系统中的静态蛋白质相互作用进行检测。(b)大肠杆菌PhoR/PhoB磷酸信号传导系统中PhoB二聚化强度在不同磷酸浓度的环境下随时间的动态变化。(c)利用FRET方法测得的PhoR/PhoB磷酸信号传导系统在不同磷酸浓度的环境下经过充分反应后PhoB的二聚化强度。Figure 5. Comparison of static and dynamic protein interaction detection based on the PDf method with existing protein-protein interaction detection techniques. (a) Yeast two-hybrid (Y2H), fluorescence resonance energy transfer (FRET), and PDf methods were used to detect static protein interactions in the E. coli chemotaxis system, respectively. (b) Dynamic changes of PhoB dimerization intensity over time in the E. coli PhoR/PhoB phosphate signaling system under different phosphate concentrations. (c) PhoR/PhoB phosphate signal transduction system measured by FRET method after full reaction of PhoB dimerization intensity in the environment of different phosphate concentrations.
图6.互不交叉的DNA结合结构域-特异性DNA序列相互作用对的设计与测试。(a)基于PDB结构1LMB的结构信息,通过FoldX软件计算野生型CI蛋白质的DNA结合结构域CI(N)wt和突变体CI(N)mut1与不同特异性DNA序列的相互作用能,在遍历所有可能的特异性DNA序列的条件下,相对于野生型DNA结合结构域(CI(N)wt)二聚体与野生型特异性DNA序列(BR1)相互作用能的变化量。其中正值表示相互作用能增加,负值表示相互作用能下降。(b)基于DNA结合结构域CI(N)wt和CI(N)mut1及不同BR序列的PDf检测结果,其中虚线表示标准值。图中横坐标CI(N)wt-BRi(i=1,4,5,6,7,8,9,10)表示双载体中的DNA结合结构域均为CI(N)wt,特异性DNA序列均为BRi;CI(N)mut1-BRi(i=1,4,5,6,7,8,9,10)表示双载体中的DNA结合结构域均为CI(N)mut1,特异性DNA序列均为BRi;CI(N)wt/mut1-BRi(i=1,4,5,6,7,8,9,10)表示双载体中一个DNA结合结构域为CI(N)wt,另一个为CI(N)mut1,特异性DNA序列均为BRi。(c)利用PDf技术同时在体检测多对蛋白质相互作用的原理图。Figure 6. Design and testing of nonintersecting DNA binding domain-specific DNA sequence interaction pairs. (a) Based on the structural information of the PDB structure 1LMB, the interaction energy of the DNA-binding domain CI(N) wt of the wild-type CI protein and the mutant CI(N) mut1 with different specific DNA sequences was calculated by FoldX software. The amount of change in the interaction energy of the dimer of the wild-type DNA-binding domain (CI(N) wt ) with the wild-type-specific DNA sequence (BR1) relative to the condition of all possible specific DNA sequences. A positive value indicates an increase in the interaction energy, and a negative value indicates a decrease in the interaction energy. (b) PDf detection results based on the DNA-binding domains CI(N) wt and CI(N) mut1 and different BR sequences, where the dotted line indicates the standard value. The abscissa CI(N) wt -BRi (i=1, 4, 5, 6, 7, 8, 9, 10) in the figure indicates that the DNA binding domains in the dual carrier are both CI(N) wt , specific DNA The sequences are all BRi; CI(N) mut1 -BRi (i=1, 4, 5, 6, 7, 8, 9, 10) indicates that the DNA binding domains in the dual vectors are all CI(N) mut1 , specific The DNA sequences are all BRi; CI(N) wt/mut1 -BRi (i=1, 4, 5, 6, 7, 8, 9, 10) indicates that a DNA binding domain in the binary vector is CI(N) wt , The other is CI(N) mut1 , the specific DNA sequences are all BRi. (c) Schematic diagram of the simultaneous in vivo detection of multiple pairs of protein interactions using the PDf technique.
具体实施方式Detailed ways
材料与方法Materials and Methods
(1)菌株与载体(1) Strains and vectors
a.克隆菌株:大肠杆菌K12菌株DH5α(生工生物,SD8411)a. Cloned strain: Escherichia coli K12 strain DH5α (Sangon Biotech, SD8411)
b.表达菌株:大肠杆菌K12菌株JM109(Takara,D9052A)b. Expression strain: Escherichia coli K12 strain JM109 (Takara, D9052A)
c.载体:pSP73(Promega,P2221),pSB1K3(iGEM Distribution)c. Vector: pSP73 (Promega, P2221), pSB1K3 (iGEM Distribution)
(2)培养基与试剂(2) Medium and reagents
a.培养基:a. Medium:
LB液体培养基:LB liquid medium:
氯化钠1g,酵母提取物0.5g,蛋白胨1g,双蒸水100mlSodium chloride 1g, yeast extract 0.5g, peptone 1g, double distilled water 100ml
LB固体培养基:LB solid medium:
氯化钠1g,酵母提取物0.5g,蛋白胨1g,琼脂1.2g,双蒸水100mlSodium chloride 1g, yeast extract 0.5g, peptone 1g, agar 1.2g, double distilled water 100ml
M9组氨酸缺陷培养基:M9 histidine-deficient medium:
溶液1:20%葡萄糖溶液2ml,20mM腺嘌呤溶液1ml,10X组氨酸缺陷氨基酸补充液10mlSolution 1: 20% glucose solution 2ml, 20mM adenine solution 1ml, 10X histidine deficient amino acid supplement 10ml
溶液2:1M硫酸镁溶液0.1ml,1M盐酸硫胺素溶液0.1ml,10mM硫酸锌溶液0.1ml,100mM氯化钙溶液0.1ml,100mM异丙基硫代半乳糖苷(IPTG)0.05ml,向溶液1中加入溶液2并混匀,并向其中加入10ml10XM9盐后,用双蒸水定容至100ml。Solution 2: 0.1ml of 1M magnesium sulfate solution, 0.1ml of 1M thiamine hydrochloride solution, 0.1ml of 10mM zinc sulfate solution, 0.1ml of 100mM calcium chloride solution, 0.05ml of 100mM isopropylthiogalactoside (IPTG), Add solution 2 to solution 1 and mix well, and add 10ml of 10XM9 salt to it, then distill the volume to 100ml with double distilled water.
b.试剂b. Reagents
10X组氨酸缺陷氨基酸补充液:10X Histidine Deficient Amino Acid Supplement:
腺嘌呤200mg,盐酸精氨酸200mg,异亮氨酸300mg,盐酸赖氨酸300mg,甲硫氨酸200mg,苯丙氨酸500mg,苏氨酸2000mg,酪氨酸300mg,尿嘧啶200mg,缬氨酸1500mg,亮氨酸1000mg,色氨酸200mg,双蒸水1L。Adenine 200mg, Arginine Hydrochloride 200mg, Isoleucine 300mg, Lysine Hydrochloride 300mg, Methionine 200mg, Phenylalanine 500mg, Threonine 2000mg, Tyrosine 300mg, Uracil 200mg, Valine acid 1500mg, leucine 1000mg, tryptophan 200mg, double distilled water 1L.
10X M9盐:10X M9 Salt:
磷酸氢二钠67.8g,磷酸二氢钾30g,氯化钠5g,氯化铵10g,双蒸水1L。Disodium hydrogen phosphate 67.8g, potassium dihydrogen phosphate 30g, sodium chloride 5g, ammonium chloride 10g, double distilled water 1L.
抗生素溶液:氨苄亲霉素溶液,卡那霉素溶液Antibiotic solution: ampicillin solution, kanamycin solution
Pierce Chromatin Prep Module(Thermo Scientific,26158)Pierce Chromatin Prep Module (Thermo Scientific, 26158)
UNIQ-10柱式寡聚核苷酸纯化试剂盒(生工生物,SK1144)UNIQ-10 Column Oligonucleotide Purification Kit (Sangon Biotech, SK1144)
SanPrep柱式质粒DNA小量抽提试剂盒(生工生物,SK8192)SanPrep Column Plasmid DNA Mini-Extraction Kit (Sangon Biotechnology, SK8192)
AxyPrep PCR清洁试剂盒(Axygen,AP-PCR-50)AxyPrep PCR Cleanup Kit (Axygen, AP-PCR-50)
In-Fusion HD Cloning Kit(CloneTech,639648)In-Fusion HD Cloning Kit (CloneTech, 639648)
脱氧核糖核酸酶I(DNase I)(2,000U/mL,New England BioLabs,M0303S)Deoxyribonuclease I (DNase I) (2,000U/mL, New England BioLabs, M0303S)
PrimeSTAR Max DNA Polymerase(Takara,R045A)PrimeSTAR Max DNA Polymerase (Takara, R045A)
SYBR Premix EX Tag II(Takara,RR820A)SYBR Premix EX Tag II (Takara, RR820A)
限制性内切酶:Restriction enzymes:
EcoRI,BamHI,KpnI,SpeI,NheI,XhoI,DpnIEcoRI, BamHI, KpnI, SpeI, NheI, XhoI, DpnI
37%甲醛溶液37% formaldehyde solution
Lysis Buffer I:Lysis Buffer I:
按每100ul Membrane Extraction Buffer(Pierce Chromatin Prep Module)中加入1ul蛋白酶和磷酸酶抑制剂混合液的比例配制Prepare according to the ratio of adding 1ul protease and phosphatase inhibitor mixture to every 100ul Membrane Extraction Buffer (Pierce Chromatin Prep Module)
MNase酶切缓冲工作液MNase Digestion Buffer Working Solution
按每100ul MNase酶切缓冲液(Pierce Chromatin Prep Module)中加入0.1ul1M二硫苏糖醇(DTT)溶液比例配制。Prepare by adding 0.1ul of 1M dithiothreitol (DTT) solution to every 100ul of MNase digestion buffer (Pierce Chromatin Prep Module).
去交联混合液(10ul):De-crosslinking mixture (10ul):
去核酸酶水6.6μl,5M氯化钠溶液2.4μl,蛋白酶K1μl。6.6 μl of nuclease-free water, 2.4 μl of 5M sodium chloride solution, and 1 μl of proteinase K.
(3)载体构建(3) Vector construction
a.pPIDA1和pPIDK1检测载体的构建a. Construction of pPIDA1 and pPIDK1 detection vectors
(i)MCS-pSP73、MCS-pSB1K3以及BR-pSP73载体构建(i) MCS-pSP73, MCS-pSB1K3 and BR-pSP73 vector construction
将SEQ ID NO:1所示的多克隆位点MCS序列The multiple cloning site MCS sequence shown in SEQ ID NO: 1
SEQ ID NO:1SEQ ID NO: 1
5’-GGTACCGCGGCCGCTACTAGTGCCATGGAGGCCGAATTCCCGGGGATCCGTCGACCTGCATGCTAGCAGCGGCCG-3’5'-GGTACCGCGGCCGCTACTAGTGCCATGGAGGCCGAATTCCCGGGGATCCGTCGACCTGCATGCTAGCAGCGGCCG-3'
通过ClaI和XhoI两个限制性内切酶插入到pSP73载体中,得到MCS-pSP73。Inserted into the pSP73 vector by ClaI and XhoI restriction endonucleases to obtain MCS-pSP73.
将SEQ ID NO:2所示多克隆位点MCS序列The multiple cloning site MCS sequence shown in SEQ ID NO: 2
SEQ ID NO:2SEQ ID NO: 2
5’-GGTACCGCGGCCGCTACTAGTGCCATGGAGGCCGAATTCCCGGGGATCCGTCGACCTGCATGCTAGCAGCGGCCGCTCGAG-3’5'-GGTACCGCGGCCGCTACTAGTGCCATGGAGGCCGAATTCCCGGGGATCCGTCGACCTGCATGCTAGCAGCGGCCGCTCGAG-3'
通过AatII和PstI两个限制性内切酶插入到pSB1K3载体中,得到MCS-pSB1K3。Insert the two restriction enzymes AatII and PstI into the pSB1K3 vector to obtain MCS-pSB1K3.
此外,将DNA结合结构域CI(N)相应的特异性DNA序列BR(SEQ IDNO:21)插入到MCS-pSP73载体的NheI和XhoI位点间得到BR-pSP73载体。In addition, the specific DNA sequence BR (SEQ ID NO: 21) corresponding to the DNA binding domain CI(N) was inserted between the NheI and XhoI sites of the MCS-pSP73 vector to obtain the BR-pSP73 vector.
(ii)CI(N)的克隆以及CI(N)-MCS-pSP73和CI(N)-MCS-pSB1K3载体构建(ii) Cloning of CI(N) and construction of CI(N)-MCS-pSP73 and CI(N)-MCS-pSB1K3 vectors
利用以下引物以λ噬菌体基因组为模版克隆蛋白质CI的DNA结合结构域CI(N)。The following primers were used to clone the DNA-binding domain CI(N) of protein CI using the lambda phage genome as a template.
克隆正向引物(SEQ ID NO:3):Cloning Forward Primer (SEQ ID NO: 3):
5’-GGGGTACCGCGGCCGCTACTAGTATGAGCACAAAAAAGAAACCATTAACACAAGAG-3’5'-GGGGTACCGCGGCCGCTACTAGTATGAGCACAAAAAAGAAACCATTAACACAAGAG-3'
克隆反向引物(SEQ ID NO:4):Cloning reverse primer (SEQ ID NO: 4):
5’-CCCTCGAGCGGCCGCTGCTAGCCTGAACATGTGAAAAAACAGGGTACTCAT-3’5'-CCCTCGAGCGGCCGCTGCTAGCCTGAACATGTGAAAAAACAGGGTACTCAT-3'
克隆产物CI(N)(SEQ ID NO:5):Clone product CI(N) (SEQ ID NO: 5):
5’-GGGGTACCGCGGCCGCTACTAGTATGAGCACAAAAAAGAAACCATTAACACAAGAGCAGCTTGAGGACGCACGTCGCCTTAAAGCAATTTATGAAAAAAAGAAAAATGAACTTGGCTTATCCCAGGAATCTGTCGCAGACAAGATGGGGATGGGGCAGTCAGGCGTTGGTGCTTTATTTAATGGCATCAATGCATTAAATGCTTATAACGCCGCATTGCTTACAAAAATTCTCAAAGTTAGCGTTGAAGAATTTAGCCCTTCAATCGCCAGAGAAATCTACGAGATGTATGAAGCGGTTAGTATGCAGCCGTCACTTAGAAGTGAGTATGAGTACCCTGTTTTTTCTCATGTTCAGGCTAGCAGCGGCCGCTCGAGGG-3’5’-GGGGTACCGCGGCCGCTACTAGTATGAGCACAAAAAAGAAACCATTAACACAAGAGCAGCTTGAGGACGCACGTCGCCTTAAAGCAATTTATGAAAAAAAGAAAAATGAACTTGGCTTATCCCAGGAATCTGTCGCAGACAAGATGGGGATGGGGCAGTCAGGCGTTGGTGCTTTATTTAATGGCATCAATGCATTAAATGCTTATAACGCCGCATTGCTTACAAAAATTCTCAAAGTTAGCGTTGAAGAATTTAGCCCTTCAATCGCCAGAGAAATCTACGAGATGTATGAAGCGGTTAGTATGCAGCCGTCACTTAGAAGTGAGTATGAGTACCCTGTTTTTTCTCATGTTCAGGCTAGCAGCGGCCGCTCGAGGG-3’
将以上克隆产物通过限制性内切酶KpnI和NheI插入到MCS-pSP73和MCS-pSB1K3载体的KpnI和SpeI位点间得到CI(N)-MCS-pSP73和CI(N)-MCS-pSB1K3载体。The above cloning products were inserted between the KpnI and SpeI sites of MCS-pSP73 and MCS-pSB1K3 vectors by restriction enzymes KpnI and NheI to obtain CI(N)-MCS-pSP73 and CI(N)-MCS-pSB1K3 vectors.
(iii)pPIDA1和pPIDK1载体构建(iii) Construction of pPIDA1 and pPIDK1 vectors
将核糖体结合位点RBS和启动子Plac序列依次插入到CI(N)-MCS-pSP73和CI(N)-MCS-pSB1K3的KpnI和SpeI位点间,将转录终止序列Ter和cI(N)相应的特异性DNA序列BR依次插入到CI(N)-MCS-pSP73和CI(N)-MCS-pSB1K3的NheI和XhoI位点间,最后得到pPIDA1和pPIDK1载体。其中Plac、RBS以及Ter序列如下:The ribosome binding site RBS and the promoter Plac sequence were sequentially inserted between the KpnI and SpeI sites of CI(N)-MCS-pSP73 and CI(N)-MCS-pSB1K3, and the transcription termination sequences Ter and cI(N) The corresponding specific DNA sequence BR was sequentially inserted between the NheI and XhoI sites of CI(N)-MCS-pSP73 and CI(N)-MCS-pSB1K3, and finally pPIDA1 and pPIDK1 vectors were obtained. The sequences of Plac, RBS and Ter are as follows:
Plac(SEQ ID NO:6):Plac (SEQ ID NO: 6):
5’-CAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACA-3’5'-CAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACA-3'
RBS(SEQ ID NO:7):RBS (SEQ ID NO: 7):
5’-ATTAAAGAGGAGAAA-3’5'-ATTAAAGAGGAGAAA-3'
Ter(SEQ ID NO:8):Ter (SEQ ID NO: 8):
5’-CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATA-3’5'-CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATA-3'
b.基因克隆:b. Gene cloning:
用以下引物克隆目的基因,将得到的聚合酶链式反应(PCR)产物用AxyPrep PCR清洁试剂盒进行纯化,得到产物可用于后续步骤或于-20℃保存。Use the following primers to clone the target gene, and purify the resulting polymerase chain reaction (PCR) product with the AxyPrep PCR Cleaning Kit. The product can be used in subsequent steps or stored at -20°C.
克隆正向引物(SEQ ID NO:9):Cloning Forward Primer (SEQ ID NO: 9):
5’-CATGGAGGCCGAATTC111222333444555666777888-3’(其中111为目的基因的起始密码即第1个密码子,其余数字表示目的基因的后续密码子序列)5'-CATGGAGGCCGAATTC111222333444555666777888-3' (where 111 is the start codon of the target gene, that is, the first codon, and the remaining numbers indicate the subsequent codon sequence of the target gene)
克隆反向引物(SEQ ID NO:10):Cloning reverse primer (SEQ ID NO: 10):
5’-GCAGGTCGACGGATCCLLLNNNNNNNNNNNNNNNNNNNNN-3’(其中LLL为目的基因的最后一个密码子,其中N表示目的基因的前续密码子序列)5'-GCAGGTCGACGGATCCLLLNNNNNNNNNNNNNNNNNNNNNN-3' (where LLL is the last codon of the target gene, and N represents the sequence of the preceding codon of the target gene)
c.同源重组c. Homologous recombination
利用限制性内切酶EcoRI和BamHI对载体pPIDA1和pPIDK1进行双酶切处理后,将酶切产物用AxyPrep PCR清洁试剂盒进行纯化,进而得到线性化载体,再将目的基因分别与线性化载体利用In-Fusion HD CloningKit在50℃下反应15分钟后,转化于大肠杆菌DH5α感受态中,在含有相应抗生素(氨苄亲霉素或卡那霉素)的LB固体培养基上37℃过夜培养。最后得到含有目的蛋白质X的X-pPIDA1和含有目的蛋白质Y的Y-pPIDK1。The vectors pPIDA1 and pPIDK1 were double digested with restriction endonucleases EcoRI and BamHI, and the digested products were purified with the AxyPrep PCR cleaning kit to obtain a linearized vector, and then the target gene was used with the linearized vector respectively. After In-Fusion HD CloningKit was reacted at 50°C for 15 minutes, it was transformed into Escherichia coli DH5α competent medium, and cultured overnight at 37°C on LB solid medium containing corresponding antibiotics (ampicillin or kanamycin). Finally, X-pPIDA1 containing the target protein X and Y-pPIDK1 containing the target protein Y were obtained.
d.载体抽提与检验d. Carrier extraction and inspection
挑取转化得到的重组载体的单克隆菌落于含有相应抗生素(氨苄青霉素或卡那霉素)的LB液体培养基中,37℃,250rpm振摇过夜培养。The monoclonal colonies of the transformed recombinant vectors were picked and cultured in LB liquid medium containing corresponding antibiotics (ampicillin or kanamycin) at 37° C. and shaken at 250 rpm overnight.
次日,取出过夜培养菌液并用SanPrep柱式质粒DNA小量抽提试剂盒提取重组载体。提取出的载体可通过测序检验其正确性。The next day, take out the overnight culture and use the SanPrep column plasmid DNA mini-extraction kit to extract the recombinant vector. The extracted vectors can be verified for correctness by sequencing.
(4)共转化与表达(4) Co-transformation and expression
a.共转化a. Co-transformation
将重组得到的X-pPIDA1与Y-pPIDK1载体共转化到大肠杆菌JM109感受态中,在含有氨苄青霉素和卡那霉素的LB固体培养基上30℃过夜培养。挑取过夜培养得到的单克隆菌落于含有氨苄青霉素和卡那霉素的M9组氨酸缺陷培养基中,37℃,250rpm振摇过夜培养。The recombinant X-pPIDA1 and Y-pPIDK1 vectors were co-transformed into Escherichia coli JM109 competent, and cultured overnight at 30°C on LB solid medium containing ampicillin and kanamycin. The monoclonal colonies obtained by overnight culture were picked and cultured overnight in M9 histidine-deficient medium containing ampicillin and kanamycin at 37° C. with shaking at 250 rpm.
b.表达b. to express
取以上过夜培养的菌液接种到新的含有氨苄青霉素和卡纳霉素的M9组氨酸缺陷培养基中,并将OD600值调整至0.03~0.04后,加入终浓度为10μM的异丙基硫代半乳糖苷(IPTG),然后于37℃,250rpm振摇培养8h后,测定并记录OD600。Take the above overnight cultured bacterial solution and inoculate it into a new M9 histidine-deficient medium containing ampicillin and kanamycin, adjust the OD600 value to 0.03-0.04, and then add isopropyl sulfide with a final concentration of 10 μM Substituent galactoside (IPTG) was cultured at 37° C. with shaking at 250 rpm for 8 hours, and the OD600 was measured and recorded.
(5)蛋白质二聚化足迹法检测(PDf)(5) Protein dimerization footprint detection (PDf)
a.染色质交联与细菌分离a. Chromatin cross-linking and bacterial isolation
取以上8h诱导表达的大肠杆菌JM109菌液1ml于15ml离心管中,加入27μl的37%甲醛溶液,并于25℃,300rpm振摇反应8分钟,然后加入10X甘氨酸溶液至终浓度为1X,并于25℃,300rpm振摇反应5分钟。将反应液转移至1.5ml离心管中,4℃,12000rpm离心4min后,弃上清,并用1ml1X PBS溶液4℃,12000rpm离心2min清洗细菌沉淀两次,然后用加入了10μl蛋白酶和磷酸酶抑制剂混合液的1ml1X PBS溶液重悬细菌沉淀,并于4℃,12000rpm离心4min后弃上清,得到的细菌沉淀可用于后续试验或于-20℃保存。Take 1ml of the Escherichia coli JM109 bacterial solution induced and expressed in the above 8h into a 15ml centrifuge tube, add 27μl of 37% formaldehyde solution, and shake at 25°C and 300rpm for 8 minutes, then add 10X glycine solution to a final concentration of 1X, and The reaction was shaken at 300 rpm for 5 minutes at 25°C. Transfer the reaction solution to a 1.5ml centrifuge tube, centrifuge at 12000rpm for 4min at 4°C, discard the supernatant, and wash the bacterial pellet twice with 1ml 1X PBS solution at 4°C, centrifuge at 12000rpm for 2min, then add 10μl of protease and phosphatase inhibitors Resuspend the bacterial pellet in 1ml of 1X PBS solution of the mixed solution, centrifuge at 12000rpm at 4°C for 4min and discard the supernatant. The obtained bacterial pellet can be used for subsequent experiments or stored at -20°C.
b.样品裂解与MNase酶消化b. Sample lysis and MNase digestion
用200μl Lysis Buffer I重悬菌体沉淀,振荡混匀15秒后,置于冰上反应10分钟,再9000rpm离心3分钟并移除上清。然后,用200μl MNase酶切缓冲工作液重悬以上沉淀,并取100μl用于后续检测。Resuspend the bacterial pellet with 200μl Lysis Buffer I, shake and mix for 15 seconds, place on ice for 10 minutes, centrifuge at 9000rpm for 3 minutes and remove the supernatant. Then, resuspend the above pellet with 200μl MNase digestion buffer working solution, and take 100μl for subsequent detection.
每18μl MNase酶切缓冲液中加入2μl MNase并混匀,取4μl加入以上100μl重悬液中,于37℃反应15分钟,其中每过5分钟振荡混匀一次。然后,向以上反应液中加入20μlMnase反应种终止液,并置于冰上放置5分钟后,9000rpm离心5分钟并移净上清。Add 2 μl MNase to every 18 μl MNase digestion buffer and mix well, take 4 μl and add it to the above 100 μl resuspension, react at 37°C for 15 minutes, and shake and mix every 5 minutes. Then, 20 μl of Mnase reaction stop solution was added to the above reaction solution, placed on ice for 5 minutes, centrifuged at 9000 rpm for 5 minutes, and the supernatant was removed.
c.蛋白质-DNA复合物的提取与DNase I酶消化c. Extraction of protein-DNA complexes and digestion with DNase I
用50μl核提取缓冲液重悬上一步中得到的沉淀,并置于冰上反应15分钟,每过5分钟振荡混匀一次。然后9000rpm离心5分钟,并保留上清,将其转移至1.5ml离心管中,然后向其中加入2μl DNase I过夜消化(至少12小时)。Resuspend the pellet obtained in the previous step with 50 μl of nuclear extraction buffer, and place it on ice for 15 minutes, shaking and mixing every 5 minutes. Then centrifuge at 9000rpm for 5 minutes, keep the supernatant, transfer it to a 1.5ml centrifuge tube, and then add 2μl DNase I to it for overnight digestion (at least 12 hours).
d.去交联与DNA片段的纯化d. Decrosslinking and purification of DNA fragments
将过夜反应液于75℃反应10分钟后置于冰上冷却,并向其中加入10μl去交联混合液并混匀,然后于65℃反应1.5小时。将以上反应液用UNIQ-10柱式寡聚核苷酸纯化试剂盒进行纯化,进而得到纯化后的DNA片段溶液。The overnight reaction solution was reacted at 75°C for 10 minutes, then cooled on ice, and 10 μl of the cross-linking mixture was added thereto, mixed well, and then reacted at 65°C for 1.5 hours. The above reaction solution was purified with UNIQ-10 Column Oligonucleotide Purification Kit to obtain a purified DNA fragment solution.
(6)目的DNA片段的定量PCR检测(6) Quantitative PCR detection of target DNA fragments
取1μl以上DNA片段溶液利用SYBR Premix EX Tag II试剂盒对其中目的DNA片段进行定量检测。反应条件为95℃,反应30s,然后95℃,5s;67.5℃,30s,反应30个循环,CI(N)特异性结合序列BR的检测引物为:Take more than 1 μl of the DNA fragment solution and use the SYBR Premix EX Tag II kit to quantitatively detect the target DNA fragment. The reaction conditions are 95°C for 30s, then 95°C for 5s; 67.5°C for 30s for 30 cycles, and the detection primers for CI(N) specific binding sequence BR are:
正向引物(SEQ ID NO:11):Forward primer (SEQ ID NO: 11):
5’-AGCAAAATCAGGGTGTTATCTACCTCTGGCGGTGATAACTTC-3’5'-AGCAAAATCAGGGTGTTATCTACCCTCTGGCGGTGATAACTTC-3'
反向引物(SEQ ID NO:12):Reverse primer (SEQ ID NO: 12):
5’-CCGCTGCTAGCACCACAGGGCAGAG-3’5'-CCGCTGCTAGCACCACAGGGCAGAG-3'
此外,定量结果均以CI蛋白质二聚化结构域CI(C)在CI(C)-pPIDA1+CI(C)-pPIDK1体系中测定的PDf信号值为基准,并用8小时诱导表达后细菌生长的OD600值进行修正得到。In addition, the quantitative results are based on the PDf signal value determined by the CI(C) protein dimerization domain CI(C) in the CI(C)-pPIDA1+CI(C)-pPIDK1 system As a benchmark, and corrected by the OD600 value of bacterial growth after 8 hours of induction of expression.
CI蛋白质二聚化结构域CI(C)序列(SEQ ID NO:13):CI protein dimerization domain CI (C) sequence (SEQ ID NO: 13):
5’-GCAGGGATGTTCTCACCTGAGCTTAGAACCTTTACCAAAGGTGATGCGGAGAGATGGGTAAGCACAACCAAAAAAGCCAGTGATTCTGCATTCTGGCTTGAGGTTGAAGGTAATTCCATGACCGCACCAACAGGCTCCAAGCCAAGCTTTCCTGACGGAATGTTAATTCTCGTTGACCCTGAGCAGGCTGTTGAGCCAGGTGATTTCTGCATAGCCAGACTTGGGGGTGATGAGTTTACCTTCAAGAAACTGATCAGGGATAGCGGTCAGGTGTTTTTACAACCACTAAACCCACAGTACCCAATGATCCCATGCAATGAGAGTTGTTCCGTTGTGGGGAAAGTTATCGCTAGTCAGTGGCCTGAAGAGACGTTTGGCTGA-3’5’-GCAGGGATGTTCTCACCTGAGCTTAGAACCTTTACCAAAGGTGATGCGGAGAGATGGGTAAGCACAACCAAAAAAGCCAGTGATTCTGCATTCTGGCTTGAGGTTGAAGGTAATTCCATGACCGCACCAACAGGCTCCAAGCCAAGCTTTCCTGACGGAATGTTAATTCTCGTTGACCCTGAGCAGGCTGTTGAGCCAGGTGATTTCTGCATAGCCAGACTTGGGGGTGATGAGTTTACCTTCAAGAAACTGATCAGGGATAGCGGTCAGGTGTTTTTACAACCACTAAACCCACAGTACCCAATGATCCCATGCAATGAGAGTTGTTCCGTTGTGGGGAAAGTTATCGCTAGTCAGTGGCCTGAAGAGACGTTTGGCTGA-3’
(7)DNA结合结构域CI(N)突变体的构建以及相应特异性DNA序列的改造(7) Construction of DNA-binding domain CI(N) mutants and modification of corresponding specific DNA sequences
(i)DNA结合结构域CI(N)突变体的构建(i) Construction of DNA-binding domain CI(N) mutants
以突变体CI(N)mut1为例,利用以下引物:Taking the mutant CI(N) mut1 as an example, the following primers were used:
正向引物(SEQ ID NO:14):Forward primer (SEQ ID NO: 14):
5’-GCAGACAAGATGGGGATGGGGCAGTCAGCGATTAATAAGGCATTTAATGGCATCAATGC-3’5'-GCAGACAAGATGGGGATGGGGCAGTCAGCGATTAATAAGGCATTTAATGGCATCAATGC-3'
反向引物(SEQ ID NO:15):Reverse primer (SEQ ID NO: 15):
5’-GCATTGATGCCATTAAATGCCTTATTAATCGCTGACTGCCCCATCCCCATCTTGTCTGC-3’5'-GCATTGATGCCATTAAATGCCTTATTAATCGCTGACTGCCCCATCCCCATCTTGTCTGC-3'
以包含野生型DNA结合结构域CI(N)wt(SEQ ID NO:5)的CI(C)-pPIDA1为模版进行PCR,得到PCR产物为线性化载体。用限制性内切酶DpnI对该PCR产物进行充分消化,在经由转化和载体提取,即得到DNA结合结构域为突变体CI(N)mut1的载体。PCR was performed using CI(C)-pPIDA1 containing the wild-type DNA binding domain CI(N) wt (SEQ ID NO: 5) as a template to obtain a linearized vector. The PCR product was fully digested with restriction endonuclease DpnI, and after transformation and vector extraction, the vector with the DNA binding domain as the mutant CI(N) mut1 was obtained.
(ii)相应特异性DNA序列的改造(ii) Modification of the corresponding specific DNA sequence
以制备DNA结合结构域CI(N)wt和CI(N)mut1互不交叉的特异性DNA序列为例。为了设计能够与不同DNA结合结构域特异性结合而不发生交叉反应的特异性DNA序列,我们利用从PDB数据库中下载得到的CI(N)wt-DNA复合体的X射线衍射结构1LMB的结构信息,通过FoldX软件计算DNA结合结构域与DNA序列的相互作用能,并遍历DNA序列的所有组合形式并计算和评估其相对于野生型特异性DNA序列的相互作用能变化。以这一计算结果为基础,我们设计相应的DNA序列,利用以上定点突变方法对CI(C)-pPIDA1进行改造,并利用PDf方法检测不同CI(N)突变体与不同DNA序列的特异性结合能力。Take the preparation of a specific DNA sequence in which the DNA-binding domains CI(N) wt and CI(N) mut1 do not intersect each other as an example. To design specific DNA sequences capable of specifically binding to different DNA-binding domains without cross-reactivity, we utilized the structural information of the X-ray diffraction structure 1LMB of the CI(N) wt -DNA complex downloaded from the PDB database , Calculate the interaction energy between the DNA binding domain and the DNA sequence through the FoldX software, and traverse all the combined forms of the DNA sequence and calculate and evaluate its interaction energy change relative to the wild-type specific DNA sequence. Based on this calculation result, we designed the corresponding DNA sequence, transformed CI(C)-pPIDA1 using the above site-directed mutagenesis method, and used the PDf method to detect the specific binding of different CI(N) mutants to different DNA sequences ability.
对于CI(N)wt和CI(N)mut1而言就是要得到三种DNA序列:特异地与CI(N)wt-CI(N)wt同二聚体结合的DNA序列,特异地与CI(N)mut1-CI(N)mut1同二聚体结合的DNA序列,以及特异性地与CI(N)wt-CI(N)mut1异二聚体结合的DNA序列。此外,与前述相同,在此处的PDf检测方法中,均利用CI蛋白质二聚化结构域CI(C)在CI(C)-pPIDA1+CI(C)-pPIDK1双载体体系中的PDf检测信号为基准值进行比较。该体系中每个载体上的DNA结合结构域均为野生型CI(N)wt,BR序列均为野生型特异性DNA序列。For CI(N) wt and CI(N) mut1 , it is necessary to obtain three DNA sequences: a DNA sequence that specifically binds to the CI(N) wt -CI(N) wt homodimer, and a DNA sequence that specifically binds to the CI(N) wt DNA sequences that bind N) mut1 -CI(N) mut1 homodimers, and DNA sequences that specifically bind CI(N) wt -CI(N) mut1 heterodimers. In addition, the same as above, in the PDf detection method here, the PDf detection signal of the CI protein dimerization domain CI(C) in the CI(C)-pPIDA1+CI(C)-pPIDK1 dual vector system is used for comparison with baseline values. The DNA binding domain on each vector in this system is wild-type CI(N) wt , and the BR sequences are all wild-type specific DNA sequences.
实施例1 蛋白质二聚化足迹法检测(PDf)工作原理Example 1 Working principle of protein dimerization footprint detection (PDf)
本发明中蛋白质二聚化足迹法检测(PDf)工作原理如图2所示。目的蛋白在大肠杆菌中表达后,会通过其融合的DNA结合结构域和载体上的特异性DNA序列相互作用。如果两蛋白质发生相互作用,其二聚体可与DNA以很高的亲和力结合,反之不能结合或者以很低的亲和力结合。然后,经过甲醛处理,DNA及与其结合的蛋白质二聚体相交联形成复合体。在MNase酶作用下,载体被打碎成小片段,将这些小片段分离提取后,用DNase I对其进行充分消化,从而将未与蛋白质结合的DNA片段清除。用蛋白酶K对消化后的样品进行去交联,并进行纯化即得到相应目的DNA片段。对这些DNA片段进行定量PCR、高通量测序和DNA微阵列等基于核酸序列的定量检测或者PCR及琼脂糖凝胶电泳等基于核酸序列的定性检测,即可得到基于目的蛋白质的相互作用网络信息。The working principle of protein dimerization footprint detection (PDf) in the present invention is shown in FIG. 2 . After the target protein is expressed in E. coli, it will interact with the specific DNA sequence on the vector through its fused DNA binding domain. If the two proteins interact, their dimers can bind to DNA with high affinity, otherwise they cannot bind or bind with very low affinity. Then, after formaldehyde treatment, the DNA and its associated protein dimers are cross-linked to form a complex. Under the action of MNase enzyme, the carrier is broken into small fragments. After these small fragments are separated and extracted, they are fully digested with DNase I, so as to remove the DNA fragments that are not bound to the protein. The digested sample was decrosslinked with proteinase K and purified to obtain the corresponding target DNA fragment. Quantitative detection based on nucleic acid sequence, such as quantitative PCR, high-throughput sequencing, and DNA microarray, or qualitative detection based on nucleic acid sequence, such as PCR and agarose gel electrophoresis, can obtain the interaction network information based on the target protein on these DNA fragments .
实施例2 以蛋白质CI的二聚化结构域CI(C)为目的蛋白质验证蛋白质二聚化足迹法检测(PDf)方法Example 2 Taking the dimerization domain CI(C) of protein CI as the target protein to verify the protein dimerization footprint detection (PDf) method
为了验证PDf检测结果是否能够反应蛋白质相互作用的不同强度,通过BR-pSP73(空白对照),pPIDA1(阴性对照)以及CI(C)-pPIDA1(阳性对照)三组对照实验(图3a),可证明经由DNase I酶12小时消化,能将未被蛋白质结合保护的DNA片段除净,从而使PDf检测结果能够反应不同蛋白质相互作用强度(结果如图3b所示)。In order to verify whether the PDf test results can reflect the different strengths of protein interactions, through three control experiments of BR-pSP73 (blank control), pPIDA1 (negative control) and CI(C)-pPIDA1 (positive control) (Figure 3a), we can It was proved that the 12-hour digestion with DNase I could remove the DNA fragments not protected by protein binding, so that the PDf detection results could reflect different protein interaction strengths (the results are shown in Figure 3b).
实施例3 PDf检测的反应动力学模型的建立The establishment of the reaction kinetic model of embodiment 3 PDf detection
为了讨论PDf对蛋白质相互作用强度的定量检测能力及DNA结合结构域单体与特异性DNA序列的结合对蛋白质间相互作用检测的影响,我们从蛋白质单体与特异性DNA序列结合的动力学过程出发,讨论了蛋白质二聚化即蛋白质相互作用过程的相关参数对DNA结合动力学的影响。In order to discuss the quantitative detection ability of PDf on the strength of protein interaction and the influence of the binding of DNA binding domain monomers and specific DNA sequences on the detection of protein-protein interactions, we start from the kinetic process of protein monomers binding to specific DNA sequences Starting from this paper, the influence of protein dimerization, a related parameter of protein interaction process, on DNA binding kinetics was discussed.
1.蛋白质单体DNA结合动力学模型1. Kinetic model of protein monomer DNA binding
设θb为结合了蛋白质单体的特异性DNA片段的比例,θr为未结合蛋白质单体的特异性DNA片段的比例,Cs为蛋白质单体的浓度,kon为蛋白质单体与特异性DNA序列结合反应的速率常数,koff为蛋白质单体与特异性DNA序列复合物解离反应的速率常数。Let θ b be the proportion of specific DNA fragments bound to protein monomers, θ r be the proportion of specific DNA fragments not bound to protein monomers, C s be the concentration of protein monomers, k on be the ratio of protein monomers to specific DNA fragments koff is the rate constant for the dissociation reaction of protein monomers and specific DNA sequence complexes.
根据以上定义有:According to the above definition there are:
θb+θr=1 (1)θ b + θ r = 1 (1)
并根据实验原理,θb的变化率为:And according to the experimental principle, the rate of change of θ b is:
结合方程(1)和方程(2),可以得到模型的边界条件:Combining Equation (1) and Equation (2), the boundary conditions of the model can be obtained:
当t=0时,即未发生交联时,体系处于平衡态,可得设此时的θb值为可得:When t=0, that is, when no cross-linking occurs, the system is in an equilibrium state, and it can be obtained Let the value of θ b at this time be Available:
而当交联开始后,以上平衡态被破坏,θb的值随交联的进行而不断增加,在t=∞时其达到最大:When the cross-linking starts, the above equilibrium state is destroyed, and the value of θ b increases continuously with the progress of cross-linking, and it reaches the maximum at t=∞:
将方程(2)对时间进行微分,并结合方程(1)可得到:Differentiate Equation (2) with respect to time and combine Equation (1) to get:
以上微分方程有以下通解:The above differential equation has the following general solution:
其中r1=0,r2=-(konCs+koff),然后根据模型的边界条件式(3)和式(4)得:where r 1 =0, r 2 =-(k on C s +k off ), then according to the boundary conditions of the model (3) and (4):
方程(7)描述了在PDf方法的交联过程中蛋白质单体与特异性DNA结合的过程。考虑到在实验过程中特异性DNA序列的不饱和性以及特异性DNA序列总数目为恒定值(见图3c),可以得到蛋白质单体结合特异性DNA序列的PDf信号为:Equation (7) describes the binding of protein monomers to specific DNA during the crosslinking process of the PDf method. Considering that the unsaturation of the specific DNA sequence and the total number of specific DNA sequences are constant during the experiment (see Figure 3c), the PDf signal of the protein monomer binding to the specific DNA sequence can be obtained as:
Is=εKθb (8)I s =εKθ b (8)
其中εK为特异性DNA序列的最大结合数,ε为常数,K=kon/koff,将(7)带入(8)则可得到Is信号的完整形式:Where εK is the maximum binding number of a specific DNA sequence, ε is a constant, K=k on /k off , and (7) is brought into (8) to obtain the complete form of the I s signal:
2.蛋白质二聚化过程的DNA结合动力学模型2. DNA binding kinetic model of protein dimerization process
蛋白质二聚化过程的PDf信号包括两个部分的贡献,一个是蛋白质单体与特异性DNA序列的结合,另一个是蛋白质二聚体与特异性DNA序列的结合。因此,可以得到蛋白质二聚化或者蛋白质相互作用的PDf信号为:The PDf signal of the protein dimerization process includes the contribution of two parts, one is the binding of protein monomers to specific DNA sequences, and the other is the binding of protein dimers to specific DNA sequences. Therefore, the PDf signal of protein dimerization or protein interaction can be obtained as:
Isd=Is+Id (10)I sd =I s +I d (10)
其中,Is为蛋白质单体与特异性DNA序列结合的贡献,其形式如(9)所示,Id为蛋白质二聚体与特异性DNA序列结合的贡献。Among them, I s is the contribution of protein monomer binding to specific DNA sequence, and its form is shown in (9), and I d is the contribution of protein dimer binding to specific DNA sequence.
在蛋白质单体的DNA结合模型基础上,可扩展得到蛋白质二聚体的DNA结合动力学模型。定义Cd为蛋白质二聚体的浓度,kond为蛋白质二聚体与特异性DNA序列结合反应的速率常数,koffd为蛋白质二聚体与特异性DNA序列复合物解离反应的速率常数。根据以上定义,蛋白质二聚化或者蛋白质相互作用的强度可以表示为:Based on the DNA binding model of protein monomers, the DNA binding kinetic model of protein dimers can be extended. C d is defined as the concentration of protein dimer, k ond is the rate constant of the binding reaction of protein dimer and specific DNA sequence, and k offd is the rate constant of dissociation reaction of protein dimer and specific DNA sequence complex. According to the above definition, the strength of protein dimerization or protein interaction can be expressed as:
Kdimer=Cd/Cs 2 (11)K dimer = C d /C s 2 (11)
考虑到特异性DNA序列的不饱和性,可得到蛋白质二聚体与特异性DNA序列结合所贡献的PDf信号为:Considering the unsaturation of the specific DNA sequence, the PDf signal contributed by the binding of the protein dimer to the specific DNA sequence can be obtained as:
其中ε′为常数。in ε' is a constant.
因此,蛋白质二聚化或者蛋白质相互作用过程的PDf信号为:Therefore, the PDf signal for protein dimerization or protein interaction process is:
结合方程(11),可进一步得到方程(14):Combined with equation (11), equation (14) can be further obtained:
此即为蛋白质二聚化或者相互作用过程的PDf信号。This is the PDf signal of protein dimerization or interaction process.
实施例4 PDf检测的反应动力学模型的实验验证与分析Experimental verification and analysis of the reaction kinetic model of embodiment 4 PDf detection
在上述模型的基础上,利用双载体表达体系X-pPIDA1+GFP-pPIDK1,对PDf的反应动力学模型进行实验验证和分析。如图4(a)所示,pPIDA1和pPIDK1具有相同的蛋白质单体检测性能和相同的蛋白质表达能力,因此蛋白质X和GFP有近似的表达量。由于GFP在细胞中几乎以单体形式存在,所以,可以利用仅表达GFP的系统的PDf信号Isd来近似目的蛋白X的PDf信号Is,从而能够利用GFP的报告基因性质来检测蛋白质单体结合对蛋白X二聚化相互作用PDf检测结果的影响。On the basis of the above model, the reaction kinetic model of PDf was experimentally verified and analyzed by using the dual vector expression system X-pPIDA1+GFP-pPIDK1. As shown in Figure 4(a), pPIDA1 and pPIDK1 have the same protein monomer detection performance and the same protein expression ability, so protein X and GFP have similar expression levels. Since GFP exists almost as a monomer in cells, the PDf signal I s of the system that only expresses GFP can be used to approximate the PDf signal I s of the target protein X, so that the reporter gene property of GFP can be used to detect protein monomers Effect of binding on protein X dimerization interaction PDf assay results.
为了进一步说明和验证以上原理:In order to further illustrate and verify the above principles:
首先,通过比较PDf实验测定值与基于以上动力学模型的理论计算值(见图4a),说明该动力学模型能够与实验结果相吻合,证实了该模型的可靠性。First, by comparing the experimentally measured value of PDf with the theoretically calculated value based on the above kinetic model (see Figure 4a), it shows that the kinetic model can be consistent with the experimental results, which confirms the reliability of the model.
然后,继续考察蛋白质单体浓度波动对PDf信号的影响。根据动力学模型,设蛋白质单体浓度变化倍数为Δ,当蛋白质浓度由Cs变为Δ·Cs时,PDf检测信号Is’为:Then, continue to investigate the impact of protein monomer concentration fluctuations on the PDf signal. According to the kinetic model, assuming that the multiple of protein monomer concentration change is Δ, when the protein concentration changes from Cs to Δ· Cs , the PDf detection signal I s ' is:
于是PDf检测信号Is的变化倍数为So the change multiple of PDf detection signal I s is
当蛋白质浓度Cs在0.01-100倍间变化时,结果显示PDf信号的变化倍数上限约为10(见图4b)。于是,当时,能够认为Is对Isd的影响可忽略不计,即Is≈0。When the protein concentration Cs varied between 0.01-100 fold, the results showed that the upper fold change of the PDf signal was about 10 (see Figure 4b). So, when When , it can be considered that the influence of I s on I sd is negligible, that is, I s ≈0.
此时可得到方程(17):At this time, equation (17) can be obtained:
基于该方程,可得到对于两待测蛋白质A和B,其PDf检测信号具有以下关系:Based on this equation, it can be obtained that for the two proteins A and B to be tested, the PDf detection signal has the following relationship:
即两蛋白质各自的二聚化强度之比可约等于其PDf检测信号之比。换句话说,就是蛋白质相互作用强度可以用相应的特异性DNA序列拷贝数来表示。而通过对比阳性和阴性实验组的PDf信号,发现诱导表达时间为8小时时,阳性组的数值(Isd)要显著大于10倍阴性组的数值(Is)(见图4c),即满足以上关系,因此选定该诱导表达时间为PDf的实验条件。同时,以CI蛋白质二聚化结构域CI(C)的PDf检测信号为基准,定义当某目的蛋白X的PDf信号Isd(X)<0.1Isd ref时,可以认为Isd(X)=0,以此作为判断蛋白质间是否发生相互作用的标准。That is, the ratio of the respective dimerization intensities of the two proteins can be approximately equal to the ratio of their PDf detection signals. In other words, the protein-protein interaction strength can be expressed by the corresponding specific DNA sequence copy number. By comparing the PDf signals of the positive and negative experimental groups, it was found that when the expression induction time was 8 hours, the value of the positive group (I sd ) was significantly greater than the value of the negative group (I s ) 10 times (see Figure 4c), that is to say, The above relationship, therefore selected the induced expression time as the experimental condition of PDf. At the same time, the PDf detection signal of the CI protein dimerization domain CI(C) As a benchmark, it is defined that when the PDf signal I sd (X) of a certain target protein X<0.1I sd ref , I sd (X)=0 can be considered as a criterion for judging whether there is an interaction between proteins.
实施例5 基于PDf方法的静态和动态蛋白质相互作用检测与现有蛋白质相互作用检测技术的比较Example 5 Comparison of Static and Dynamic Protein Interaction Detection Based on PDf Method and Existing Protein Interaction Detection Technology
为了验证PDf方法定性和定量检测蛋白质相互作用的性能,我们选择了大肠杆菌趋化系统中的4个蛋白质cheA、cheB、cheZ和cheY对其进行PDf检测,结果如图5a所示。通过与酵母双杂交(Y2H)和荧光共振能量转移(FRET)实验结果相比较,PDf方法能够很好地实现对蛋白质相互作用的定性和定量检测。In order to verify the performance of the PDf method for qualitative and quantitative detection of protein interactions, we selected four proteins cheA, cheB, cheZ and cheY in the E. coli chemotaxis system for PDf detection, and the results are shown in Figure 5a. Compared with the results of yeast two-hybrid (Y2H) and fluorescence resonance energy transfer (FRET) experiments, the PDf method can well realize the qualitative and quantitative detection of protein interactions.
cheA序列(SEQ ID NO:16):cheA sequence (SEQ ID NO: 16):
>gi|49175990:c1973348-1971384Escherichia coli str.K-12substr.MG1655chromosome,complete genome>gi|49175990: c1973348-1971384Escherichia coli str.K-12substr.MG1655chromosome, complete genome
GTGAGCATGGATATAAGCGATTTTTATCAGACATTTTTTGATGAAGCGGACGAACTGTTGGCTGACATGGAGCAGCATTTGCTGGTTTTGCAGCCGGAAGCGCCAGATGCCGAACAATTGAATGCCATCTTTCGGGCTGCCCACTCGATCAAAGGAGGGGCAGGAACTTTTGGCTTCAGCGTTTTGCAGGAAACCACGCATCTGATGGAAAACCTGCTCGATGAAGCCAGACGAGGTGAGATGCAACTCAACACCGACATTATCAATCTGTTTTTGGAAACGAAGGACATCATGCAAGAACAGCTCGACGCTTATAAACAGTCGCAAGAGCCGGATGCCGCCAGCTTCGATTATATCTGCCAGGCCTTGCGTCAACTGGCATTAGAAGCGAAAGGCGAAACGCCATCCGCAGTGACCCGATTAAGTGTGGTTGCCAAAAGTGAACCGCAAGATGAGCAGAGTCGCAGTCAGTCGCCGCGACGAATTATCCTTTCGCGCCTGAAGGCCGGGGAAGTCGACCTGCTGGAAGAAGAACTGGGACATCTGACAACGTTAACTGACGTGGTGAAAGGGGCGGATTCGCTCTCGGCAATATTACCGGGCGACATCGCCGAAGATGACATCACAGCGGTACTCTGTTTTGTGATTGAAGCCGATCAGATTACCTTTGAAACAGTAGAAGTCTCGCCAAAAATATCCACCCCACCAGTGCTTAAACTGGCAGCCGAACAAGCGCCAACCGGCCGCGTGGAGCGGGAAAAAACGACGCGCAGCAATGAATCCACCAGCATCCGTGTAGCGGTAGAAAAGGTTGATCAATTAATTAACCTCGTCGGCGAGCTGGTTATCACCCAGTCCATGCTTGCCCAGCGTTCCAGCGAACTGGACCCGGTTAATCATGGTGATTTGATAACCAGCATGGGGCAGTTACAACGTAACGCCCGTGATTTGCAGGAATCAGTGATGTCGATTCGCATGATGCCGATGGAATATGTTTTTAGTCGCTATCCCCGGCTGGTGCGTGATCTGGCGGGAAAACTCGGCAAGCAGGTAGAACTGACGCTGGTGGGCAGTTCTACTGAACTCGACAAAAGCCTGATAGAACGCATTATCGACCCGCTGACCCACCTGGTACGCAATAGCCTCGATCACGGTATTGAACTGCCAGAAAAACGGCTCGCCGCAGGTAAAAACAGCGTCGGAAATTTAATTCTGTCTGCCGAACATCAGGGCGGCAACATTTGCATTGAAGTGACCGACGATGGGGCGGGGCTAAACCGTGAGCGAATTCTGGCAAAAGCGGCCTCGCAAGGTTTGACTGTCAGCGAAAACATGAGCGACGACGAAGTCGCGATGCTGATATTTGCACCTGGCTTCTCCACGGCAGAGCAGGTCACCGACGTCTCCGGGCGCGGCGTCGGCATGGACGTCGTTAAACGTAATATCCAGAAGATGGGCGGTCATGTCGAAATCCAGTCGAAGCAGGGTACTGGCACTACGATCCGCATTTTACTGCCGCTGACGCTGGCCATCCTCGACGGCATGTCCGTACGCGTTGCGGATGAAGTTTTCATTCTGCCGCTGAATGCTGTTATGGAATCACTGCAACCCCGTGAAGCCGATCTCCATCCACTGGCCGGCGGCGAGCGGGTGCTGGAAGTGCGGGGTGAATATCTGCCCATCGTCGAACTGTGGAAAGTGTTCAACGTCGCGGGCGCGAAAACCGAAGCCACCCAGGGAATTGTGGTGATCTTACAAAGTGGCGGTCGCCGCTACGCCTTGCTGGTGGATCAATTAATTGGTCAACACCAGGTTGTGGTTAAAAACCTTGAAAGTAACTATCGCAAAGTCCCCGGCATTTCTGCTGCGACCATTCTTGGCGACGGCAGCGTGGCACTGATTGTTGATGTCTCCGCCTTGCAGGCGATAAACCGCGAACAACGTATGGCGAACACCGCCGCCTGAGTGAGCATGGATATAAGCGATTTTTATCAGACATTTTTTGATGAAGCGGACGAACTGTTGGCTGACATGGAGCAGCATTTGCTGGTTTTGCAGCCGGAAGCGCCAGATGCCGAACAATTGAATGCCATCTTTCGGGCTGCCCACTCGATCAAAGGAGGGGCAGGAACTTTTGGCTTCAGCGTTTTGCAGGAAACCACGCATCTGATGGAAAACCTGCTCGATGAAGCCAGACGAGGTGAGATGCAACTCAACACCGACATTATCAATCTGTTTTTGGAAACGAAGGACATCATGCAAGAACAGCTCGACGCTTATAAACAGTCGCAAGAGCCGGATGCCGCCAGCTTCGATTATATCTGCCAGGCCTTGCGTCAACTGGCATTAGAAGCGAAAGGCGAAACGCCATCCGCAGTGACCCGATTAAGTGTGGTTGCCAAAAGTGAACCGCAAGATGAGCAGAGTCGCAGTCAGTCGCCGCGACGAATTATCCTTTCGCGCCTGAAGGCCGGGGAAGTCGACCTGCTGGAAGAAGAACTGGGACATCTGACAACGTTAACTGACGTGGTGAAAGGGGCGGATTCGCTCTCGGCAATATTACCGGGCGACATCGCCGAAGATGACATCACAGCGGTACTCTGTTTTGTGATTGAAGCCGATCAGATTACCTTTGAAACAGTAGAAGTCTCGCCAAAAATATCCACCCCACCAGTGCTTAAACTGGCAGCCGAACAAGCGCCAACCGGCCGCGTGGAGCGGGAAAAAACGACGCGCAGCAATGAATCCACCAGCATCCGTGTAGCGGTAGAAAAGGTTGATCAATTAATTAACCTCGTCGGCGAGCTGGTTATCACCCAGTCCATGCTTGCCCAGCGTTCCAGCGAACTGGACCCGGTTAATCATGGTGATTTGATAACCAGCATGGGGCAGTTACAACGTAACGCCCGTGATTTGCAGGAATCAGTGATGTCGATTCGCATGATGCCGATGGAATATGTTTTTA GTCGCTATCCCCGGCTGGTGCGTGATCTGGCGGGAAAACTCGGCAAGCAGGTAGAACTGACGCTGGTGGGCAGTTCTACTGAACTCGACAAAAGCCTGATAGAACGCATTATCGACCCGCTGACCCACCTGGTACGCAATAGCCTCGATCACGGTATTGAACTGCCAGAAAAACGGCTCGCCGCAGGTAAAAACAGCGTCGGAAATTTAATTCTGTCTGCCGAACATCAGGGCGGCAACATTTGCATTGAAGTGACCGACGATGGGGCGGGGCTAAACCGTGAGCGAATTCTGGCAAAAGCGGCCTCGCAAGGTTTGACTGTCAGCGAAAACATGAGCGACGACGAAGTCGCGATGCTGATATTTGCACCTGGCTTCTCCACGGCAGAGCAGGTCACCGACGTCTCCGGGCGCGGCGTCGGCATGGACGTCGTTAAACGTAATATCCAGAAGATGGGCGGTCATGTCGAAATCCAGTCGAAGCAGGGTACTGGCACTACGATCCGCATTTTACTGCCGCTGACGCTGGCCATCCTCGACGGCATGTCCGTACGCGTTGCGGATGAAGTTTTCATTCTGCCGCTGAATGCTGTTATGGAATCACTGCAACCCCGTGAAGCCGATCTCCATCCACTGGCCGGCGGCGAGCGGGTGCTGGAAGTGCGGGGTGAATATCTGCCCATCGTCGAACTGTGGAAAGTGTTCAACGTCGCGGGCGCGAAAACCGAAGCCACCCAGGGAATTGTGGTGATCTTACAAAGTGGCGGTCGCCGCTACGCCTTGCTGGTGGATCAATTAATTGGTCAACACCAGGTTGTGGTTAAAAACCTTGAAAGTAACTATCGCAAAGTCCCCGGCATTTCTGCTGCGACCATTCTTGGCGACGGCAGCGTGGCACTGATTGTTGATGTCTCCGCCTTGCAGGCGATAAACCGCGAACAACGTATGGCGAACACCGCCGCCTGA
CheB序列(SEQ ID NO:17):CheB sequence (SEQ ID NO: 17):
>gi|49175990:c1966525-1965476Escherichia coli str.K-12substr.MG1655chromosome,complete genome>gi|49175990: c1966525-1965476Escherichia coli str.K-12substr.MG1655chromosome, complete genome
ATGAGCAAAATCAGGGTGTTATCTGTCGATGATTCGGCACTGATGCGCCAGATCATGACAGAAATCATCAACAGCCATAGCGACATGGAAATGGTGGCGACCGCGCCTGATCCGCTGGTCGCGCGTGACTTGATTAAGAAATTCAATCCCGATGTGCTGACGCTGGATGTTGAAATGCCGCGGATGGACGGACTGGATTTCCTCGAAAAATTAATGCGTTTGCGTCCAATGCCCGTTGTGATGGTTTCTTCCCTGACCGGCAAAGGGTCAGAAGTCACGCTGCGCGCGCTGGAGCTGGGGGCGATAGATTTTGTCACCAAACCGCAACTGGGTATTCGCGAAGGTATGCTGGCGTATAACGAAATGATTGCTGAAAAGGTGCGTACGGCAGCAAAGGCGAGCCTTGCAGCACATAAGCCATTGTCGGCACCGACAACGCTGAAGGCGGGGCCGTTGTTGAGTTCTGAAAAACTGATTGCGATTGGTGCTTCAACGGGTGGAACTGAGGCAATTCGTCACGTACTGCAACCGTTGCCGCTTTCCAGCCCGGCACTGTTAATTACCCAGCATATGCCGCCCGGTTTCACCCGCTCTTTTGCCGACAGACTTAATAAGCTTTGCCAGATCGGGG TTAAAGAAGCCGAAGACGGAGAACGTGTCTTGCCGGGGCATGCCTATATTGCGCCGGGCGATCGGCATATGGAGCTGTCGCGTAGTGGCGCAAATTACCAAATCAAAATTCACGATGGCCCGGCGGTTAACCGTCATCGGCCTTCGGTAGATGTGTTGTTCCATTCTGTCGCCAAACAGGCGGGGCGTAATGCGGTTGGGGTGATCCTGACCGGTATGGGCAACGACGGCGCGGCGGGAATGTTGGCGATGCGTCAGGCGGGGGCATGGACCCTTGCGCAAAACGAAGCAAGTTGCGTGGTGTTCGGCATGCCGCGCGAGGCCATCAATATGGGTGGTGTCTGCGAAGTGGTCGATCTTAGCCAGGTAAGCCAGCAAATGTTGGCAAAAATTAGTGCCGGACAGGCGATACGTATTTAAATGAGCAAAATCAGGGTGTTATCTGTCGATGATTCGGCACTGATGCGCCAGATCATGACAGAAATCATCAACAGCCATAGCGACATGGAAATGGTGGCGACCGCGCCTGATCCGCTGGTCGCGCGTGACTTGATTAAGAAATTCAATCCCGATGTGCTGACGCTGGATGTTGAAATGCCGCGGATGGACGGACTGGATTTCCTCGAAAAATTAATGCGTTTGCGTCCAATGCCCGTTGTGATGGTTTCTTCCCTGACCGGCAAAGGGTCAGAAGTCACGCTGCGCGCGCTGGAGCTGGGGGCGATAGATTTTGTCACCAAACCGCAACTGGGTATTCGCGAAGGTATGCTGGCGTATAACGAAATGATTGCTGAAAAGGTGCGTACGGCAGCAAAGGCGAGCCTTGCAGCACATAAGCCATTGTCGGCACCGACAACGCTGAAGGCGGGGCCGTTGTTGAGTTCTGAAAAACTGATTGCGATTGGTGCTTCAACGGGTGGAACTGAGGCAATTCGTCACGTACTGCAACCGTTGCCGCTTTCCAGCCCGGCACTGTTAATTACCCAGCATATGCCGCCCGGTTTCACCCGCTCTTTTGCCGACAGACTTAATAAGCTTTGCCAGATCGGGG TTAAAGAAGCCGAAGACGGAGAACGTGTCTTGCCGGGGCATGCCTATATTGCGCCGGGCGATCGGCATATGGAGCTGTCGCGTAGTGGCGCAAATTACCAAATCAAAATTCACGATGGCCCGGCGGTTAACCGTCATCGGCCTTCGGTAGATGTGTTGTTCCATTCTGTCGCCAAACAGGCGGGGCGTAATGCGGTTGGGGTGATCCTGACCGGTATGGGCAACGACGGCGCGGCGGGAATGTTGGCGATGCGTCAGGCGGGGGCATGGACCCTTGCGCAAAACGAAGCAAGTTGCGTGGTGTTCGGCATGCCGCGCGAGGCCATCAATATGGGTGGTGTCTGCGAAGTGGTCGATCTTAGCCAGGTA AGCCAGCAAATGTTGGCAAAAATTAGTGCCGGACAGGCGATACGTATTTAA
CheY序列(SEQ ID NO:18):CheY sequence (SEQ ID NO: 18):
>gi|49175990:c1965072-1965461Escherichia coli str.K-12substr.MG1655chromosome,complete genome>gi|49175990: c1965072-1965461Escherichia coli str.K-12substr.MG1655chromosome, complete genome
ATGGCGGATAAAGAACTTAAATTTTTGGTTGTGGATGACTTTTCCACCATGCGACGCATAGTGCGTAACCTGCTGAAAGAGCTGGGATTCAATAATGTTGAGGAAGCGGAAGATGGCGTCGACGCTCTCAATAAGTTGCAGGCAGGCGGTTATGGATTTGTTATCTCCGACTGGAACATGCCCAATATGGATGGCCTGGAATTGCTGAAAACAATTCGTGCGGATGGCGCGATGTCGGCATTGCCAGTGTTAATGGTGACTGCAGAAGCGAAGAAAGAGAACATCATTGCTGCGGCGCAAGCGGGGGCCAGTGGCTATGTGGTGAAGCCATTTACCGCCGCGACGCTGGAGGAAAAACTCAACAAAATCTTTGAGAAACTGGGCATGTGAATGGCGGATAAAGAACTTAAATTTTTGGTTGTGGATGACTTTTCCACCATGCGACGCATAGTGCGTAACCTGCTGAAAGAGCTGGGATTCAATAATGTTGAGGAAGCGGAAGATGGCGTCGACGCTCTCAATAAGTTGCAGGCAGGCGGTTATGGATTTGTTATCTCCGACTGGAACATGCCCAATATGGATGGCCTGGAATTGCTGAAAACAATTCGTGCGGATGGCGCGATGTCGGCATTGCCAGTGTTAATGGTGACTGCAGAAGCGAAGAAAGAGAACATCATTGCTGCGGCGCAAGCGGGGGCCAGTGGCTATGTGGTGAAGCCATTTACCGCCGCGACGCTGGAGGAAAAACTCAACAAAATCTTTGAGAAACTGGGCATGTGA
CheZ序列(SEQ ID NO:19):CheZ sequence (SEQ ID NO: 19):
>gi|49175990:c1965061-1964417Escherichia coli str.K-12substr.MG1655chromosome,complete genome>gi|49175990: c1965061-1964417Escherichia coli str.K-12substr.MG1655chromosome, complete genome
ATGATGCAACCATCAATCAAACCTGCTGACGAGCATTCAGCTGGCGATATCATTGCGCGCATCGGCAGCCTGACGCGTATGCTGCGCGACAGTTTGCGGGAACTGGGGCTGGATCAGGCCATTGCCGAAGCGGCGGAAGCCATCCCCGATGCGCGCGATCGTTTGTACTATGTTGTGCAGATGACCGCCCAGGCTGCGGAGCGGGCGCTGAACAGTGTTGAGGCGTCACAACCGCATCAGGATCAAATGGAGAAATCAGCAAAAGCGTTAACCCAACGTTGGGATGACTGGTTTGCCGATCCGATTGACCTTGCCGACGCCCGTGAACTGGTAACAGATACACGACAATTTCTGGCAGATGTACCCGCGCATACCAGCTTTACTAACGCGCAACTGCTGGAAATCATGATGGCGCAGGATTTTCAGGATCTCACCGGGCAGGTCATTAAGCGGATGATGGATGTCATTCAGGAGATCGAACGCCAGTTGCTGATGGTGCTGTTGGAAAACATCCCGGAACAGGAGTCGCGTCCAAAACGTGAAAACCAGAGTTTGCTTAATGGACCTCAGGTCGATACCAGCAAAGCCGGTGTGGTAGCCAGTCAGGATCAGGTGGACGATTTGTTGGATAGTCTTGGATTTTGAATGATGCAACCATCAATCAAACCTGCTGACGAGCATTCAGCTGGCGATATCATTGCGCGCATCGGCAGCCTGACGCGTATGCTGCGCGACAGTTTGCGGGAACTGGGGCTGGATCAGGCCATTGCCGAAGCGGCGGAAGCCATCCCCGATGCGCGCGATCGTTTGTACTATGTTGTGCAGATGACCGCCCAGGCTGCGGAGCGGGCGCTGAACAGTGTTGAGGCGTCACAACCGCATCAGGATCAAATGGAGAAATCAGCAAAAGCGTTAACCCAACGTTGGGATGACTGGTTTGCCGATCCGATTGACCTTGCCGACGCCCGTGAACTGGTAACAGATACACGACAATTTCTGGCAGATGTACCCGCGCATACCAGCTTTACTAACGCGCAACTGCTGGAAATCATGATGGCGCAGGATTTTCAGGATCTCACCGGGCAGGTCATTAAGCGGATGATGGATGTCATTCAGGAGATCGAACGCCAGTTGCTGATGGTGCTGTTGGAAAACATCCCGGAACAGGAGTCGCGTCCAAAACGTGAAAACCAGAGTTTGCTTAATGGACCTCAGGTCGATACCAGCAAAGCCGGTGTGGTAGCCAGTCAGGATCAGGTGGACGATTTGTTGGATAGTCTTGGATTTTGA
为了检验PDf方法对动态蛋白相互作用检测的性能,即其时间分辨率,我们选取了大肠杆菌PhoR/PhoB磷酸信号传导系统中的PhoB蛋白质,检测在不同磷酸浓度的生长环境下,其二聚化强度随反应时间的变化情况,结果如图5b和图5c所示。通过与FRET结果相比较,PDf能够检测出在不同磷酸浓度下PhoB二聚化的强度及其随时间的演化,体现出PDf方法在检测动态蛋白质相互作用中具有很好的时间分辨率。In order to test the performance of the PDf method for the detection of dynamic protein interactions, that is, its time resolution, we selected the PhoB protein in the PhoR/PhoB phosphate signaling system of Escherichia coli to detect its dimerization under different phosphate concentration growth environments. The variation of intensity with reaction time, the results are shown in Figure 5b and Figure 5c. By comparing with the FRET results, PDf can detect the intensity of PhoB dimerization and its evolution with time under different phosphate concentrations, which shows that the PDf method has good time resolution in detecting dynamic protein interactions.
PhoB序列(SEQ ID NO:20):PhoB sequence (SEQ ID NO: 20):
>gi|388476123:416366-417055Escherichia coli str.K-12substr.W3110,complete genome>gi|388476123:416366-417055Escherichia coli str.K-12substr.W3110, complete genome
ATGGCGAGACGTATTCTGGTCGTAGAAGATGAAGCTCCAATTCGCGAAATGGTCTGCTTCGTGCTCGAACAAAATGGCTTTCAGCCGGTCGAAGCGGAAGATTATGACAGTGCTGTGAATCAACTGAATGAACCCTGGCCGGATTTAATTCTCCTCGACTGGATGTTACCTGGCGGCTCCGGTATCCAGTTCATCAAACACCTCAAGCGCGAGTCGATGACCCGGGATATTCCAGTGGTGATGTTGACCGCCAGAGGGGAAGAAGAAGATCGCGTGCGCGGCCTTGAAACCGGCGCGGATGACTATATCACCAAGCCGTTTTCGCCGAAGGAGCTGGTGGCGCGAATCAAAGCGGTAATGCGCCGTATTTCGCCAATGGCGGTGGAAGAGGTGATTGAGATGCAGGGATTAAGTCTCGACCCGACATCTCACCGAGTGATGGCGGGCGAAGAGCCGCTGGAGATGGGGCCGACAGAATTTAAACTGCTGCACTTTTTTATGACGCATCCTGAGCGCGTGTACAGCCGCGAGCAGCTGTTAAACCACGTCTGGGGAACTAACGTGTATGTGGAAGACCGCACGGTCGATGTCCACATTCGTCGCCTGCGTAAAGCACTGGAGCCCGGCGGGCATGACCGCATGGTGCAGACCGTGCGCGGTACAGGATATCGTTTTTCAACCCGCTTTTAAATGGCGAGACGTATTCTGGTCGTAGAAGATGAAGCTCCAATTCGCGAAATGGTCTGCTTCGTGCTCGAACAAAATGGCTTTCAGCCGGTCGAAGCGGAAGATTATGACAGTGCTGTGAATCAACTGAATGAACCCTGGCCGGATTTAATTCTCCTCGACTGGATGTTACCTGGCGGCTCCGGTATCCAGTTCATCAAACACCTCAAGCGCGAGTCGATGACCCGGGATATTCCAGTGGTGATGTTGACCGCCAGAGGGGAAGAAGAAGATCGCGTGCGCGGCCTTGAAACCGGCGCGGATGACTATATCACCAAGCCGTTTTCGCCGAAGGAGCTGGTGGCGCGAATCAAAGCGGTAATGCGCCGTATTTCGCCAATGGCGGTGGAAGAGGTGATTGAGATGCAGGGATTAAGTCTCGACCCGACATCTCACCGAGTGATGGCGGGCGAAGAGCCGCTGGAGATGGGGCCGACAGAATTTAAACTGCTGCACTTTTTTATGACGCATCCTGAGCGCGTGTACAGCCGCGAGCAGCTGTTAAACCACGTCTGGGGAACTAACGTGTATGTGGAAGACCGCACGGTCGATGTCCACATTCGTCGCCTGCGTAAAGCACTGGAGCCCGGCGGGCATGACCGCATGGTGCAGACCGTGCGCGGTACAGGATATCGTTTTTCAACCCGCTTTTAA
实施例6 蛋白质相互作用网络的直接动态检测Example 6 Direct dynamic detection of protein interaction network
在之前实验的基础上,考虑到DNA序列除了能够实现高效检测外,还具有可编程的特性,即通过改变序列中特异性DNA序列的碱基排列,来改变DNA结合结构域对特异性DNA序列的识别能力,进而可以通过设计互不交叉的DNA结合结构域-特异性DNA序列相互作用对,来实现PDf方法对多对蛋白质相互作用在同一体系中的同时检测,即第一次使得对蛋白质相互作用网络的直接检测成为可能。On the basis of the previous experiments, it is considered that in addition to high-efficiency detection, the DNA sequence also has programmable characteristics, that is, by changing the base arrangement of the specific DNA sequence in the sequence, the DNA binding domain is changed for the specific DNA sequence The ability to recognize, and then by designing non-intersecting DNA-binding domain-specific DNA sequence interaction pairs, the PDf method can simultaneously detect multiple pairs of protein interactions in the same system, that is, for the first time, the protein Direct detection of interacting networks becomes possible.
为了验证以上构想的可行性,对野生型CI蛋白质的DNA结合结构域CI(N)wt中的DNA识别螺旋的氨基酸做以下定点突变:将QSGVGAL定点突变为QSAINKA,从而得到突变体CI(N)mut1。然后,基于FoldX软件计算出的CI(N)wt和CI(N)mut1与DNA相互作用能的信息(见图6a),设计了以下DNA序列:In order to verify the feasibility of the above concept, the following site-directed mutations were performed on the amino acids of the DNA recognition helix in the DNA-binding domain CI(N) wt of the wild-type CI protein: QSGVGAL was site-directed mutation to QSAINKA, thereby obtaining the mutant CI(N) mut1 . Then, based on the information of the interaction energy between CI(N) wt and CI(N) mut1 calculated by FoldX software (see Figure 6a), the following DNA sequences were designed:
BR1(即CI(N)wt相应的特异性DNA序列)(SEQ ID NO:21):BR1 (ie the specific DNA sequence corresponding to CI(N) wt ) (SEQ ID NO: 21):
AGCAAAATCAGGGTGTTATCTACCTCTGGCGGTGATAACTTCATCTCTGCCCTGTGGAGCAAAAATCAGGGTGTTATCTACCTCTGGCGGTGATAACTTCATCTCTGCCCTGTGG
BR4(SEQ ID NO:22):BR4 (SEQ ID NO: 22):
AGCAAAATCAGGGTGTTATCTACCTCTGGCCGTGATAACTTCATCTCTGCCCTGTGGAGCAAAAATCAGGGTGTTATCTACCTCTGGCCGTGATAACTTCATCTCTGCCCTGTGG
BR5(SEQ ID NO:23):BR5 (SEQ ID NO: 23):
AGCAAAATCAGGGTGTTATCTACCTCTGGCGGTGCTAACTTCATCTCTGCCCTGTGGAGCAAAAATCAGGGTGTTATCTACCTCTGGCGGTGCTAACTTCATCTCTGCCCTGTGG
BR6(SEQ ID NO:24):BR6 (SEQ ID NO: 24):
AGCAAAATCAGGGTGTTATCTACCCCTGGCGGTGATAACTTCATCTCTGCCCTGTGGAGCAAAAATCAGGGTGTTATCTACCCCTGGCGGTGATAACTTCATCTCTGCCCTGTGG
BR7(SEQ ID NO:25):BR7 (SEQ ID NO: 25):
AGCAAAATCAGGGTGTTATCTACCCCTGGCCGTGATAACTTCATCTCTGCCCTGTGGAGCAAAAATCAGGGTGTTATCTACCCCTGGCCGTGATAACTTCATCTCTGCCCTGTGG
BR8(SEQ ID NO:26):BR8 (SEQ ID NO: 26):
AGCAAAATCAGGGTGTTATCTACCCCTGGCTGTGATAACTTCATCTCTGCCCTGTGGAGCAAAAATCAGGGTGTTATCTACCCCTGGCTGTGATAACTTCATCTCTGCCCTGTGG
BR9(SEQ ID NO:27):BR9 (SEQ ID NO: 27):
AGCAAAATCAGGGTGTTATCTACCCCAGGCCGTGAIAACTTCATCTCTGCCCTGTGGAGCAAAAATCAGGGTGTTATTCTACCCCAGGCCGTGAIAACTTCATCTCTGCCCTGTGG
BR10(SEQ ID NO:28):BR10 (SEQ ID NO: 28):
AGCAAAATCAGGGTGTTATCTACCCCAGTCCGTGATAACTTCATCTCTGCCCTGTGGAGCAAAAATCAGGGTGTTATCTACCCCAGTCCGTGATAACTTCATCTCTGCCCTGTGG
其中BR1、4、5、6、8为分别针对CI(N)wt-CI(N)wt和CI(N)mut1-CI(N)mut1同二聚体设计的序列,BR7、9、10为针对CI(N)wt-CI(N)mut1异二聚体设计的序列。利用前述PDf方法进行检测,如图6b所示,序列BR4能够特异性识别CI(N)wt-CI(N)wt同二聚体,序列BR6能够特异性识别CI(N)mut1-CI(N)mut1同二聚体,而序列BR10更倾向于和CI(N)wt-CI(N)mut1异二聚体结合,而这三者之间互不交叉。Among them, BR1, 4, 5, 6, and 8 are sequences designed for CI(N) wt -CI(N) wt and CI(N) mut1 -CI(N) mut1 homodimers, respectively, and BR7, 9, and 10 are Sequence designed for CI(N) wt -CI(N) mut1 heterodimer. Using the aforementioned PDf method for detection, as shown in Figure 6b, the sequence BR4 can specifically recognize CI(N) wt -CI(N) wt homodimer, and the sequence BR6 can specifically recognize CI(N) mut1 -CI(N ) mut1 homodimer, while the sequence BR10 is more inclined to bind to CI(N) wt -CI(N) mut1 heterodimer, and the three do not cross each other.
基于以上结果,如果要检测蛋白质A和蛋白质B之间可能存在的三对相互作用(即A-A的二聚化、B-B的二聚化以及A-B的二聚化),就可以在一个包含有CI(N)wt-A和CI(N)mut1-B融合蛋白的检测体系中,利用BR4、BR6以及BR10三个不同的特异性DNA序列实现对以上三对相互作用同时进行PDf定量检测。而在上述序列设计和检测方法的基础上进行优化(包括DNA结合结构域与相应特异性DNA序列的结合能力以及蛋白质表达量)和扩展(互不交叉的DNA结合结构域-特异性DNA序列作用对),就可以将直接检测蛋白质相互作用网络的能力扩展到更大的规模(原理图如图6c所示)。Based on the above results, if you want to detect three pairs of interactions that may exist between protein A and protein B (ie dimerization of AA, dimerization of BB, and dimerization of AB), you can use a CI( In the detection system of N) wt -A and CI(N) mut1 -B fusion proteins, three different specific DNA sequences of BR4, BR6 and BR10 are used to realize the simultaneous quantitative detection of PDf for the above three pairs of interactions. On the basis of the above-mentioned sequence design and detection methods, optimization (including the binding ability of the DNA binding domain to the corresponding specific DNA sequence and the amount of protein expression) and expansion (the interaction between the DNA binding domain and the specific DNA sequence that do not cross each other) Right), the ability to directly detect protein interaction networks can be extended to a larger scale (schematic diagram shown in Figure 6c).
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410338899.8A CN104099418A (en) | 2014-07-16 | 2014-07-16 | Protein interaction detection method based on nucleotide sequence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410338899.8A CN104099418A (en) | 2014-07-16 | 2014-07-16 | Protein interaction detection method based on nucleotide sequence |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104099418A true CN104099418A (en) | 2014-10-15 |
Family
ID=51667956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410338899.8A Pending CN104099418A (en) | 2014-07-16 | 2014-07-16 | Protein interaction detection method based on nucleotide sequence |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104099418A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106636404A (en) * | 2016-12-23 | 2017-05-10 | 上海思路迪生物医学科技有限公司 | Quality control method for detecting human EGFR (Epidermal Growth Factor Receptor) gene variation based on high-throughput sequencing and kit |
CN107630069A (en) * | 2016-07-08 | 2018-01-26 | 中国科学院上海生命科学研究院 | Protein interactome detection method, used carrier and kit |
CN108197431A (en) * | 2018-01-24 | 2018-06-22 | 清华大学 | The analysis method and system of chromatin interaction difference |
CN108753939A (en) * | 2018-06-01 | 2018-11-06 | 华侨大学 | A method of the single stranded DNA damage of detection full-length genome |
CN110951777A (en) * | 2018-09-26 | 2020-04-03 | 中国科学技术大学 | Gene transcription regulation system and application thereof |
-
2014
- 2014-07-16 CN CN201410338899.8A patent/CN104099418A/en active Pending
Non-Patent Citations (3)
Title |
---|
STREAKER ED ET AL: "coupling of protein assembly and dna binding: biotin repressor dimerization precedes biotin operator binding", 《JOURNAL OF MOLECULAR BIOLOGY》 * |
STREAKER ED ET AL: "coupling of site-specific dna binding to protein dimerization in assembly of the biotin repressor-biotin operator complex", 《BIOCHEMISTRY》 * |
STREETER SD ET AL: "dna footprinting and biophysical characterization of the controller protein c. Ahdi suggests the basis of a genetic switch", 《NUCLEIC ACIDS RESEARCH》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107630069A (en) * | 2016-07-08 | 2018-01-26 | 中国科学院上海生命科学研究院 | Protein interactome detection method, used carrier and kit |
CN106636404A (en) * | 2016-12-23 | 2017-05-10 | 上海思路迪生物医学科技有限公司 | Quality control method for detecting human EGFR (Epidermal Growth Factor Receptor) gene variation based on high-throughput sequencing and kit |
CN108197431A (en) * | 2018-01-24 | 2018-06-22 | 清华大学 | The analysis method and system of chromatin interaction difference |
CN108753939A (en) * | 2018-06-01 | 2018-11-06 | 华侨大学 | A method of the single stranded DNA damage of detection full-length genome |
CN108753939B (en) * | 2018-06-01 | 2021-08-03 | 华侨大学 | A method for detecting single-stranded DNA damage across the genome |
CN110951777A (en) * | 2018-09-26 | 2020-04-03 | 中国科学技术大学 | Gene transcription regulation system and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lewis et al. | Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli | |
Jain et al. | Structural model for the cooperative assembly of HIV-1 Rev multimers on the RRE as deduced from analysis of assembly-defective mutants | |
CN104099418A (en) | Protein interaction detection method based on nucleotide sequence | |
Faner et al. | Identifying and characterizing Hfq–RNA interactions | |
US20220307009A1 (en) | Isolated nucleic acid binding domains | |
CN108913768A (en) | Multiple liquid phase genetic chip primer, kit and its analysis method a kind of while that detect seven aminoglycosides drug resistant genes | |
CN108165551B (en) | Improved promoter, T vector composed of improved promoter and application of improved promoter | |
Melamed et al. | σ28-dependent small RNA regulation of flagella biosynthesis | |
JP4303112B2 (en) | Methods for the generation and identification of soluble protein domains | |
CN113122542B (en) | ssDNA aptamer of 2019-nCoV S1 protein, screening method and application | |
Lambrecht et al. | Interplay and targetome of the two conserved cyanobacterial sRNAs Yfr1 and Yfr2 in Prochlorococcus MED4 | |
CN104088019A (en) | Construction method of peptide aptamer library based on dimolecular fluorescence complementation technology | |
WO2016008120A1 (en) | Protein-protein interaction detection method based on nucleotide sequence | |
US20240352452A1 (en) | Crispr-based protein barcoding and surface assembly | |
CN110938610B (en) | A kind of transposase mutant, fusion protein, its preparation method and application | |
Bralley et al. | Organization and expression of the polynucleotide phosphorylase gene (pnp) of Streptomyces: processing of pnp transcripts in Streptomyces antibioticus | |
US20080248958A1 (en) | System for pulling out regulatory elements in vitro | |
CN112760308A (en) | LdCsm-dCsm3 mutant complex, detection system containing complex and application of complex in RNA detection | |
CN104480081A (en) | Sso7d-Sau recombinant DNA polymerase | |
CN107630069A (en) | Protein interactome detection method, used carrier and kit | |
Poole | The integration of ProxiMAX randomisation with CIS display for the production of novel peptides | |
EP4299731A1 (en) | Synthetic primase-polymerase and uses thereof | |
CN110452967B (en) | Universal qPCR plasmid quantification method and universal primer | |
Iosub et al. | Hfq CLASH uncovers sRNA-target interaction networks enhancing adaptation to nutrient availability | |
CN107475257A (en) | Efficiently start startup increment gene and its application of expression foreign protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141015 |